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ISOMORPHISM CLASSES OF GENUS-3 POINTED
TRIGONAL CURVES OVER FINITE FIELDS

OF CHARACTERISTIC 2

Pyung-Lyun Kang1 and Sunmi Sun

Abstract. We find all distinct representatives of isomorphism classes of
genus-3 pointed trigonal curves and compute the number of isomorphism
classes of a special class of genus-3 pointed trigonal curves including that
of Picard curves over a finite field F of characteristic 2.

1. Introduction

A Ca,b curve C over a field F is defined by a nonsingular affine equation in
the affine plane over F of the form

(1.1) ab0x
b + a0aya +

∑

ai+bj<ab

aijx
iyj , ab0, a0a ∈ F ∗, aij ∈ F

for a < b and (a, b) = 1. It is introduced by S. Miura in [8]. Arita then studied
an addition algorithm on the Jacobian of Ca,b curves in [1]. These Ca,b curves
generalize hyperelliptic curves, Picard curves and superelliptic curves whose
properties and the addition algorithms on which studied intensively by many
people [5], [4].

On the other hand, Encinas-Menezes-Masqúe [3] and Choie-Yun [2] classified
the isomorphism classes of hyperelliptic curves of genus 2 over a finite field of
characteristic different from 2 and 5, and of characteristic 2 respectively, in
order to know how many essentially different choices of curves there are. Along
this line, Lee [6] computed the number of isomorphism classes of Picard curves
over a finite field, but there is some error when the characteristic of the field
is 2. In this paper we correct this error in Corollary 1.2. A Picard curve is a
nonsingular curve of genus 3 whose affine equation is given by y3 = f(x).
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In this paper we study the isomorphism classes of C3,4 curves over a finite
field of characteristic 2. The moduli space of C3,4 curves over a field F has codi-
mension 1 in the moduli of curves of genus 3. Note that every non-hyperelliptic
curve of genus 3 can be realized as a nonsingular plane quartic, and the study of
nonsingular quartics has a long history. More general result for the number of
isomorphism classes of smooth plane quartics over a finite field of characteristic
2 was studied in [9] by Nart and Ritzenthaler and others.

In Section 2, we give all distinct representatives of isomorphism classes of
C3,4 curves that are pointed genus-3 trigonal curves over a finite field F of
characteristic 2. In Section 3, we prove Theorem 1.1 in which we compute the
number of isomorphism classes of codimension 1 subfamily of C3,4 curves.

Theorem 1.1. Let F be a field of order q = 2m. Then the number of isomor-
phism classes of genus-3 trigonal curves that are represented by nonsingular
equations

y3 + (b2x
2 + b8)y = x4 + c3x

3 + c6x
2 + c9x + c12

is 



q(q3 + q − 1) if m is odd;
q4 + 3q2 + q − 2 if m is even and m 6≡ 0 (mod 6);
q4 + 3q2 + q + 4 if m ≡ 0 (mod 6).

From the proof of Theorem 1.1, we obtain Corollary 1.2 that corrects the
error in Theorem 4.5 of [6].

Corollary 1.2. The number of isomorphism classes of Picard curves over a
field of order q = 2m is





q2 + q − 1 if m is odd;
3(q2 + q − 1) if m is even and m 6≡ 0 (mod 6);
3q2 + 3q + 3 if m ≡ 0 (mod 6).

Notations. For the remainder of this paper, we fix notations.

• F = Fq, a field of order q with q = 2m.
• g is a generator of the multiplicative cyclic group F ∗ = F − {0}.
• ρ ∈ F is a fixed primitive cubic root of unity when m is even. So, ρ

satisfies ρ2 + ρ + 1 = 0. Note that such ρ does not exist if m is odd
since ρ3 = 1. See Lemma 2.2.

2. Isomorphism classes of C3,4 curves

Let a and b be positive integers such that a < b and (a, b) = 1. A Ca,b

curve C in (1.1) over a field F is a pointed a-gonal curve, i.e., there exists a
point P ∈ C with dim L(aP ) = 2, L(∞P ) = 〈x, y〉 where x, y ∈ F̄ (C) with
a = −ordP (x), b = −ordP (y) and g(C) = (a− 1)(b− 1)/2. Furthermore, it can
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be written

(2.1) ya = xb +
∑

ai+bj<ab

aijx
iyj

unique up to a change of coordinates of the form

(2.2) x = uax̂ + r, y = ubŷ + t(x̂),

where u ∈ F ∗, r ∈ F and t is a polynomial over F of degree not greater than
2g

a(a−1) . In fact, we can a0a = −1 by dividing the equation (1.1) through −a0a.
Since there exist integers δ and ε with aδ + bε = 1, we obtain ab0 = 1 from
the F -rational transformation x̂ = aε

b0x, ŷ = a−δ
b0 y. The final claim comes from

the direct computations. Note that L(D) consists of rational functions f with
poles no worse than D when D is effective and L(∞P ) is a ring of functions
on C which are holomorphic away from P .

