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DIRAC EIGENVALUES ESTIMATES IN TERMS
OF DIVERGENCEFREE SYMMETRIC TENSORS

Eui Chul Kim

Dedicated to Professor Thomas Friedrich on his 60th birthday

Abstract. We proved in [10] that Friedrich’s estimate [5] for the first
eigenvalue of the Dirac operator can be improved when a Codazzi tensor
exists. In the paper we further prove that his estimate can be improved
as well via a well-chosen divergencefree symmetric tensor. We study the
geometric implication of the new first eigenvalue estimates over Sasakian
spin manifolds and show that some particular types of spinors appear as
the limiting case.

1. Introduction

Let (Mn, g) be an n-dimensional closed Riemannian spin manifold. Let us
denote by ∇ the Levi-Civita connection on (Mn, g) as well as the induced
covariant derivative on the spinor bundle Σ(M) and denote by D the Dirac
operator of (Mn, g). Using a local orthonormal frame (E1, . . . , En), we have
the local formulas

∇Xψ = X(ψ) +
1
4

n∑

i=1

Ei · ∇XEi · ψ, Dψ =
n∑

i=1

Ei · ∇Eiψ, ψ ∈ Γ(Σ(M)),

where the dot “·” indicates the Clifford multiplication [6]. Associated to any
nondegenerate symmetric (0, 2)-tensor field β on (Mn, g), we define the β-twist
Dβ of the Dirac operator D by

Dβψ =
n∑

i=1

β−1(Ei) · ∇Eiψ =
n∑

i=1

Ei · ∇β−1(Ei)ψ,

where β was identified with the induced (1,1)-tensor β via β(X,Y )=g(X,β(Y )).
In this paper, we are interested in two particular types of symmetric tensors,
i.e., Codazzi tensors and divergencefree tensors: A symmetric (0, 2)-tensor field
β is called
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(i) a Codazzi tensor if (∇Xβ)(Y, Z) = (∇Y β)(X,Z) holds for all vector fields
X,Y, Z.

(ii) a divergencefree tensor if div(β) =
∑n

i=1(∇Ei
β)(Ei) = 0.

Throughout the paper we fix some terminology.

Definition 1.1. Let P be a first order self-adjoint elliptic operator on some
closed Riemannian spin manifold. An eigenvalue λ ∈ R of P is called the first
eigenvalue if λ2 is the smallest eigenvalue of P 2. An eigenspinor ϕ of P is called
a first eigenspinor if its associated eigenvalue λ is the first eigenvalue of P .

Well-known examples for the first eigenspinors of the Dirac operator are, e.g.,
parallel spinors [3, 12], Killing spinors [2, 3] and Kählerian Killing spinors [11].

We have recently proved in [10] the following two theorems.

Theorem A ([10]). Let (Mn, g) be an n-dimensional closed Riemannian spin
manifold and consider a nondegenerate Codazzi tensor β such that tr(β−1) =
0 vanishes identically. Denote by g the metric induced by β via g(X,Y ) =
g(β(X), β(Y )) and by D the Dirac operator of g. Let λ1 ∈ R and λ1 ∈ R be the
first eigenvalue of the Dirac operators D and D, respectively. Then we have

(1.1) λ2
1 ≥ inf

M

{ nS

4(n− 1)
+

nλ
2

1

(n− 1) |β−1|2 +
n4F

2(n− 1)F

}
,

where F : Mn −→ R is a real-valued function defined by

(1.2) F = |det(β−1)| · |β−1|2,
4F := −(div ◦ grad)(F ), and S is the scalar curvature of (Mn, g).

The limiting case of (1.1) occurs if and only if there exists a spinor field ψ1

on (Mn, g) with the following properties:
(i) The differential equation

∇Xψ1 = −λ
n
X · ψ1 − λ

|β−1|2 β
−1(X) · ψ1

holds for some constants λ, λ ∈ R and for all vector fields X.
(ii) ψ1 is a first eigenspinor of both D and D.

Theorem B ([10]). Let (Mn, g) be an n-dimensional closed Riemannian spin
manifold and consider a nondegenerate Codazzi tensor β. Let λ1 6= 0 ∈ R and
λ1 ∈ R be the first eigenvalue of the Dirac operators D and D, respectively.
Then, in the notations of Theorem A, we have

(1.3) λ2
1 ≥ inf

M

{ S

4(p+ 1)
− q λ

2

1

p+ 1
+

4F
2(p+ 1)F

}
,

where the real-valued function F : Mn −→ R is defined by

(1.4) F = − |det(β−1)|
q
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and p, q : Mn −→ R are such bounded real-valued functions satisfying

− 1
n
< p < 0, − 1

|β−1|2 < q < 0,

that solve the system of two linear equations

np+ c(trβ−1)q = −1, (trβ−1)p+ c|β−1|2q = −c
for some nonzero constant c 6= 0 ∈ R.

The limiting case of (1.3) occurs if and only if there exists a spinor field ψ1

on (Mn, g) with the following properties:
(i) The differential equation

∇Xψ1 = λ pX · ψ1 + λ q β−1(X) · ψ1

holds for some constants λ, λ ∈ R, λ 6= 0, and for all vector fields X.
(ii) ψ1 is a first eigenspinor of both D and D.
In the limiting case, the parameter c = λ1/λ1 is the ratio of the two first

eigenvalues.

Note that inequalities (1.1) and (1.3) both generalize Friedrich’s inequality
[5]

(1.5) λ2
1 ≥

n

4(n− 1)
Smin,

where Smin denotes the minimum of the (positive) scalar curvature. The lim-
iting case of (1.5) is characterized by the existence of a Killing spinor ψ1, i.e.,
a solution of the differential equation

∇Xψ1 = −λ
n
X · ψ1, λ 6= 0 ∈ R .

