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FOLIATIONS ASSOCIATED WITH PFAFFIAN SYSTEMS

Chong-Kyu Han

Abstract. Given a system of smooth 1-forms θ = (θ1, . . . , θs) on a
smooth manifold Mm, we give a necessary and sufficient condition for M
to be foliated by integral manifolds of dimension n, n ≤ p := m− s, and
construct an integrable supersystem (θ, η) by finding additional 1-forms
η = (η1, . . . , ηp−n). We also give a necessary and sufficient condition for
M to be foliated by reduced submanifolds of dimension n, n ≥ p, and con-
struct an integrable subsystem (dρ1, . . . , dρm−n) by finding a system of
first integrals ρ = (ρ1, . . . , ρm−n). The special case n = p is the Frobenius
theorem on involutivity.

Introduction and preliminaries

Let M be a germ of a smooth (C∞) manifold of dimension m. By a Pfaffian
system we mean a system

(1) θ := (θ1, . . . , θs)

of smooth 1-forms that are linearly independent. A dual expression of (1) is
the subbundle D of TM consisting of the tangent vectors (x, V ) ∈ TM that is
annihilated by θ, namely, at each point x ∈M

Dx = {V ∈ TxM : 〈θα, V 〉 = 0, α = 1, . . . , s}.
D is a subbundle because θα are independent. Let p := m−s. Associated with
the Pfaffian system (1) there are two types of submanifolds of basic importance:

Definition 1. A smooth submanifold N of dimension n, n ≤ p, is called an
integral manifold of (1) if one of the following equivalent conditions holds:

i) TxN ⊂ Dx, ∀x ∈ N.
ii) For the inclusion map i : Nn ↪→Mm we have

(2) i∗θα = 0, α = 1, . . . , s.
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Definition 2. A smooth submanifold N of dimension n, n ≥ p, is called
a reduced submanifold of (1) if and only if one of the following equivalent
conditions holds:

i) TxN ⊃ Dx, ∀x ∈ N.
ii) {i∗θ1, . . . , i∗θs} has rank n− p.

The equivalence of i) and ii) in Definition 2 is shown in Theorem 2.1. Observe
that when n = p these two notions are identical. The Pfaffian system (1) is
said to be integrable (or involutive) if

(3) dθα = 0, mod θ, α = 1, . . . , s. (integrability conditions)

We state the Frobenius theorem as follows:

Theorem 3. Suppose that the Pfaffian system (1) satisfies the integrability
conditions (3). Then for any point x ∈ M there exists a uniquely determined
integral manifold N of dimension p := m − s through x. Thus M is foliated
by a s-parameter family of integral manifolds of dimension p. Conversely, if
M is foliated by integral manifolds of dimension p then the Pfaffian system θ
satisfies (3).

The standard proof as in [15] of Theorem 3 is based on the fundamental
theorem of ordinary differential equations. The latter, in turn, is based on the
convergence of the successive approximation of the integral operator that solves
the initial value problem for the ordinary differential equation, see [4]. In this
paper we shall study foliation by integral manifolds of dimension n, n ≤ p, and
by reduced submanifolds of dimension n, n ≥ p. The Frobenius theorem is the
special case n = p, where these two foliations coincide. Now let {ω1, . . . , ωp}
be a set of closed 1-forms that completes θ to a coframe {θ1, . . . , θs, ω1, . . . , ωp}
over M . We set for each α = 1, . . . , s,

(4) dθα =
∑

i < j
i, j = 1, . . . , p

Tα
ijω

i ∧ ωj , mod θ.

Arranging the pairs (ij) with i < j in lexicographical order, we array the
coefficients in s× (p2

)
matrix

(5) T =
[
Tα

ij

]
.