From now on, we restrict our study on C3,4 curves

(2.3) T (x, y) : y3 + a(x)y2 + b(x)y = x4 + c3x
3 + c6x

2 + c9x + c12

that are the simplest cases of Ca,b curves besides hyperelliptic ones. We may
assume a(x) = 0 by replacing y with y − a(x)

3 if char(F ) 6= 3 .
The next lemma gives the condition for our curves to be nonsingular. Note

that Resultant(f, g) 6= 0 if and only f and g in F [x] have no common zeroes
in F . So, the discriminant D(f) = Resultant(f, f ′) 6= 0 if and only if f is
separable, i.e., f has no multiple zeroes in F .

Lemma 2.1. Let F be a field of characteristic 2.
(1) Assume that b5 6= 0. Then

T (x, y) : y3 + (b2x
2 + b5x + b8)y = x4 + c3x

3 + c6x
2 + c9x + c12

is nonsingular if and only if

Resultant(c2
3x

4 + b2b
2
5x

2 + b3
5x + c2

9 + b2
5b8, x

4 + c3x
3 + c6x

2 + c9x + c12) 6= 0.

(2) Let b5 = 0. Then y3+(b2x
2+b8)y = f(x) = x4+c3x

3+c6x
2+c9x+c12

is nonsingular if and only if c2
9 + c3c6c9 + c2

3c12 6= 0 if and only if f(x)
has no multiple zeroes in F .

Proof. The partial derivatives with respect to x and y are, respectively,

b5y = c3x
2 + c9, y2 + b2x

2 + b5x + b8 = 0.

So, if singular, the above partial derivatives must have a common solution with
f(x) = x4 + c3x

3 + c6x
2 + c9x + c12 = 0. Since b5 6= 0, by substituting y in the

first equation into f(x) and by multiplying b2
5, we see that two polynomials in

resultant have a common zero. Now suppose that two polynomials in resultant
have a common zero x0. Then (x0, y0) becomes a singular point of T (x, y) if we
let y0 = b−1

5 (c3x
2 + c9). Assume b5 = 0. Then, from the similar computation

as in the proof of (1), y3 +(b2x
2 +b8)y = x4 +c3x

3 +c6x
2 +c9x+c12 is singular

if and only if Resultant(c3x
2 + c9, x

4 + c3x
3 + c6x

2 + c9x + c12) = D(f) = 0,
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since f ′(x) = c3x
2 + c9. Since D(f) = (c2

9 + c3c6c9 + c2
3c12)2 when charF = 2,

we are done. �
Let

(2.4)
T̃ = {T (x, y) : y3+(b2x

2+b5x+b8)y = x4+c3x
3+c6x

2+c9x+c12 | nonsingular}.
Then the group

(2.5) G = {Au,γ : (x, y) 7→ (u3x + γ, u4y) | u ∈ F ∗, γ ∈ F}
of all possible changes of coordinates of curves in T̃ acts on T̃ in the obvious
way: Au,γ · T (x, y) = T (u3x + γ, u4y). We say two curves

T (x, y) : y3 + (b2x
2 + b5x + b8)y = x4 + c3x

3 + c6x
2 + c9x + c12,

T (x, y) : y3 + (b̄2x
2 + b̄5x + b̄8)y = x4 + c̄3x

3 + c̄6x
2 + c̄9x + c̄12

in T̃ are isomorphic over F if they satisfy Au,γ ·T = T (x, y) for some u ∈ F ∗ and
γ ∈ F . If this happens, we have the following relations when the characteristic
of F is 2:

(2.6)





u2b̄2 = b2,

u5b̄5 = b5,

u8b̄8 = b2γ
2 + b5γ + b8,

u3c̄3 = c3,

u6c̄6 = c3γ + c6,

u9c̄9 = c3γ
2 + c9,

u12c̄12 = γ4 + c3γ
3 + c6γ

2 + c9γ + c12.

The following observation on a finite field of characteristic 2 is useful.

Lemma 2.2. Let F be a finite field of order 2m.
(1) F ∗ has an element of order r if and only if r divides 2m − 1.
(2) A homomorphism er : F ∗ → F ∗ defined by er(α) = αr is an auto-

morphism of the multiplicative group F ∗ if and only if (r, 2m − 1) = 1.
In this case, for any β ∈ F ∗, there exists a unique α ∈ F ∗ such that
αr = β.