Any manifold admitting Killing spinors is necessarily Einstein and the simply-
connected manifolds admitting Killing spinors were completely classified [2, 3]:
They are the standard spheres, 6-dimensional nearly Kähler nonKähler man-
ifolds, Einstein Sasakian manifolds, 3-Sasakian manifolds and 7-dimensional
manifolds with nearly parallel G2-structure.

Let ( , ) := Re〈 , 〉 denote the real part of the standard Hermitian product
〈 , 〉 on the spinor bundle Σ(M) over Mn. Let α = α(φ, ψ) be a 1-form on Mn

induced by a nondegenerate symmetric tensor β and spinor fields φ, ψ ∈ Γ(Σ)
via

α(X) = (φ, β−1(X) · ψ).

Then
div(α) = −(Dβφ, ψ) + (φ, Dβψ) + (φ, div(β−1) · ψ).

Thus, if β is a nondegenerate symmetric tensor with div(β−1) = 0, then Dβ is
a self-adjoint elliptic operator of first order and hence the spectrum of Dβ is
discrete and real.
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In this paper we want to show that inequalities (1.1) and (1.3) remain valid
even when we use a nondegenerate symmetric tensor β with div(β−1) = 0 to
estimate lower bounds for the first eigenvalue of the Dirac operator. In our new
theorems in the next section, Theorems 2.1 and 2.2, λ1 shall denote the first
eigenvalue of the operator Dβ and the free functions, F = |det(β−1)| · |β−1|2
in (1.2) and F = − |det(β−1)|

q in (1.4), will be replaced by F = |β−1|2 and
F = − 1

q , respectively. We will in fact transform inequality (1.3) into a more
explicit form (2.15) and compare it with Friedrich’s inequality (1.5). It turns
out that inequality (2.15) can be sharper than (1.5) under certain additional
conditions (see Remarks 2.2 and 3.3).

In the last section of the paper, we apply Theorems 2.1 and 2.2 to Sasakian
spin manifolds and study the geometric meaning of the limiting case of the
resulting inequalities (see Propositions 3.5 and 3.6). Recall that a Sasakian
manifold (M2m+1, φ, ξ, η, g) of dimension 2m+1 consists of a (1,1)-tensor field
φ, a vector field ξ, a 1-form η, and a metric g that satisfy η(ξ) = 1 and

φ2(X) = −X + η(X)ξ, g(φX, φY ) = g(X,Y )− η(X)η(Y ),
(∇Xφ)(Y ) = g(X,Y )ξ − η(Y )X

for all vector fields X,Y . A Sasakian manifold (M2m+1, φ, ξ, η, g) is called
eta-Einstein [4] if the Ricci curvature tensor Ric satisfies

(1.6) Ric = κ g + τη ⊗ η

for some constants κ, τ ∈ R with κ + τ = 2m. Any eta-Einstein Sasakian
manifold is necessarily of constant scalar curvature S and we can rewrite eta-
Einstein condition (1.6) as

(1.7) Ric =
(

S

n− 1
− 1
)
g +

(
n− S

n− 1

)
η ⊗ η, n = 2m+ 1.

Over Sasakian spin manifolds, a special class of spinors deserves attention
[9].

Definition 1.2. A nontrivial spinor field ψ on Sasakian spin manifold (M2m+1,
φ, ξ, η, g) is called an eta-Killing spinor with Killing pair (a, b) if it satisfies

∇Xψ = aX · ψ + bη(X)ξ · ψ
for some real numbers a, b ∈ R, a 6= 0, and for all vector fields X.

In Propositions 3.1-3.4, we will establish some relations between the Killing
pair (a, b) of an eta-Killing spinor and the decomposition property of the spinor
bundle over Sasakian manifolds, proving in particular that a simply connected
closed Sasakian spin manifold is eta-Einstein if and only if there exists either
an eta-Killing spinor with Killing pair

(1.8)
(

1
2
, −n

4
+

S

4(n− 1)

)
,

(
−1

2
,
n

4
− S

4(n− 1)

)
for n ≥ 5
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or an eta-Killing spinor with Killing pair

(1.9)
(−2 +

√
4 + 2S

4
,

4−√4 + 2S
4

)
for n = 3.

Applying Theorems 2.1 and 2.2 to divergencefree symmetric tensors β−1 =
2
nI−2ξ⊗η and γ−1 = I−2ξ⊗η, we obtain Propositions 3.5 and 3.6, respectively.
We will show that the limiting case of (3.9) occurs if and only if there exists
an eta-Killing spinor with Killing pair (1.8) or (1.9) such that it is a first
eigenspinor of Dβ . Similarly, the limiting case of (3.14) is attained only if there
exists an eta-Killing spinor with Killing pair (1.8) or (1.9) such that it is a first
eigenspinor of Dγ .

2. Dirac eigenvalues estimates in terms of divergencefree
symmetric tensors

We start with recalling some lemmata that we will need to prove Theo-
rems 2.1 and 2.2.