We shall call T the torsion matrix and
∑

i<j T
α
ijω

i ∧ ωj the torsion tensor for
(1). Theorem 3 is the extreme case that T has rank zero, that is, all Tα

ij are
identically zero. By checking the rank and by analyzing the linear dependence
of columns (or rows) of T we obtain various generalizations of Theorem 3.
In [10] the author presented conditions on T for there to exist s′-parameter,
(s′ < s), family of integral manifolds of dimension p and the conditions that
imply the existence of a single integral manifold of dimension p′, p′ ≤ p. [11]
and [12] are the applications. In the present paper we clarify the conditions for
M to be foliated by integral manifolds of dimension n, n ≤ p (Theorem 1.1).
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Now we recall the classical notion of the first integral (constant of motion).
For a smooth nonvanishing vector field X on Mm the first integral is a smooth
real-valued non-constant function u that satisfies the first order linear partial
differential equation Xu = 0. Locally, there exist m − 1 functionally indepen-
dent first integrals. However, for a system of vector fields X1, . . . , Xp, p ≥ 2,
generically there are no first integrals, that is, if Xju = 0 for all j = 1, . . . , p,
then u is constant. In 1840 R. Deahna [5] discovered that if the commutators
[Xi, Xj ] is in the linear span of X ′s, then there exists maximal number (m−p)
of first integrals. Later in 1866, A. Clebsch [3] first gave a complete proof of
this theorem and in 1877 G. Frobenius [6] first used d expressing the theorem
in terms of differential forms θ and their exterior derivatives dθ, as we stated
in Theorem 3. The notion of the first integral of (1) is naturally defined in
the theory of derived flag as in [2, Chapter 1]. We present the same ideas in
Theorem 2.2 in elementary and algorithmic way so that one can construct the
first integral explicitly. If ρ = (ρ1, . . . , ρσ), σ ≤ s, with dρ1 ∧ · · · ∧ dρσ 6= 0, is
a system of first integrals, then each level set of ρ is a reduced submanifold so
that M is foliated by σ-parameter family of reduced submanifolds of dimension
m− σ. The case σ = s is that of the Frobenius theorem.

Now we recall some basic definitions and notations: By C∞(M) we denote
the ring of smooth real-valued functions on M . For each k = 1, . . . ,m, let Ωk be
the module over C∞(M) of all smooth differential k-forms. Let Ω0 = C∞(M),
the 0-forms. We denote by Ω∗ :=

⊕m
k=0 Ωk the exterior algebra of smooth

differential forms on M . A subalgebra I is called an algebraic ideal if
i) I ∧ Ω ⊂ I,
ii) φ =

∑m
k=0 φk ∈ I, where φk ∈ Ωk, then each component φk ∈ I

(homogeneity condition).
We easily see that an algebraic ideal is two-sided by the homogeneity con-

dition. Let I be an algebraic ideal. For φ, η ∈ Ω∗ we write

φ ≡ η mod I,
if φ− η ∈ I.

In this paper we consider only algebraic ideals generated by finitely many
0-forms and 1-forms: Let I be an algebraic ideal of Ω∗ generated by a finite
set of 0-forms ρ = (ρ1, . . . , ρd) and a finite set of 1-forms θ = (θ1, . . . , θs).
Then I is the set of all elements of Ω∗ of the form

∑d
j=1 ρ

jφj +
∑s

α=1 θ
α ∧ψα,

for φj , ψα ∈ Ω∗. We denote by I(ρ, θ) or simply by (ρ, θ) the algebraic ideal
generated by the system of 0-forms ρ and the system of 1-forms θ. If φ − η
belongs to the ideal (ρ, θ) we write

φ ≡ η mod (ρ, θ).

A system of smooth real-valued functions ρ = (ρ1, . . . , ρd) is said to be non-
degenerate if

dρ1 ∧ · · · ∧ dρd 6= 0, mod (ρ1, . . . , ρd).
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Then a level sets ρ−1(c), for each c in an open subset of Rd, are smooth sub-
manifolds of M of dimension m− d.