(3) m ≡ 0 (mod 2) if and only if 2m − 1 ≡ 0 (mod 3).
(4) m ≡ 0 (mod 6) if and only if 2m − 1 ≡ 0 (mod 9).
(5) Suppose m ≡ 0 (mod 6). If F ∗ is generated by g, there exists no ele-

ment u ∈ F with u9 = gl for 1 ≤ l ≤ 8.
(6) ρ is a cube in F if and only if m ≡ 0 (mod 6).

Proof. (1) Since F ∗ is a cyclic group of order 2m−1 with respect to the multipli-
cation, it is well known fact from group theory. (2) Since er is a homomorphism
of finite group F ∗, it is enough to show that er is injective. But Ker er = {1}
if and only if (r, 2m − 1) = 1 by (1). The proofs of (3) and (4) are similar. We
here do (4). Note that 2m − 1 ≡ 0 (mod 9) for m = 0 and 6. Now suppose
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m = 6k for k ≥ 2. Then 26k− 1 = (26− 1)(26(k−1) +26(k−2) + · · ·+26 +1) ≡ 0
(mod 9). To show the converse, assume m = 6k + l for 1 ≤ l ≤ 5. Then
2m − 1 = 26k2l − 1 ≡ 2l − 1 6≡ 0 (mod 9) for 1 ≤ l ≤ 5. For (5), suppose
there exists an element u ∈ F such that u9 = gl for some 1 ≤ l ≤ 8. Then
gl(2m−1)/9 = 1, which implies that ord(g) < 2m − 1. (6) If m is odd, there
is no solution ρ in F of x2 + x + 1 = 0 by (3). Otherwise, ρ = g(2m−1)/3 or
ρ = g2(2m−1)/3 where F ∗ = 〈g〉. So, ρ is a cube only if 9 divides 2m − 1, i.e.,
m ≡ 0 (mod 6). �

Proposition 2.3. If b5 6= 0, then every curve in T̃ is isomorphic to one of
following three types of nonsingular equations:

(1) y3 + x2y + b5xy + fiy = x4 + c3x
3 + c6x

2 + c9x + c12, i = 1, 2, where
f1 = 0 and f2 ∈ F − {γ2 + b5γ | γ ∈ F};

(2) y3 + b5xy = x4 + c3x
3 + c6x

2 + b5x + c12;
(3) y3 + b5xy = x4 + c3x

3 + c6x
2 + b2

5.

Proof. Suppose b5 6= 0 and b2 6= 0. Then taking u2 = b2, we get (1). The
existence of such u ∈ F ∗ is guaranteed by Lemma 2.2(2). If b5 6= 0 and b2 = 0,
we may assume that b8 = 0 by replacing x with x+b−1

5 b8. In this case we must
have c9 6= 0 or c12 6= 0 for such curves to be nonsingular due to Lemma 2.1. If
two curves in this type are isomorphic, then, by (2.6), we have either u4 c̄9

b̄5
= c9

b5

or u2 c̄12
b̄25

= c12
b25

and γ = 0. So, by taking either u4 = c9
b5

or u2 = c12
b25

, we have
(2) or (3). �

We remark that no two in (2) and (3) of Proposition 2.3 are isomorphic.
For, if Au,γ · T = T̄ for T, T̄ in (2) (or in (3), resp.), we have γ = 0 and u4 = 1
(u2 = 1, resp.), and u4 = 1 or u2 = 1 implies u = 1 if the characteristic of F is
2 (Lemma 2.2(1)). But the special two curves in (1) are possibly isomorphic.
For example, y3 + x2y + xy = x4 + x2 + x + 1 and y3 + x2y + xy = x4 + x2 + x
are isomorphic over F2. In fact, there are 18 distinct isomorphism classes over
F2 when b5 6= 0. See Example 2.11.

From now on we concentrate on curves with b5 = 0. Let

(2.7) T = {T (x, y) ∈ T̃ : y3 + (b2x
2 + b8)y = x4 + c3x

3 + c6x
2 + c9x + c12}.

Lemma 2.1(2) tells that the nonsingular condition of T (x, y) ∈ T depends on
the terms only in x. We start by dividing T into the following G-invariant
subsets. Let

A1 = {T (x, y) ∈ T | b2 = 0 = b8, c3 6= 0},
A2 = {T (x, y) ∈ T | b2 = 0 = b8, c3 = 0, c6 6= 0},
A3 = {T (x, y) ∈ T | b2 = 0 = b8, c3 = 0, c6 = 0},
B = {T (x, y) ∈ T | b2 6= 0},(2.8)
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C1 = {T (x, y) ∈ T | b2 = 0, b8 6= 0, c3 6= 0},
C2 = {T (x, y) ∈ T | b2 = 0, b8 6= 0, c3 = 0, c6 6= 0},
C3 = {T (x, y) ∈ T | b2 = 0, b8 6= 0, c3 = 0, c6 = 0}.