Lemma 2.1. Let β be a nondegenerate symmetric tensor field on (Mn, g). If
there exists a nontrivial spinor field ψ on (Mn, g) such that

(2.1) ∇Xψ = pX ·Dψ + q β−1(X) ·Dβψ

holds for some real-valued functions p, q : Mn −→ R and for all vector fields
X, then we have

(2.2) (1 + np)Dψ = −q tr(β−1)Dβψ, (1 + q|β−1|2)Dβψ = −p tr(β−1)Dψ

and

Sψ = 4 dp ·Dψ + 4β−1(dq) ·Dβψ

+4(p+ 1)D2ψ + 4q D2
βψ + 4q div(β−1) ·Dβψ.(2.3)

Proof. Contracting both sides of (2.1) gives (2.2). Applying (2.1) to the for-
mulas

1
2
Ric(X) · ψ = D(∇Xψ)−∇X(Dψ)−

n∑

i=1

Ei · ∇∇Ei
X ψ,

Sψ = −
n∑

i=1

Ei · Ric(Ei) · ψ,

we obtain
1
2
Ric(X) · ψ = grad(p) ·X ·Dψ + grad(q) · β−1(X) ·Dβψ

−pX ·D2ψ − (2p+ 1)∇X(Dψ)− q β−1(X) ·D(Dβψ)

−2q∇β−1(X)(Dβψ) + q

n∑

i=1

Ei · (∇Eiβ
−1)(X) ·Dβψ(2.4)

and identity (2.3), respectively. �



954 EUI CHUL KIM

Lemma 2.2. Let ψ and F be a spinor field and a real-valued function on
(Mn, g), respectively. Then we have

F · 4(ψ,ψ)− (ψ,ψ) · 4F = div{(ψ,ψ)gradF − F grad(ψ,ψ)}.
Theorem 2.1. Let (Mn, g) be an n-dimensional closed Riemannian spin mani-
fold. Let β be such a nondegenerate symmetric tensor on Mn that both div(β−1)
= 0 and tr(β−1) = 0 vanish identically. Let λ1 ∈ R and λ1 ∈ R be the first
eigenvalue of D and Dβ, respectively. Then we have

(2.5) λ2
1 ≥ inf

M

{ nS

4(n− 1)
+

nλ
2

1

(n− 1) |β−1|2 +
n4F

2(n− 1)F

}
,

where F : Mn −→ R is a real-valued function defined by F = |β−1|2.
The limiting case of (2.5) occurs if and only if 4F = 0 vanishes identically

and there exists a spinor field ψ1 on (Mn, g) with the following properties:
(i) The differential equation

(2.6) ∇Xψ1 = −λ
n
X · ψ1 − λ

|β−1|2 β
−1(X) · ψ1

holds for some constants λ, λ ∈ R and for all vector fields X.
(ii) ψ1 is a first eigenspinor of both D and Dβ.

Proof. Let Q : Γ(T (M))× Γ(Σ(M)g) −→ Γ(Σ(M)g) be a twistor-like operator
defined by

QX(ϕ) = ∇Xϕ− pX ·Dϕ− q β−1(X) ·Dβϕ,

where p, q : Mn −→ R are some real-valued functions. Then we have
n∑

j=1

(QEj (ϕ), QEj (ϕ))

= div
[ n∑

j=1

(ϕ, Ej ·Dϕ+∇Ejϕ)Ej

]
+ (np2 + 2p+ 1)(Dϕ,Dϕ)− 1

4
S(ϕ,ϕ)

+{q2|β−1|2 + 2q}(Dβϕ,Dβϕ) + 2pq tr(β−1)(Dϕ,Dβϕ).(2.7)

Let ψ1 be an eigenspinor of D for the first eigenvalue λ1. Let µ denote the
volume form of (Mn, g). By Lemma 2.2, we then see that

(2.8)
∫

Mn

F div

[
n∑

j=1

(ψ1, Ej ·Dψ1 +∇Ejψ1)Ej

]
µ = −1

2

∫

Mn

(ψ1, ψ1)4(F )µ

holds for any real-valued function F : Mn −→ R, since (ψ1, Ej · ψ1) = 0
vanishes identically. Now, let λ1 be the first eigenvalue of Dβ . Making use of
(2.7)-(2.8) and tr(β−1) = 0 and introducing a free function F : Mn −→ R,
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which is assumed to be a positive function, to control the unnecessary terms,
we compute

H1 :=
∫

Mn

[
(Dβψ1, Dβψ1)− λ

2

1(ψ1, ψ1)
]
µ+
∫

Mn

[
F

n∑

j=1

(QEj (ψ1),QEj (ψ1))

]
µ

(2.9)

=
∫

Mn

[
λ2

1(np
2 + 2p+ 1)F − 1

4
FS − λ

2

1 −
1
2
(4F )

]
(ψ1, ψ1)µ

+
∫

Mn

[
(q2|β−1|2 + 2q)F + 1

]
(Dβψ1, Dβψ1)µ.

Choose the free parameters p, q, F as

p = − 1
n
, q = − 1

|β−1|2 , F = |β−1|2.

Then the last line of (2.9) vanishes and we have

(2.10) H1 =
∫

Mn

[ (n− 1)λ2
1F

n
− 1

4
FS − λ

2

1 −
1
2
(4F )

]
(ψ1, ψ1)µ ≥ 0,

which proves inequality (2.5). The conditions (i)-(ii) for the limiting case of
(2.5) are clear. �

Assume that λ1 6= 0 is nonzero, and let c1 := λ1/λ1 denote the ratio of the
two first eigenvalues. Then (2.10) can be rewritten as

(2.11) H2 =
∫

Mn

[
λ2

1 F

(
n− 1
n

− c21
|β−1|2

)
− 1

4
FS − 1

2
(4F )

]
(ψ1, ψ1)µ ≥ 0.