Finally, we mention the following observation: Let Nn be a submanifold
of Mm and let V ⊂ TM be a vector bundle of rank p over N. Then there
exists a set of non-degenerate real-valued functions ρ = (ρ1, . . . , ρd), where
d = m − n, and a system of independent 1-forms θ = (θ1, . . . , θs), where s =
m− p, such that (x, V ) ∈ V if and only if (x,V) is annihilated by (ρ, θ). There
is one-to-one correspondence between the set of such vector bundles and the
set of ideals generated by nondegenerate system of functions and independent
1-forms. Some of the ideas and results of this paper are in the classical theory
of exterior differential systems. In particular, foliation by lower dimensional
(n < p) integral manifolds in the Examples 1.2, 1.3, and 1.4 follows from the
Darboux theorem on the rank of a 1-form θ ([2, page 40]), which is the case
s = 1 in (1). Our method is constructive and applicable to more general cases.

§ 1. Foliation by integral manifolds

Given a Pfaffian system θ = (θ1, . . . , θs) on Mm as in (1) we study in this
section the conditions that M is foliated by integral manifolds of dimension n,
n ≤ m− s. This is the problem of finding the smallest integrable supersystem
of (1). Let ω1, . . . , ωp, s + p = m, be closed 1-forms that completes θ to a
coframe

{θ1, . . . , θs, ω1, . . . , ωp}.
Let D be the subbundle of T (M) consisting of the tangent vectors that are
annihilated by θ. Now coming back to the Pfaffian system (1) we notice first
that the case n = 1 is a problem of ODE: From the fundamental theorem
of ODE it follows that M admits foliation by integral curves. Suppose M is
foliated by integral manifolds of dimension n , 2 ≤ n ≤ p− 1. We assume that
on each leaf of the foliation

(1.1) ω1 ∧ · · · ∧ ωn 6= 0.

We use the summation convention with the following ranges of indices:

1 ≤ i, j ≤ p,

1 ≤ k, ` ≤ n,

1 ≤ µ, ν ≤ d := p− n,

1 ≤ α ≤ s.

By (1.1), for each ν there exist smooth functions aν
` such that

(1.2) ωn+ν = aν
`ω

`.

Let η = (η1, . . . , ηd) where

(1.3) ην := ωn+ν − aν
`ω

` for ν = 1, . . . , d.
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Now substituting (1.3) in (4) for ωn+ν we have
(1.4)
dθα =

∑

k<`

{Tα
k` + Tα

k,n+νa
ν
` − Tα

`,n+νa
ν
k +

∑
µ<ν

Tα
n+µ,n+ν(aµ

ka
ν
` − aµ

` a
ν
k)}ωk ∧ ω`,

mod (θ, η)

for all α = 1, . . . , s.
Then by Theorem 3 the Pfaffian system (θ, η) is integrable, namely,

(1.5)
dθa = 0, mod (θ, η), α = 1, . . . , s,

dην = 0, mod (θ, η), ν = 1, . . . , d.

Then by (1.3), (1.4) and (1.5) we have

(1.6) Tα
k` + Tα

k,n+νa
ν
` − Tα

`,n+νa
ν
k +

∑
µ<ν

Tα
n+µ,n+ν(aµ

ka
ν
` − aµ

` a
ν
k) = 0

for α = 1, . . . , s and for pairs (k, `) with k < ` and k, ` = 1, . . . , n. Now for any
smooth function f let f,α and f,j be the smooth functions that are uniquely
determined by

df = f,α θ
α + f,j ω

j .

Then we have from (1.3)

(1.7)

dην = −daν
` ∧ ω`

= −(aν
`,kω

k + aν
`,n+µω

n+µ) ∧ ω`, mod θ

= −(aν
`,k + aν

`,n+µa
µ
k)ωk ∧ ω`, mod (θ, η)

=
∑

k<`

(aν
k,` + aν

k,n+µa
µ
` − aν

`,k − aν
`,n+µa

µ
k)ωk ∧ ω`, mod (θ, η).