Let h(x) = x4 + ax2 + bx ∈ F [x]. Define

Ψh : F → F, Ψh(α) = h(α).

Then Ψh is an additive homomorphism if char(F ) = 2. Moreover, |F/ImΨh| =
|KerΨh| since F is finite.

Theorem 2.4. Let F be a field of order 2m and let h(x) = x4 + ax2 + bx with
b 6= 0. Then T1 : y3 = h(x) + e1 and T2 : y3 = h(x) + e2 are isomorphic if and
only if

e1 + u3e2 ∈ ImΨh

for some u ∈ F ∗ satisfying u9 = 1. In particular, if m 6≡ 0 (mod 6), then T1

and T2 are isomorphic if and only if e1 + ImΨh = e2 + ImΨh. That is,

{y3 = h(x) + ej | 1 ≤ j ≤ n = |Ker Ψh|}
are all distinct representatives of the class given by y3 = h(x) + e where {ej +
ImΨh} = F/ImΨh.

Proof. Suppose Au,γ(T1) = T2. Then, from (2.6), we have u9 = 1, u3e2 =
γ4 + aγ2 + bγ + e1. So, e1 + u3e2 ∈ ImΨh. Conversely, if there exist u and γ
satisfying e1 +u3e2 = h(γ) and u9 = 1, then Au,γ(T1) = T2. If m 6≡ 0 (mod 6),
then u9 = 1 implies either u = 1 when m is odd or u3 = 1 otherwise, since 9
does not divide 2m − 1 by Lemma 2.2(4). Now the last statement follows from
that Ψh is a homomorphism. �
Proposition 2.5. Curves in A1

(1) If m is odd, then every curve in A1 is isomorphic to only one curve in

{y3 = x4 + x3 + c9x + c12 | c2
9 + c12 6= 0}.

(2) If m is even, then every curve in A1 is isomorphic to only one curve
in

{y3 = x4 + gix3 + c9x + c12 | i = 0, 1, 2, c2
9 + g2ic12 6= 0}

where F ∗ = 〈g〉. If m 6≡ 0 (mod 6), we can take ρ instead of g in (2).

Proof. By letting x 7→ x + c−1
3 c6, we may assume that c6 = 0. If m is odd,

then c3 = d3 for some d ∈ F ∗. Then (1) follows if we let x 7→ d3x, y 7→ d4y. If
m is even, write c3 = g3k+i, 0 ≤ i ≤ 2. Then letting x 7→ u3x, y 7→ u4y where
u = gk, we can make c3 = gi for i = 0, 1, 2. Since y3 = x4 + ρix3 + c9x + c12

are all distinct for i = 0, 1, 2 if ρ is not a cube, we can replace g with ρ if m is
even and m 6≡ 0 (mod 6). �
Proposition 2.6. Curves in A2
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(1) If m is odd, then every curve in A2 is isomorphic to only one curve in

{y3 = x4 + x2 + c9x + ej | 1 ≤ j ≤ |KerΨh|, c9 6= 0},
where {ej + ImΨh} = F/ImΨh and h(x) = x4 + x2 + c9x.

(2) If m is even, then every curve in A2 is isomorphic to only one curve
in

{y3 = x4 + gix2 + c9x + eij | i = 0, 1, 2, c9 6= 0},
where hi(x) = x4 + gix2 + c9x and {eij + ImΨhi

} = F/ImΨhi
for each

0 ≤ i ≤ 2. We can take g = ρ if m 6≡ 0 (mod 6).

Proof. If m is odd, we may assume that c6 = 1. For, c6 = u6 for some u ∈ F ∗

since (6, 2m−1) = 1 (Lemma 2.2). If m is even, write c6 = g3k+i for 0 ≤ i ≤ 2.
Choosing u ∈ F ∗ with u2 = gk, we may assume c6 = gi since c6/u6 = gi for
0 ≤ i ≤ 2. Now refer Theorem 2.4. For the last statement, see the proof of
Proposition 2.5. �

Proposition 2.7. Curves in A3

(1) If m is odd, every element in A3 is isomorphic to either y3 = x4 + x
or y3 = x4 + x + 1.