This proves:

Corollary 2.1. In the notations of Theorem 2.1, we have

(2.12) λ2
1 ≥ inf

M∗

{ S
4ρ

+
4F
2ρF

}
,

where ρ is a real-valued function on Mn defined by

ρ =
n− 1
n

− c21
|β−1|2

and the infimum is taken over the subset M∗ ⊂Mn,

M∗ := {x ∈Mn : ρ(x) > 0 }.
Remark 2.1. If the scalar curvature S > 0 is positive and |β−1|2 is constant on
Mn, then (2.11) implies that ρ > 0 is a positive constant and inequality (2.12)
is sharper than Friedrich’s inequality (1.5). In fact, (2.12) reduces to (1.5) if
c1 = 0 equals zero and |β−1|2 is a constant.
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Theorem 2.2. Let (Mn, g) be an n-dimensional closed Riemannian spin mani-
fold. Let β be a nondegenerate symmetric tensor on Mn such that div(β−1) = 0
and n|β−1|2 > (trβ−1)2 > 0 hold at all points. Let λ1 6= 0 ∈ R and λ1 ∈ R be
the first eigenvalue of D and Dβ, respectively, and denote c1 = λ1/λ1. For any
real-valued function C : Mn −→ R satisfying either

(2.13)
tr(β−1)

n
< C <

|β−1|2
tr(β−1)

, tr(β−1) > 0,

or

(2.14)
tr(β−1)

n
> C >

|β−1|2
tr(β−1)

, tr(β−1) < 0,

we have

(2.15) λ2
1 ≥ inf

M∗

{ S

4 ρ(C)
+

4F
2ρ(C)F

}
,

where ρ(C) and F are real-valued functions on Mn defined by

ρ(C) =
(trβ−1)C2 +

[
(n− 1)|β−1|2 − (trβ−1)2 − nc21

]
C + (trβ−1)c21

C
[
n|β−1|2 − (trβ−1)2

] ,

F =
C
[
n|β−1|2 − (trβ−1)2

]

Cn− tr(β−1)
,

respectively, and M∗ = {x ∈M : ρ(C)(x) > 0 }.
The limiting case of (2.15) occurs if and only if 4F = 0 vanishes identically,

C = c1 = λ1/λ1 is a constant and there exists a spinor field ψ1 on (Mn, g)
with the following properties:

(i) The differential equation

(2.16) ∇Xψ1 = λ pX · ψ1 + λ q β−1(X) · ψ1

holds for some real-valued functions p, q on Mn, for some constants λ, λ ∈ R,
λ 6= 0, and for all vector fields X.

(ii) ψ1 is a first eigenspinor of both D and Dβ.
In the limiting case, the functions p and q are expressed as (2.22) with C =

c1 = λ1/λ1.

Proof. Let Q : Γ(T (M))× Γ(Σ(M)g) −→ Γ(Σ(M)g) be a twistor-like operator
defined by

QX(ϕ) = ∇Xϕ− pX ·Dϕ− q β−1(X) ·Dβϕ,

where p, q : Mn −→ R are some real-valued functions. Let ψ1 be an eigenspinor
of D for the first eigenvalue λ1 6= 0. Let λ1 = c1λ1 be the first eigenvalue of Dβ .
Making use of (2.7)-(2.8) and introducing free functions F,B,C : Mn −→ R



DIRAC EIGENVALUES ESTIMATES 957

(We assume that F is a positive function.) to control the unnecessary terms,
we compute

H2 :=
∫

Mn

[
(Dβψ1, Dβψ1)− c21λ

2
1(ψ1, ψ1)

]
µ

(2.17)

+
∫

Mn

[
F

n∑

j=1

(QEj (ψ1),QEj (ψ1)) +B2(Dβψ1 − C Dψ1, Dβψ1 − C Dψ1)

]
µ

=
∫

Mn

[
λ2

1

(
(np2 + 2p+ 1)F +B2C2 − c21

)
− 1

4
FS − 1

2
(4F )

]
(ψ1, ψ1)µ

+
∫

Mn

[
2λ1

(
pqF tr(β−1)−B2C

)
(ψ1, Dβψ1)

+
(
(q2|β−1|2 + 2q)F +B2 + 1

)
(Dβψ1, Dβψ1)

]
µ.

We choose the functions F,B,C in such a way that the last two lines of (2.17)
vanish and the equations in (2.2) are satisfied with Dβψ1 = CDψ1. Namely,
the functions p, q, B, F have to satisfy the following four equations:

np+ C(trβ−1)q = −1,(2.18)
(trβ−1)p+ C|β−1|2q = −C,(2.19)
pqF (trβ−1)−B2C = 0,(2.20)
(q2|β−1|2 + 2q)F +B2 + 1 = 0.(2.21)

Solving (2.18)-(2.21), we obtain

(2.22) p =
−|β−1|2 + C(trβ−1)
n|β−1|2 − (trβ−1)2

, q =
−Cn+ (trβ−1)

C
[
n|β−1|2 − (trβ−1)2

] ,

and

F = −1
q

=
C
[
n|β−1|2 − (trβ−1)2

]

Cn− tr(β−1)
,(2.23)

B2 = 1 + q|β−1|2 =
−C(trβ−1)2 + |β−1|2(trβ−1)

C
[
n|β−1|2 − (trβ−1)2

] .(2.24)

Note that (2.18) and (2.19) together give

C = − 1 + np

q(trβ−1)
= − p(trβ−1)

1 + q|β−1|2
and so the relations

(2.25) F = −1
q
> 0, B2 = 1 + q|β−1|2 > 0, C2 =

p(1 + np)
q(1 + q|β−1|2) > 0
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imply the restriction

(2.26) − 1
|β−1|2 < q < 0, − 1

n
< p < 0.