From (1.5) and (1.7) it follows that

(1.8) aν
k,` + aν

k,n+µa
µ
` − aν

`,k − aν
`,n+µa

µ
k = 0

for each pair (k, `) with k < `, k, ` = 1, . . . , n. Thus we proved the following:

Theorem 1.1. Suppose θ = (θ1, . . . , θs) is a system of smooth 1-forms that
are defined and linearly independent on a smooth manifold M of dimension
m. Let p = m − s and n be an integer with 2 ≤ n ≤ p. Then M is foliated
by integral manifolds of dimension n if and only if there exists a system of 1-
forms η = (η1, . . . , ηd), where d = p−n, so that (θ, η) satisfies the integrability
conditions. Such η is given by a system of smooth functions aν

k, ν = 1, . . . , d,
k = 1, . . . , n, that satisfies (1.6) and (1.8).

We call η complementary 1-forms. In (1.6) and (1.8) the number of unknown
functions aµ

k is dn. (1.6) is a system of s
(
n
2

)
quadratic equations and (1.8) is a

system of d
(
n
2

)
partial differential equations of first order, respectively, for the

unknown functions aµ
k . Let us consider the following simplest cases:

Case 1: Single 1-form on M4: s = 1, p = 3, n = 2, d = 1.
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Case 2: Single 1-form on M5: s = 1, p = 4, n = 3, d = 1.
Case 3: Single 1-form on M5: s = 1, p = 4, n = 2, d = 2.
Case 4: Two 1-forms on M5: s = 2, p = 3, n = 2, d = 1.

In each of these cases, we compare the number of unknown functions and
number of equations as follows:

case unknowns equations (1.6) equations (1.8)
dn s

(
n
2

)
d
(
n
2

)

1) 2 1 1
2) 3 3 3
3) 4 1 2
4) 2 2 1.

Comparing the number of unknowns and that of equations we see that the
case 1) is determined and 3) is underdetermined. Cases 2) and 4) are overde-
termined. In determined and underdetermined cases, it is easy to construct
complementary set of 1-forms η that completes θ to an involutive system (θ, η).

Example 1.2. Case 1 that admits foliation by integral manifolds of dimen-
sion 2: Let M = R4 and θ = dx4 + x2dx3. Then η := dx3 + g(x2, x3, x4)dx2,
where g is arbitrary, is the complementary 1-form that we look for.

Naturally it gives rise to the following questions: In determined and under-
determined cases are (1.6) and (1.8) always solvable? If not, in what dimensions
are they solvable? To be easiest, consider the cases Mm, s = 1, n = 2. Then
d = m − 3, the number of unknowns is 2(m − 3), the number of equations is
1+(m−3), therefore, underdetermined if m ≥ 5. Then the question is whether
(1.6) and (1.8) are solvable for sufficiently large m.

Example 1.3. Case 2 that has foliation by integral manifolds of dimension 3:
Let M = R5. Given θ = x3dx4 + dx5, η := dx4 + h(x3, x4, x5)dx3 is a comple-
mentary 1-form that gives an involutive system (θ, η).

Example 1.4. Case 2 that admits no foliation by integral 3-manifolds: In R5

let θ = x1dx2 + x3dx4 + dx5. Suppose η =
∑4

j=1 ajdx
j , mod θ, is a comple-

mentary 1-form. We normalize the last coefficient to be 1, so that

(1.9) η = dx4 − (fdx1 + gdx2 + hdx3), mod θ.

Then we have

dθ = dx1 ∧ dx2 + dx3 ∧ dx4

= dx1 ∧ dx2 − fdx1 ∧ dx3 − gdx2 ∧ dx3, mod (θ, η)

which cannot be zero. Other way of normalization leads to the same situation.
Therefore, there is no complementary 1-form η.
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Example 1.5. Case 4 that has foliation by integral 2-manifolds: In R5 let

(1.10)
θ1 = (x1 + x3)dx2 + dx5,

θ2 = (x2 + x3)dx1 + dx4.