(2) If m ≡ 2 or 4 (mod 6), every curve in A3 is isomorphic to either

y3 = x4 + ρx, y3 = x4 + ρ2x,

or
y3 = x4 + x + ej ,

where {ej + ImΨh} = F/ImΨh with h(x) = x4 + x.
(3) If m ≡ 0 (mod 6), every curve in A3 is isomorphic to either

y3 = x4 + gix, i = 1, 2, 4, 5, 7, 8,

or
y3 = x4 + gix, y3 = x4 + gix + e

with e /∈ ImΨh, where h = x4 + gix for each i = 0, 3, 6.

Proof. (1) If m is odd, we may assume that c9 = 1. For, c9 = u9 for some
u ∈ F ∗ since (9, 2m − 1) = 1 (Lemma 2.2). Since there is no γ satisfying
γ4 + γ + 1 = 0 when m is odd, two curves in (1) are not isomorphic. The fact
|Ker Ψh| = 2 for b = x4 + x implies that they are all. Note that, if there is
an element γ ∈ F satisfying γ4 + γ + 1 = 0, F contains Z2(γ) as a subfield
and 4|m, since x4 + x + 1 is an irreducible polynomial over Z2. (2) Suppose
m ≡ 2 or 4 (mod 6). Then ρ is not a cube. Therefore any two curves in (2) are
not isomorphic and give 6 different isomorphism classes since |Ker Ψx2+x| = 4.
From Proposition 3.7, these are all. For (3), from the proof of Proposition 3.7
for the case m ≡ 0 (mod 6), we know that we can choose only one class when
c9 is not a cube and two when c9 is a cube: one from c12 ∈ ImΨh and the
other from c12 /∈ ImΨh. Note that no curves in the list are isomorphic by
Lemma 2.2(5) and Theorem 2.4. �
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Proposition 2.8. Curves in B

Every curve in B is isomorphic to only one in

{y3 + x2y = x4 + c3x
3 + c6x

2 + c9x + c12 | c2
9 + c3c6c9 + c2

3c12 6= 0}.
Proof. Take u, γ such that u2 = b2, γ

2 = b−1
2 b8. �

Note that every curve in Ci can be transformed to y3 + y = x4 + c3x
3 +

c6x
2 + c9x + c12 by taking Au,0 in (2.5) such that u8 = b8. If c3 6= 0 we can

make c6 = 0. Now together with Theorem 2.4, we have:

Proposition 2.9. Curves in Ci

(1) Every curve in C1 is isomorphic to only one of {y3 + y = x4 + c3x
3 +

c9x + c12 | c2
9 + c2

3c12 6= 0}.
(2) Every curve in C2 and C3 is isomorphic to only one of the following

curves given by

y3 + y = x4 + c6x
2 + c9x + ej (c9 6= 0),

where ej + ImΨh are distinct elements of F/ImΨh for each h(x) =
x4 + c6x

2 + c9x.

Example 2.10. The representatives of the isomorphism classes of T over F2.

types representatives

A1 y3 = x4 + x3 + x, y3 = x4 + x3 + 1.
A2 y3 = x4 + x2 + x.
A3 y3 = x4 + x, y3 = x4 + x + 1.
B y3 + x2y = x4 + x3 + x2 + x, y3 + x2y = x4 + x3 + x2 + 1,

y3 + x2y = x4 + x3 + x, y3 + x2y = x4 + x3 + 1,
y3 + x2y = x4 + x2 + x, y3 + x2y = x4 + x3 + x2 + x + 1,
y3 + x2y = x4 + x, y3 + x2y = x4 + x + 1.

C1 y3 + y = x4 + x3 + 1, y3 + y = x4 + x3 + x.
C2 y3 + y = x4 + x2 + x.
C3 y3 + y = x4 + x, y3 + y = x4 + x + 1.

Example 2.11. The representatives of the isomorphism classes of T̃ over F2

when b5 6= 0. See Proposition 2.3.

types representatives

b2 6= 0, b5 6= 0 y3 + x2y + xy = x4 + x3 + 1, y3 + x2y + xy = x4 + x2 + 1,
y3 + x2y + xy = x4 + x2 + x, y3 + x2y + xy = x4 + x + 1,
y3 + x2y + xy + y = x4, y3 + x2y + xy + y = x4 + x2,
y3 + x2y + xy + y = x4 + x3 + x2, y3 + x2y + xy + y = x4 + x3 + 1,
y3 + x2y + xy + y = x4 + x + 1.

b2 = 0, b5 6= 0 y3 + xy = x4 + x2 + x, y3 + xy = x4 + x + 1,
y3 + xy = x4 + x3 + x, y3 + xy = x4 + x3 + x2 + x,
y3 + xy = x4 + x3 + x + 1, y3 + x2y = x4 + x3 + x2 + x + 1,
y3 + xy = x4 + 1, y3 + xy = x4 + x3 + 1,
y3 + xy = x4 + x2 + 1.
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Example 2.12. The representatives of the isomorphism classes of T over F4.
Note that we get all representatives for Ci by inserting y in each representative
of Ai.

types representatives cardinality

A1 y3 = x4 + x3 + c9x + c12, y3 = x4 + ρx3 + c9x + c12, 36
y3 = x4 + ρ2x3 + c9x + c12.