It is easy to check, using the relations in (2.22), that (2.26) can equivalently be
expressed as (2.13)-(2.14). Now, inserting (2.23)-(2.24) into (2.17), we have

(2.27) H2 =
∫

Mn

[
λ2

1(p+ 1 + c21q)F −
1
4
FS − 1

2
(4F )

]
(ψ1, ψ1)µ ≥ 0,

and applying (2.22) to (2.27) proves inequality (2.15), where ρ(C) := p+1+c21q.
The conditions (i)-(ii) for the limiting case of (2.15) are easy to check. �

Remark 2.2. Assume that, in Theorem 2.2, the scalar curvature S > 0 is
positive and both tr(β−1) and |β−1|2 are positive constants. Choose a constant
C = c satisfying (2.13). Then (2.27) implies that ρ(C = c) > 0 is a positive
constant. Therefore, if we can choose a constant c such that

[
nc− tr(β−1)

] [
(trβ−1)c− nc21

]
< 0

is satisfied(see Remark 3.3), then (2.15) is sharper than Friedrich’s inequality
(1.5), for a simple computation gives

1
ρ(c)

− n

n− 1
= −

[
nc− tr(β−1)

] [
(trβ−1)c− nc21

]

c(n− 1) [n|β−1|2 − (trβ−1)2] ρ(c)
> 0.

Remark 2.3. Inequality (2.15) remains essentially the same when the tensor β
with div(β−1) = 0 is replaced by a Codazzi tensor β(see Theorem B in Section
1). In this case, λ1 should denote the first eigenvalue of the Dirac operator
D of g(·, ·) := g(β(·), β(·)) and the free function F = − 1

q in (2.23) must be
replaced by

F = −|det(β−1)|
q

=
C|det(β−1)|

[
n|β−1|2 − (trβ−1)2

]

Cn− tr(β−1)
.

Remark 2.4. Assume that, in Theorem 2.1, |β−1|2 is constant on Mn. Let ψ1

be a spinor field on (Mn, g) satisfying equation (2.6) and suppose that ψ1 is a
first eigenspinor of Dβ , i.e., λ = λ1. Then, by (2.3), we have

(2.28) λ2 =
nS

4(n− 1)
+

nλ
2

1

(n− 1)|β−1|2 .

Comparing (2.28) to (2.5), we conclude that ψ1 is also a first eigenspinor of D.
Similarly, when, in Theorem 2.2, both tr(β−1) and |β−1|2 are constant on Mn,
the second condition “(ii) ψ1 is a first eigenspinor of both D and Dβ” for the
limiting case of (2.15) simplifies to “(ii) ψ1 is a first eigenspinor of Dβ”.
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3. Dirac eigenvalues estimates over Sasakian manifolds

In this section we will apply Theorems 2.1 and 2.2 to Sasakian spin manifolds
and investigate the geometric implication of the limiting case of the resulting in-
equalities (see Propositions 3.5 and 3.6). For this purpose we need to establish
some relations between the Killing pair (a, b) of an eta-Killing spinor(see Defi-
nition 1.2) and the decomposition property of the spinor bundle over Sasakian
manifolds.

Consider a manifold M2m+1 of odd dimension 2m + 1. An almost contact
metric structure (φ, ξ, η, g) of M2m+1 consists of a (1,1)-tensor field φ, a vector
field ξ, a 1-form η, and a metric g with the following properties:

η(ξ) = 1, φ2(X) = −X + η(X)ξ, g(φX, φY ) = g(X,Y )− η(X)η(Y ).

The fundamental 2-form Φ of the contact structure is a 2-form defined by

Φ(X,Y ) = g(X, φ(Y )).

An almost contact metric structure (φ, ξ, η, g) of M2m+1 is called Sasakian
structure if

(∇Xφ)(Y ) = g(X,Y )ξ − η(Y )X

holds for all vector fields X,Y . The Riemann curvature tensor R of Sasakian
manifold (M2m+1, φ, ξ, η, g) has some special symmetries, i.e.,

g(R(φX, φY )(φZ), φW ) = g(R(X,Y )Z, W ) + η(Y )η(W )g(X,Z)
−η(Y )η(Z)g(X,W )− η(X)η(W )g(Y,Z)
+η(X)η(Z)g(Y,W ).(3.1)

Expressing the components of the curvature tensorR with respect to an adapted
local orthonormal frame E1, E 1 := φ(E1), E2, E 2 := φ(E2), . . ., Em := φ(Em),
E2m+1 := ξ, we can reformulate identity (3.1) as follows.

Lemma 3.1 ([9]). On any Sasakian manifold (M2m+1, φ, ξ, η, g), we have

R i j k l = Rijkl, Rij k l = R i jkl, Ri j k l = R i j k l,

Ri j k l = −R i jkl, R i j k l = −Rij k l,

Ri 2m+1 k 2m+1 = R i 2m+1 k 2m+1 = δik (1 ≤ i, j, k, l ≤ m).

In all the other cases, Ruvwz = 0 as soon as one of its indices equals 2m+ 1.

Assume that an almost contact metric manifold (M2m+1, φ, ξ, η, g) has a
spin structure. Then the spinor bundle of (M2m+1, φ, ξ, η, g) splits under the
action of the fundamental 2-form Φ as follows.

Lemma 3.2 ([9]). Let (M2m+1, φ, ξ, η, g) be an almost contact metric manifold
with spin structure and fundamental 2-form Φ. Then the spinor bundle Σ splits
into the orthogonal direct sum Σ = Σ0 ⊕ Σ1 ⊕ · · · ⊕ Σm with

(i) Φ|Σr =
√−1(2r −m)I, dim(Σr) =

(
m
r

)
(0 ≤ r ≤ m),
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(ii) ξ|Σ0⊕Σ2⊕Σ4⊕··· = (
√−1)2m+1I, ξ|Σ1⊕Σ3⊕Σ5⊕··· = −(

√−1)2m+1I,
where I stands for the identity map. Moreover, the bundles Σ0 and Σm can be
defined by

Σ0 = {ψ ∈ Σ : φ(X) · ψ +
√−1X · ψ + (−1)mη(X)ψ = 0 for all vectorsX },

Σm = {ψ ∈ Σ : φ(X) · ψ −√−1X · ψ − η(X)ψ = 0 for all vectorsX }.
In particular, we have the formulas

ξ · ψ0 = (−1)m
√−1ψ0, Φ · ψ0 = −m√−1ψ0, ψ0 ∈ Σ0,

ξ · ψm =
√−1ψm, Φ · ψm = m

√−1ψm, ψm ∈ Σm.