We look for foliation with dx1 ∧ dx2 6= 0. Let us find a complementary 1-form

(1.11) η = dx3 − (fdx1 + gdx2).

Since

(1.12)
dθ1 = dx1 ∧ dx2 + dx2 ∧ dx3 = (1 + f)dx1 ∧ dx2, mod (θ, η),

dθ2 = −dx1 ∧ dx2 − dx1 ∧ dx3 = −(1 + g)dx1 ∧ dx2, mod (θ, η),

by setting the right side to be zero we have f = g = −1, which gives

η = dx3 + dx1 + dx2.

Then (θ1, θ2, η) is involutive.

Example 1.6. Case 4 that has no foliation by integral 2-manifolds: In R5 let

(1.13)
θ1 = (x1x2 + x3)dx2 + dx5,

θ2 = (2x1x2 + x3)dx1 + dx4.

We look for foliation with
dx1 ∧ dx2 6= 0

on each leaf. Let η as in (1.11) be a complementary 1-form. Then by a similar
calculation as in Example 1.5 we have
(1.14)

dθ1 = x2dx1 ∧ dx2 − dx2 ∧ dx3 = (x2 + f)dx1 ∧ dx2, mod (θ, η),

dθ2 = −2x1dx1 ∧ dx2 − dx1 ∧ dx3 = −(2x1 + g)dx1 ∧ dx2, mod (θ, η).

By setting the right side to be zero we have f = −x2, g = −2x1, which gives

η = dx3 + x2dx1 + 2x1dx2.

Then
dη = dx1 ∧ dx2 6= 0, mod (θ, η),

thus there is no complementary 1-form.

§ 2. Foliation by reduced submanifolds

In this section we investigate the conditions that M is foliated by reduced
submanifolds. In general, foliation of M by submanifolds of dimension n is
locally given by a non-degenerate set of smooth functions ρ = (ρ1, . . . , ρm−n)
whose level sets ρ−1(c), for all c in some open subset of Rm−n, are the leaves
of the foliation. First, we prove the following:
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Theorem 2.1. Let θ = (θ1, . . . , θs) be a Pfaffian system on Mm and p = m−s.
Suppose that a submanifold i : Nn ↪→ Mm, n ≥ p, is defined as a zero locus
of a system of nondegenerate functions ρ = (ρ1, . . . , ρm−n), that is, ρ ◦ i = 0.
Then the following are equivalent:

i) N is a reduced submanifold for the Pfaffian system θ.
ii) (ρ, θ) ⊃ (ρ, dρ).
iii) dρj = 0, mod (ρ, θ), j = 1, . . . ,m− n.
iv) {i∗θ1, . . . , i∗θs} has rank n− p.

Proof. Since ii) is the dual expression of that Dx ⊂ TxN, ∀x ∈ N, we have i)
⇔ ii).

ii) ⇒ iii) is obvious.
iii) ⇒ iv) Set

(2.1) dρj =
m−n∑

k=1

ρkωj
k +

s∑
α=1

aj
αθ

α

for some 1-forms ωj
k and 0-forms aj

α. Since

dρ1 ∧ · · · ∧ dρm−n 6= 0, mod (ρ),

at each point x ∈ N , the matrix

(aj
α(x)); j = 1, . . . ,m− n, α = 1, . . . , s

has rank m− n. Pulling back (2.1) by i we have

0 =
s∑

α=1

(aj
α ◦ i)(i∗θα) for each j = 1, . . . ,m− n.

