CONVERGENCE THEOREMS FOR INVERSE-STRONGLY MONOTONE MAPPINGS AND QUASI- ϕ-NONEXPANSIVE MAPPINGS

Xiaolong Qin, Shin Min Kang, and Yeol Je Cho

Abstract

In this paper, we consider a hybrid projection algorithm for a pair of inverse-strongly monotone mappings and a quasi- ϕ-nonexpansive mapping. Strong convergence theorems are established in the framework of Banach spaces.

1. Introduction and preliminaries

Let E be a real Banach space with the norm $\|\cdot\|$ and let C be a nonempty closed convex subset of E. Let J be the normalized duality mapping from E into $2^{E^{*}}$ given by

$$
J x=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\|x\|\left\|x^{*}\right\|,\|x\|=\left\|x^{*}\right\|\right\}, \quad \forall x \in E
$$

where E^{*} denotes the dual space of E and $\langle\cdot, \cdot\rangle$ the generalized duality pairing between E and E^{*}. The modulus of convexity of E is the function $\delta:(0,2] \rightarrow$ $[0,1]$ defined by

$$
\delta(\epsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|:\|x\|=\|y\|=1,\|x-y\|=\epsilon\right\} .
$$

E is said to uniformly convex if and only if $\delta(\epsilon)>0$ for all $0<\epsilon \leq 2$. Let $p>1$. Then E is said to be p-uniformly convex if there exists a constant $c>0$ such that $\delta(\epsilon) \geq c \epsilon^{p}$ for all $\epsilon \in[0,2]$. Let $U=\{x \in E:\|x\|=1\}$. E is said to be smooth if the limit $\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}$ exists for all $x, y \in U$. It is also said to be uniformly smooth if the limit is attained uniformly for $x, y \in U$.

Let E be a smooth Banach space. Consider the functional defined by

$$
\begin{equation*}
\phi(x, y)=\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2}, \quad \forall x, y \in E . \tag{1.1}
\end{equation*}
$$

Received July 18, 2008.
2000 Mathematics Subject Classification. 47H05, 47H09, 47J25, 65J15.
Key words and phrases. generalized projection, inverse-strongly monotone mapping, quasi- ϕ-nonexpansive mapping, variational inequality.

The work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007-313-C00040).

Alber [1] recently introduced a generalized projection operator Π_{C} in a real Banach space which is an analogue of the metric projection in Hilbert spaces. The generalized projection $\Pi_{C}: E \rightarrow C$ is a mapping that assigns to an arbitrary point $x \in E$ the minimum point of the functional $\phi(x, y)$, that is, $\Pi_{C} x=\bar{x}$, where \bar{x} is the solution to the minimization problem: $\phi(\bar{x}, x)=$ $\inf _{y \in C} \phi(y, x)$. The existence and uniqueness of the operator Π_{C} follows from the properties of the functional $\phi(x, y)$ and strict monotonicity of the mapping J (see, for example, [1], [2], [7], [9], [18]).

Let C be a nonempty closed convex subset of a Banach space E and T a mapping from C into itself. In this paper, we use $F(T)$ to denote the fixed point set of the mapping T. A point p in C is said to be an asymptotic fixed point of T [14] if C contains a sequence $\left\{x_{n}\right\}$ which converges weakly to p such that $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$. The set of asymptotic fixed points of T will be denoted by $\widehat{F(T)}$. A point p in C is said to be an strong asymptotic fixed point of T [19] if C contains a sequence $\left\{x_{n}\right\}$ which converges strongly to p such that $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$. The set of strong asymptotic fixed points of T will be denoted by $\widetilde{F(T)}$.

Definition 1.1. A mapping T from C into itself is said to be relatively nonexpansive [4]-[6] if $\widehat{F(T)}=F(T) \neq \emptyset$ and $\phi(p, T x) \leq \phi(p, x)$ for all $x \in C$ and $p \in F(T)$.

The asymptotic behavior of a relatively nonexpansive mapping was studied in [4]-[6].

Recently, Zegeye and Shahzad [19] introduced the following definition.
Definition 1.2. A mapping T from C into itself is said to be relatively weak nonexpansive if $\widetilde{F(T)}=F(T) \neq \emptyset$ and $\phi(p, T x) \leq \phi(p, x)$ for all $x \in C$ and $p \in F(T)$.