Obviously, any eta-Killing spinor with Killing pair (a, b) is an eigenspinor
of the Dirac operator with eigenvalue λ = −(2m + 1)a − b. Now we further
establish some basic relations between the Killing pair (a, b) of an eta-Killing
spinor and the geometry of the Sasakian manifold. For proofs for Propositions
3.2-3.4 we refer to [9]. In the following we will often write n to mean the
dimension 2m+ 1 of the manifold M2m+1.

Proposition 3.1. Let (M2m+1, φ, ξ, η, g), m ≥ 2, be a Sasakian spin manifold
and suppose that it admits an eta-Killing spinor ψ with Killing pair (a, b), where
both a 6= 0 and b 6= 0 are nonzero. Then (M2m+1, φ, ξ, η, g) is eta-Einstein with
scalar curvature S = 4n(n−1)a2 +8(n−1)ab. Moreover, all the possible values
for a, b can be expressed in terms of the scalar curvature as

(a, b) =
(

1
2
, −n

4
+

S

4(n− 1)

)
,

(
−1

2
,
n

4
− S

4(n− 1)

)
,

and the following statements are true:
(i) If (a, b) =

(
1
2 , −n

4 + S
4(n−1)

)
, then m ≡ 0 (mod 2) and ψ ∈ Γ(Σ0) is a

section in Σ0.
(ii) If (a, b) =

(
− 1

2 ,
n
4 − S

4(n−1)

)
and m ≡ 0 (mod 2), then ψ ∈ Γ(Σm) is a

section in Σm.
(iii) If (a, b) =

(
− 1

2 ,
n
4 − S

4(n−1)

)
and m ≡ 1 (mod 2), then ψ ∈ Γ(Σ0) ∪

Γ(Σm) is a section in Σ0 or in Σm.

Proof. Let ψ be an eta-Killing spinor with Killing pair (a, b), where a and b
both are nonzero. On the one hand, a direct computation gives

R(Ek, ξ)(ψ) = ∇Ek
∇ξψ −∇ξ∇Ek

ψ −∇[Ek, ξ]ψ

= −bEk · ψ − 2a(a+ b)Ek · ξ · ψ.(3.2)

On the other hand, applying Lemma 3.1 to

R(Ek, ξ)(ψ) = −1
2
R(Ek, ξ) · ψ = −1

2

∑
u<v

R(Eu, Ev, Ek, ξ)Eu · Ev · ψ
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gives

(3.3) R(Ek, ξ)(ψ) = −1
2
Ek · ξ · ψ.

Thus, combining (3.2) and (3.3), we obtain

(3.4) {4a(a+ b)− 1}Ek · ξ · ψ + 2bEk · ψ = 0, 1 ≤ k ≤ m.

Since (3.4) implies
(
{4a(a+ b)− 1}Ek · ξ · ψ, {4a(a+ b)− 1}Ek · ξ · ψ

)
=
(
2bEk · ψ, 2bEk · ψ

)
,

we have

{4a(a+ b)− 1}2 = 4b2

⇐⇒ (2a− 1)(2a+ 1)(2a+ 2b− 1)(2a+ 2b+ 1) = 0

⇐⇒ a = ± 1
2

or a+ b = ± 1
2
.(3.5)

Using the decomposition properties in Lemma 3.2, we now show that the latter
case a+b = ± 1

2 of (3.5) is not allowed. Comparing (3.4)-(3.5) to the definitions
of the bundles Σ0 and Σm in Lemma 3.2, we find that ψ ∈ Γ(Σ0)∪Γ(Σm) must
be a section in Σ0 or in Σm. Suppose first that ψ ∈ Γ(Σ0). Then, since
(∇XΦ) · ψ = −X · ξ · ψ − η(X)ψ, we have

Φ · ∇Xψ = ∇X(Φ · ψ)− (∇XΦ) · ψ
= −m√−1∇Xψ + (−1)m

√−1X · ψ + η(X)ψ.(3.6)

Inserting ∇Xψ = aX · ψ + bη(X)ξ · ψ into both sides of (3.6) and using the
identity X · Φ · ψ − Φ ·X · ψ = 2φ(X) · ψ, we come to

(−am+ 2a)
√−1X · ψ + (−1)m(2a+ bm)η(X)ψ

= [−am+ (−1)m]
√−1X · ψ + [1 + (−1)mbm]η(X)ψ,

which gives a = (−1)m 1
2 . Similarly, we conclude in the second case ψ ∈ Γ(Σm)

that a = − 1
2 . To prove that (M2m+1, φ, ξ, η, g) is eta-Einstein, it suffices to

compute the Ricci tensor

1
2
Ric(X) · ψ = D(∇Xψ)−∇X(Dψ)−

2m+1∑
u=1

Eu · ∇∇Eu Xψ(3.7)

= (4ma2 + 2ab)X · ψ + bφ(X) · ξ · ψ + (m− 4ma2 − 2ab)η(X)ξ · ψ
and apply (3.4)-(3.5) to (3.7). Finally, contracting both sides of (3.7), we obtain

(3.8) S = 4n(n− 1)a2 + 8(n− 1)ab = n(n− 1)± 4(n− 1)b,

which enables us to express the Killing pair (a, b) in terms of the scalar curva-
ture. �
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Remark 3.1. Following the arguments in the proof of Proposition 3.1, one
proves easily that any Sasakian spin manifold (M2m+1, φ, ξ, η, g), m ≥ 2, ad-
mits no eta-Killing spinors with Killing pair (0, b), b 6= 0 ∈ R. However, there
exists an eta-Killing spinor with Killing pair (0, 1

2 ) over every 3-dimensional
simply-connected eta-Einstein Sasakian spin manifold (see Proposition 3.4).
Note further that there exist no parallel spinors over Sasakian manifolds, since
Sasakian manifolds cannot be Ricci-flat.