A2 y3 = x4 + x2 + x, y3 = x4 + x2 + ρx, y3 = x4 + x2 + ρx + 1, 15
y3 = x4 + x2 + ρ2x, y3 = x4 + x2 + ρ2x + 1,
y3 = x4 + ρx2 + x, y3 = x4 + ρx2 + ρx, y3 = x4 + ρx2 + ρx + ρ,
y3 = x4 + ρx2 + ρ2x, y3 = x4 + ρx2 + ρ2x + 1,
y3 = x4 + ρ2x2 + x, y3 = x4 + ρ2x2 + ρx, y3 = x4 + ρ2x2 + ρx + ρ,
y3 = x4 + ρ2x2 + ρ2x, y3 = x4 + ρ2x2 + ρ2x + ρ.

A3 y3 = x4 + x, y3 = x4 + x + 1, y3 = x4 + x + ρ, 6
y3 = x4 + x + ρ2, y3 = x4 + ρx, y3 = x4 + ρ2x.

B y3 + x2y = x4 + c3x3 + c6x2 + c9x + c12. 192

Corollary 2.13. The number of isomorphism classes of C34 curves over F2 is
36.

3. Proof of Theorem 1.1

In this section, we count the number of isomorphism classes in T.

Proposition 3.1. We have |A1| = (q−1)2q2, |A2| = (q−1)2q, |A3| = (q−1)q,
|B| = (q − 1)2q4, |C1| = (q − 1)3q2, |C2| = (q − 1)3q, |C3| = (q − 1)2q, and
|T| = q5(q − 1).

Recall that the group G = {Au,γ : (x, y) 7→ (u3x + γ, u4y), u ∈ F ∗, γ ∈ F}
acts on T as Au,γ ·T = T (u3x+γ, u4y). Suppose that S is a G-invariant subset
of T. Then the number of isomorphism classes in S is |S/G| where S/G is the
set of all distinct G-orbits in S. Note that

(3.1) |S/G| = |S|
|G · T | =

|S||GT |
|G|

if |GT | is constant for any T ∈ S. Here G · T is a G-orbit containing T and GT

is the isotropy group of T .
From (2.6), the isotropy group of a curve in each set in (2.8) is given as

follows:
(3.2)

GT =





{(u, γ) ∈ F ∗ × F | u3 = 1, γ = 0} for T ∈ A1,

{(u, γ) ∈ F ∗ × F | u3 = 1, γ4 + c6γ
2 + c9γ = 0} for T ∈ A2,

{(u, γ) ∈ F ∗ × F | u9 = 1, γ4 + c9γ + c12(1 + u3) = 0} for T ∈ A3,

{(u, γ) ∈ F ∗ × F | u = 1, γ = 0} for T ∈ B, or T ∈ C1,

{(u, γ) ∈ F ∗ × F | u = 1, γ4 + c6γ
2 + c9γ = 0} for T ∈ C2,

{(u, γ) ∈ F ∗ × F | u = 1, γ4 + c9γ = 0} for T ∈ C3.
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We now count the number of isomorphism classes of sets in (2.8). Easily,
|GT | = 1 when T ∈ B or C1. If T ∈ A1, |GT | = 1 for an odd number m and
|GT | = 3 for even m by Lemma 2.2. Now (3.1) gives:

Proposition 3.2. The number of isomorphism classes of curves in A1, B and
C1.

(1) The number of isomorphism classes of curves in A1 is (q − 1)q if m is
odd, and 3(q − 1)q if m is even.

(2) The number of isomorphism classes of curves in B is (q − 1)q3.
(3) The number of isomorphism classes of curves in C1 is (q − 1)2q.

For A2,A3, C2, and C3, we need to count the number of zeroes of some
polynomials ∈ F [x] according to their coefficients.