Thus {i∗θα, α = 1, . . . , s} satisfies m − n independent linear equations, there-
fore, has rank s− (m− n) = n− (m− s) = n− p.

iv) ⇒ i) Suppose that {i∗θα} has rank n− p. Then this defines a subbundle
D′ ⊂ TN of rank n− (n−p) = p. Thus for each x ∈ N both of D′x = Dx∩TxN
and Dx has dimension p. Therefore, Dx ∩ TxN = Dx, which implies Dx ⊂
TxN. �

To find the functions ρ = (ρ1, . . . , ρm−n) in Theorem 2.1 we apply d to (2.1):

(2.2) 0 =
s∑

α=1

aj
αdθ

α, mod (ρ, θ).

Since the matrix (aj
α(x)), x ∈ N , has rankm−n, dθα satisfiesm−n independent

linear equations, therefore, the torsion tensor (4) has rank s − (m − n) =
n− p. This implies that every square submatrix of size n− p+ 1 of the torsion
matrix (5) has determinant zero on N . We find nondegenerate factors of those
determinants and find ρ so that each determinant belongs to the ideal generated
by ρ. For instance, if n = m − 1, s ≤ (

p
2

)
we find the determinants of s × s

submatrices and take a non-degenerate common factor of those determinants
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as a possible candidate of ρ and then check this ρ indeed satisfies any of four
equivalent conditions of Theorem 2.1. If ρ satisfies iii) of Theorem 2.1 with
right hand side independent of ρ, namely, if

dρ = 0, mod (θ),

then M is foliated by reduced submanifolds ρ = constant. Thus we have the
following:

Theorem 2.2. Given a Pfaffian system (1), M is foliated by reduced subman-
ifolds of dimension n, (n ≥ p), if and only if there exists a non-degenerate
system of real-valued functions ρ = (ρ1, . . . , ρm−n) such that

(2.1) dρα ≡ 0, mod θ, ∀α = 1, . . . ,m− n.

In cases s ≤ (p2
)
, the determinants of all the square submatrices of (5) of size

n− p+ 1 belongs to the algebraic ideal generated by ρ1, . . . , ρm−n.

The functions ρ = (ρ1, . . . , ρm−n) in Theorem 2.2 are the first integrals of
the Pfaffian system (1).

Example 2.3. Let M = R4 and θ = (θ1, θ2), where

θ1 = dx1,

θ2 = dx2 + x3dx4.

Let ω1 = dx3, ω2 = dx4. We see that dθ2 = ω1 ∧ ω2, and therefore, θ is
not integrable. By inspection we see that ρ(x1, x2, x3, x4) := x1 satisfies (2.1),
therefore, x1 = constant gives foliation by reduced submanifolds of dimension 3.

Example 2.4. Let M = R4 and θ = (θ1, θ2), where

θ1 = dx1 + x2dx3,

θ2 = dx2 + x3dx4.

Let ω1 = dx3, ω2 = dx4. By a straight forward calculation we see that

(2.2)
dθ1 = θ2 ∧ ω1 + x3ω1 ∧ ω2,

dθ2 = ω1 ∧ ω2.

To obtain the largest integrable subsystem is equivalent to finding a non-
degenerate function ρ such that

(2.3) dρ = fθ1 + gθ2.

For j = 1, 2, 3, 4, let fj , gj , be defined by

(2.4)
df = f1θ

1 + f2θ
2 + f3ω

1 + f4ω
2,

dg = g1θ
1 + g2θ

2 + g3ω
1 + g4ω

2.
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By applying d to (2.3) we have

(2.5)
(−f2 + g1)θ1 ∧ θ2 + (−f3)θ1 ∧ ω1 + (−f4)θ1 ∧ ω2

+ (f − g3)θ2 ∧ ω1 + (−g4)θ2 ∧ ω2 + (x3f + g)ω1 ∧ ω2 = 0.

Setting the coefficients in (2.5) zero we have f = g = 0, which is absurd. Thus
we see that there is no such ρ.
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[5] F. Deahna, Über die Bedingungen der Integrabilitat, J. Reine Angew. Math. 20 (1840),

340–350.
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