It was proven in [9] that, for simply-connected Sasakian spin manifolds, the
converse of Proposition 3.1 holds.

Proposition 3.2 ([9]). Let (M2m+1, φ, ξ, η, g), m ≥ 2, be a simply-connected
Sasakian spin manifold. Suppose that (M2m+1, φ, ξ, η, g) is eta-Einstein. Then,
in case

(i) m ≡ 0 (mod 2), there exists an eta-Killing spinor ψ0 ∈ Γ(Σ0) with
Killing pair ( 1

2 , −n
4 + S

4(n−1) ) as well as an eta-Killing spinor ψm ∈ Γ(Σm)
with Killing pair (− 1

2 ,
n
4 − S

4(n−1) ).
(ii) m ≡ 1 (mod 2), there exist two eta-Killing spinors ψ0, ψm with Killing

pair (− 1
2 ,

n
4 − S

4(n−1) ) such that ψα is a section in the bundle Σα (α = 0,m).

Over 3-dimensional Sasakian spin manifolds (M3, φ, ξ, η, g), relation (3.4)
implies

a = −1
2

or a+ b =
1
2
.

In contrast to higher dimensional case m ≥ 2, the latter relation a + b = 1
2 is

allowed in 3-dimensional case, since −E1 · ξ ·ψ+E 1 ·ψ = 0 holds for all spinor
fields ψ ∈ Γ(Σ = Σ0 ⊕ Σ1).

Proposition 3.3 ([9]). Let (M3, φ, ξ, η, g) be a 3-dimensional Sasakian spin
manifold and suppose that it admits an eta-Killing spinor ψ with Killing pair
(a, b), where a 6= 0 and b 6= 0. Then (M3, φ, ξ, η, g) is eta-Einstein with constant
scalar curvature S = 24a2 +16ab. Moreover, all the possible values for a, b can
be expressed in terms of the scalar curvature as

(a, b) =
(
−1

2
,

3
4
− S

8

)
,

(−2 +
√

4 + 2S
4

,
4−√4 + 2S

4

)
,

(−2−√4 + 2S
4

,
4 +

√
4 + 2S
4

)
.

To state the converse of Proposition 3.3, we note that any 3-dimensional
Sasakian manifold with constant scalar curvature is eta-Einstein in the sense
of (1.6).

Proposition 3.4 ([9]). Let (M3, φ, ξ, η, g) be a simply-connected Sasakian spin
manifold of dimension 3 and suppose that the scalar curvature S of g is con-
stant. Then,
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(i) there exist two eta-Killing spinors ψ0, ψ1 with Killing pair (− 1
2 ,

3
4 − S

8 )
such that ψα is a section in the bundle Σα (α = 0, 1).

(ii) If S ≥ −2, there exists an eta-Killing spinor ψ ∈ Γ(Σ = Σ0 ⊕ Σ1) with
Killing pair

(
−2±√4+2S

4 , 4∓√4+2S
4

)
.

We are now ready to apply Theorems 2.1 and 2.2 to Sasakian spin manifolds.

Proposition 3.5. Let (M2m+1, φ, ξ, η, g), m ≥ 1, be a closed Sasakian spin
manifold. Let β−1 be a nondegenerate symmetric tensor field on M2m+1 defined
by β−1 = 2

n I − 2 ξ ⊗ η. (Note that div(β−1) = 0 and tr(β−1) = 0.) Let λ1 ∈ R
and λ1 ∈ R be the first eigenvalue of D and Dβ, respectively. Then we have

(3.9) λ2
1 ≥

nSmin

4(n− 1)
+

n2 λ
2

1

4(n− 1)2
.

In case that λ1 6= 0 is nonzero, inequality (3.9) can be rewritten as

(3.10) λ2
1 ≥

n(n− 1)Smin

4(n− 1)2 − n2c21
,

where c1 = λ1/λ1. The limiting case of (3.9) occurs, in case
(i) n ≥ 5, if and only if there exists an eta-Killing spinor ψ1 with Killing

pair (
1
2
, −n

4
+

S

4(n− 1)

)
,

(
−1

2
,
n

4
− S

4(n− 1)

)
,

such that ψ1 is a first eigenspinor of Dβ.
(ii) n = 3, if and only if there exists an eta-Killing spinor ϕ1 with Killing

pair (−2 +
√

4 + 2S
4

,
4−√4 + 2S

4

)

such that ϕ1 is a first eigenspinor of Dβ.

Proof. By Theorem 2.1, the limiting case of (3.9) occurs if and only if there
exists an eta-Killing spinor with Killing pair

(3.11) (a1, b1) =
(
− 2(n− 1)λ1 + nλ1

2n(n− 1)
,

nλ1

2(n− 1)

)

such that it is a first eigenspinor of both D and Dβ . Due to Propositions 3.1

and 3.3 we are able to express a1 = − 2(n−1)λ1+nλ1
2n(n−1) and b1 = nλ1

2(n−1) in terms
of the scalar curvature. Assume that (M2m+1, φ, ξ, η, g) is nonEinstein, i.e.,
S 6= n(n−1). We have to find out which type of eta-Killing spinors, among the
various ones in Proposition 3.1 (resp. Proposition 3.3), is a candidate for a first
eigenspinor of D. Since the case m ≥ 2 is clear, we consider the 3-dimensional
case. Because of the inequality

(
3
4

+
S

8

)2

>

(
1−√4 + 2S

2

)2

,
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one finds easily that the eta-Killing spinor with Killing pair

(a1, b1) =
(−2 +

√
4 + 2S

4
,

4−√4 + 2S
4

)

is a candidate for a first eigenspinor of D, satisfying (3.11) with

λ1 =
1−√4 + 2S

2
, λ1 =

4−√4 + 2S
3

.