Lemma 3.3. Let
R0 = {(a, b) ∈ F × F ∗| x3 + ax + b has no zero in F},
R1 = {(a, b) ∈ F × F ∗| x3 + ax + b has only one zero in F},
R3 = {(a, b) ∈ F × F ∗| x3 + ax + b has three distinct zeroes in F},

R00 = {b ∈ F ∗| x3 + b has no zero in F},
R10 = {b ∈ F ∗| x3 + b has only one zero in F},
R30 = {b ∈ F ∗| x3 + b has three distinct zeroes in F}.

Then we have

|R0| = 1
3
(q − 1)(q + 1), |R1| = 1

2
q(q − 1), |R3| = 1

6
(q − 1)(q − 2);





|R00| = 0
|R10| = q − 1
|R30| = 0

if m is odd;





|R00| = 2
3 (q − 1)

|R10| = 0
|R30| = 1

3 (q − 1)
if m is even.

Proof. One can check that x3 + ax + b has no multiple zeroes since b 6= 0.
Assume that f(x) = x3 + ax + b has three distinct zeroes. Then

x3 + ax + b = (x + α)(x + β)(x + γ)
= x3 + (α + β + γ)x2 + (αβ + βγ + γα)x + αβγ

with αβγ 6= 0 . Then γ = α + β, γ is determined from α, β. If we choose any
two elements of α, β, γ, we have the same equation. Hence

|R3| = (q − 1)(q − 2)
3!

.

Suppose f(x) has one zero. Then f(x) = (x+α)(x2+αx+β) with x2+αx+β is
irreducible. Note that if x2 + αx + β is irreducible over F2m then α 6= 0, β 6= 0.
So |R1| = 1

2q(q − 1) and |R0| = 1
3 (q − 1)(q + 1). For |Ri0|, it is enough to

observe the following. Note that the map e3 : F ∗ → F ∗ sending x 7→ x3 is one
to one if and only if x3 = 1 has only one solution 1 if and only if 3 does not
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divide 2m − 1 if and only if m is odd (Lemma 2.2(3)). Otherwise e3 is a 3 to 1
map. �

Note that |R0 − R00| = 1
3 (q − 1)(q + 1), |R1 − R10| = 1

2 (q − 1)(q − 2),
|R3 −R30| = 1

6 (q − 1)(q − 2) if m is odd; |R0 −R00| = 1
3 (q − 1)2, |R1 −R10| =

1
2q(q − 1), |R3 − R30| = 1

6 (q − 1)(q − 4) if m is even.

Proposition 3.4. The number of isomorphism classes of curves in A2 is{
2q − 3 if m is odd
6q − 9 if m is even.

Proof. Note that

GA2 = {(u, γ) ∈ F ∗ × F | u = 1, γ4 + c6γ
2 + c9γ = 0}

if m is odd, and

GA2 = {(u, γ) ∈ F ∗ × F | u3 = 1, γ4 + c6γ
2 + c9γ = 0}

if m is even. Then, from Lemma 3.3

|GA2 | =





1 if m is odd and x3 + c6x + c9 ∈ R0 − R00,

2 if m is odd and x3 + c6x + c9 ∈ R1 − R10,

4 if m is odd and x3 + c6x + c9 ∈ R3 − R30,

3 if m is even and x3 + c6x + c9 ∈ R0 − R00,

6 if m is even and x3 + c6x + c9 ∈ R1 − R10,

12 if m is even and x3 + c6x + c9 ∈ R3 − R30.

Therefore,

|A2/G| =
1
3 (q − 1)(q + 1)q

(q − 1)q
+
{ 1

2 (q − 1)q − (q − 1)}q · 2
(q − 1)q

+
1
6 (q − 2)(q − 1)q · 4

(q − 1)q

=
q + 1

3
+ (q − 2) +

2
3
(q − 2) = 2q − 3 if m is odd,

|A2/G| = {1
3 (q − 1)(q + 1)− 2

3 (q − 1)}q · 3
(q − 1)q

+
{ 1

2 (q − 1)q}q · 6
(q − 1)q

+
{1

6 (q − 2)(q − 1)− 1
3 (q − 1)}q · 12

(q − 1)q
= (q − 1) + 3q + (2q − 8) = 6q − 9 if m is even. �

We inserted the intermediate calculations because we need similar computa-
tions in following propositions and it is helpful when we try to find representa-
tives of isomorphism classes in each type. Similar computation as in the proof
of Proposition 3.4 gives:

Proposition 3.5. The numbers of isomorphism classes of curves in C2 and in
C3 are (q − 1)(2q − 3) and 2(q − 1), respectively.
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Proof. We divide C2 as we have done for A2. For C3, we divide it into two
subsets according that c9 is a cube or not. Then Lemma 3.3 gives the answer.
For even m, we get 4

3 (q − 1) isomorphism classes if c9 is a cube and 2
3 (q − 1)

isomorphism classes if c9 is not a cube. �

Lemma 3.6. Let F be a finite field of order 2m and let h(x) = x4 + bx, b 6= 0.