Consequently, the discussion in Remark 2.4 completes the proof. �

Remark 3.2. Let (M2m+1, φ, ξ, η, g), m ≥ 1, be a closed Sasakian spin manifold.
From inequality (3.9) we see that λ1 6= 0 is necessarily nonzero if the scalar
curvature is positive S > 0. The statement for the limiting case then gives rise
to a question:

Is every eta-Killing spinor with Killing pair (1.8) or (1.9) a first eigenspinor of
the Dirac operator when the scalar curvature is positive ?

If the scalar curvature S ≤ 0 is nonpositive, then the first eigenvalue λ1 is
allowed to be zero and the answer to the question is negative. Note that, if ψ is
an eta-Killing spinor with Killing pair

(
± 1

2 , ∓n
4 ± S

4(n−1)

)
, then its associated

eigenvalue λ is given by

(3.12) λ = ∓ n(n− 1) + S

4(n− 1)
.

There exist 5-dimensional eta-Einstein Sasakian spin manifolds with scalar cur-
vature S = −4 that admit harmonic spinors and so the eigenvalue in (3.12)
cannot be the first eigenvalue. Examples are certain S1-bundles over a 4-
dimensional flat torus or quotients of the 5-dimensional Heisenberg group [1,
7, 8].

To consider an application of Theorem 2.2 to Sasakian spin manifolds, we
choose a divergencefree tensor γ−1 = I − 2 ξ ⊗ η.

Proposition 3.6. Let (M2m+1, φ, ξ, η, g), m ≥ 1, be a closed Sasakian spin
manifold with positive scalar curvature S > 0. Let γ−1 be a nondegenerate
symmetric tensor field on M2m+1 defined by γ−1 = I−2 ξ⊗ η. Let λ1 6= 0 ∈ R
and λ1 ∈ R be the first eigenvalue of D and Dγ , respectively, and denote
c1 = λ1/λ1. Then, for any positive constant c with

(3.13)
n− 2
n

< c <
n

n− 2
,

we have

(3.14) λ2
1 ≥

c(n− 1)Smin

(n− 2)c2 + (3n− 4− nc21)c+ (n− 2)c21
.

The limiting case of (3.14) occurs, in case
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(i) n ≥ 5, if and only if c = c1 and there exists an eta-Killing spinor ψ1 with
Killing pair (

1
2
, −n

4
+

S

4(n− 1)

)
,

(
−1

2
,
n

4
− S

4(n− 1)

)
,

such that ψ1 is a first eigenspinor of Dγ .
(ii) n = 3, if and only if c = c1 and there exists an eta-Killing spinor ϕ1

with Killing pair (−2 +
√

4 + 2S
4

,
4−√4 + 2S

4

)

such that ϕ1 is a first eigenspinor of Dγ .

Proof. By Theorem 2.2, the limiting case of (3.14) occurs if and only if c = c1
and there exists an eta-Killing spinor with Killing pair

(a1, b1) =
(
− (c1 + 1)λ1

2(n− 1)
,

(nc1 − n+ 2)λ1

2(n− 1)

)

such that it is a first eigenspinor of both D and Dγ . Proceeding as in the proof
of Proposition 3.5, one establishes the proposition. �

Remark 3.3. Inequality (3.14) is not generally sharper than Friedrich’s inequal-
ity (1.5), i.e.,

c(n− 1)Smin

(n− 2)c2 + (3n− 4− nc21)c+ (n− 2)c21
>

nSmin

4(n− 1)

holds if and only if

(3.15) (nc− n+ 2)[(n− 2)c− nc21] < 0

is satisfied.

Acknowledgements. The author thanks Thomas Friedrich for pointing out
that the question in Remark 3.2 has no meaning for Sasakian spin manifolds
with negative scalar curvature.
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146.

[6] , Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics,
vol. 25, American Mathematical Society, Providence, RI, 2000.



966 EUI CHUL KIM

[7] Th. Friedrich and S. Ivanov, Parallel spinors and connections with skew-symmetric
torsion in string theory, Asian J. Math. 6 (2002), no. 2, 303–335.

[8] , Almost contact manifolds, connections with torsion, and parallel spinors, J.
Reine Angew. Math. 559 (2003), 217–236.

[9] Th. Friedrich and E. C. Kim, The Einstein-Dirac equation on Riemannian spin mani-
folds, J. Geom. Phys. 33 (2000), no. 1-2, 128–172.

[10] , Eigenvalues estimates for the Dirac operator in terms of Codazzi tensors, Bull.
Korean Math. Soc. 45 (2008), no. 2, 365–373.

[11] K.-D. Kirchberg, An estimation for the first eigenvalue of the Dirac operator on closed
Kahler manifolds of positive scalar curvature, Ann. Global Anal. Geom. 4 (1986), no.
3, 291–325.

[12] M, Wang, Parallel spinors and parallel forms, Ann. Global Anal. Geom. 7 (1989), no.
1, 59–68.

Department of Mathematics
College of Education
Andong National University
Andong 760-749, Korea
E-mail address: eckim@andong.ac.kr