(1) If b is not a cube, then x4+bx+c has only one zero in F for any c ∈ F .
([7, Theorem 3.83])

(2) If b is a non-zero cube in F , then either x4 + bx + c has no zeroes or it
has 4 (2, resp.) distinct zeroes if m is even (m is odd, resp.). Moreover
it has 4 (or 2, resp.) distinct zeroes if and only if c ∈ ImΨh.

(3) Suppose u9 = 1. Then c ∈ ImΨh if and only if u3c ∈ ImΨh if and only
if u6c ∈ ImΨh.

(4) Suppose ord(α) = 9. Then c ∈ Im Ψh if and only if c(1+α3i) ∈ ImΨh

for i = 1, 2.

Proof. Since Ψh is a homomorphism, the number |Ψ−1
h (c)| of zeroes of x4+bx+c

is equal to |KerΨh|. (1) follows since KerΨh = {0} when b is not a cube. (2)
Let b = A3. Then KerΨh = {0, A, Aρ,Aρ2} if m is even and Ker Ψh = {0, A} if
m is odd. (3) follows from u3(γ4 + bγ) = (u3γ)4 + b(u3γ) and c = u3(u3(u3c)).
(4) Since α3 6= 1, α9 = 1 implies α6 + α3 + 1 = 0. So, α6c + α3c + c = 0. Thus,
c + α3c = α6c or c + α6c = α3c. Now apply (3). �

Proposition 3.7. The number of isomorphism classes of curves in A3 is




2 if m is odd,

6 if m ≡ 2, 4 (mod 6),
12 if m ≡ 0 (mod 6).

Proof. If m is odd, u9 = 1 implies u = 1. Since every element is a cube, we
have |GA3 | = 2 and |A3/G| = 2.

If m ≡ 2 or 4 (mod 6), u9 = 1 implies u3 = 1. Then for T ∈ A3,

|GT | = |{(u, γ) ∈ F ∗×F | u3 = 1, γ4 + c9γ = 0}| =
{

12 if c9 is a cube,
3 if c9 is not a cube.

Therefore, |A3/G| = 6: two from curves where c9 is not a cube, two from curves
where c9 is a cube. In fact, if c9 is not a cube, then y3 = x4 + c9x + c12 is
isomorphic either y3 = x4 + ρx or y3 = x4 + ρ2x; if c9 is a cube, isomorphic to
y3 = x4 + x + ei for some ei in Theorem 2.4.

Now assume that m ≡ 0 (mod 6). Write {u ∈ F | u9 = 1} = 〈α〉. Then the
isotropy group GT of T ∈ A3 is

GT = {(u, γ) ∈ F ∗ × F | u9 = 1, γ4 + c9γ + c12(1 + u3)}
= {(u, γ) ∈ F ∗ × F | u = 1, α3, α6, γ4 + c9γ = 0}
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∪ {(u, γ) ∈ F ∗ × F | u = αj with j 6= 0 (mod 3),

γ4 + c9γ + c12(1 + α3j) = 0}.
Now the number of zeroes in the equations in GT for T ∈ A3 depends on
whether c9 is cubic and c12 ∈ ImΨh or not, where h(x) = x4 + c9x as in
Lemma 3.6. Divide A3 into three subsets:

D1 = {T ∈ A3 | c9 : non-cubic}, |D1| = 2(q − 1)q
3

;

D2 = {T ∈ A3 | c9 : cubic, c12 ∈ ImΨh}, |D2| = (q − 1)q
12

;

D3 = {T ∈ A3 | c9 : cubic, c12 /∈ ImΨh}, |D3| = (q − 1)q
4

.

Note that G acts on each Di since Au,γ ·C : y3 = x4 + c9x+(γ4 +giγ + c12)/u3

due to Lemma 3.6. We also have c12 ∈ ImΨh if and only if c12(1+u3) ∈ ImΨh.
So,

|GT | =





9 if T ∈ D1,

36 if T ∈ D2,

12 if T ∈ D3.

Therefore we get 6 isomorphism classes from D1, 3 from D2 and 3 from D3. �

Proof of Theorem 1.1. By combining all the results of Propositions 4.1-4.7, we
prove Theorem 1.1. �

Proof of Corollary 1.2. It follows from that A1 ∪A2 ∪A3 consists of all Picard
curves. �

We finally remark that the number of all isomorphic classes of C3,4 curves in
characteristic 2 other than F2 as well as in other characteristic is still unknown.
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