Since, for any mapping $T: C \rightarrow C$, we have $F(T) \subset \widetilde{F(T)} \subset \widehat{F(T)}$. It is obvious that the class of relatively weak nonexpansive mappings includes the class of relatively nonexpansive mappings (see [19] for more details).

In [13], the authors introduced the following definition.
Definition 1.3. A mapping $T: C \rightarrow C$ is said to be quasi- ϕ-nonexpansive if $F(T) \neq \emptyset$ and $\phi(p, T x) \leq \phi(p, x)$ for all $x \in C$ and $p \in F(T)$.

We remark that the class of quasi- ϕ-nonexpansive mappings is more general than the class of relatively nonexpansive mappings and relatively weak nonexpansive mappings. To be more precise, we relaxed the strong restriction: $F(T)=\widehat{F(T)}$ or $F(T)=\widehat{F(T)}$.

Recall that a mapping $A: C \rightarrow E^{*}$ is said to be monotone if

$$
\langle x-y, A x-A y\rangle \geq 0, \quad \forall x, y \in C .
$$

$A: C \rightarrow E^{*}$ is said to be α-inverse-strongly monotone if there exists a positive real number α such that

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}, \quad \forall x, y \in C
$$

Recall also that a monotone mapping A is said to be maximal if its graph $G(A)=\{(x, f): f \in A x\}$ is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping A is maximal if and only if for any $(x, f) \in E \times E^{*},\langle x-y, f-g\rangle \geq 0$ for every $(y, g) \in G(A)$ implies $f \in A x$. An operator A from C into E is said to be hemi-continuous if, for all $x, y \in C$, the mapping f of $[0,1]$ into E defined by $f(t)=A(t x+(1-t) y)$ is continuous with respect to the weak ${ }^{*}$ topology of E^{*}.

Next, we consider the following variational inequality problem for a monotone and hemi-continuous mapping $A: C \rightarrow E^{*}$. To find an $u \in C$ such that

$$
\begin{equation*}
\langle v-u, A u\rangle \geq 0, \quad \forall v \in C \tag{1.2}
\end{equation*}
$$

We denoted by $V I(C, A)$ the set of solutions of the problem (1.2).
Recently, many authors studied the hybrid projection algorithm for monotone mappings and relatively nonexpansive mappings, see, for instance, [8], [10]-[12], [16], [17], [19]. Zegeye and Shzhzad [19] proved the following theorem.

Theorem ZS. Let E be a uniformly smooth and 2-uniformly convex Banach space with dual E^{*}. Let K be a nonempty closed convex subset of E. Let $A: K \rightarrow E^{*}$ be a γ-inverse strongly monotone mapping and let $T: K \rightarrow K$ be a relatively weak nonexpansive mapping with $\operatorname{VI}(K, A) \cap F(T) \neq \emptyset$. Assume that $\|A x\| \leq\|A x-A p\|$ for all $x \in K$ and $p \in V I(K, A)$. Let $0<\alpha_{n} \leq b_{0}:=\frac{c^{2} \gamma}{2}$, where c is a constant. Then sequence $\left\{x_{n}\right\}$ generated by

$$
\left\{\begin{array}{l}
x_{0} \in K \quad \text { chosen arbitrarily, } \\
y_{n}=\Pi_{K}\left[J^{-1}\left(J x_{n}-\alpha_{n} A x_{n}\right)\right] \\
z_{n}=T y_{n} \\
H_{0}=\left\{v \in K: \phi\left(v, z_{0}\right) \leq \phi\left(v, y_{0}\right) \leq \phi\left(v, x_{0}\right)\right\} \\
H_{n}=\left\{v \in H_{n-1} \cap W_{n-1}: \phi\left(v, z_{n}\right) \leq \phi\left(v, y_{n}\right) \leq \phi\left(v, x_{n}\right)\right\} \\
W_{0}=K \\
W_{n}=\left\{v \in W_{n-1} \cap H_{n-1}:\left\langle x_{n}-v, J x_{0}-J x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=\Pi_{H_{n} \cap W_{n}} x_{0}, \quad n \geq 1
\end{array}\right.
$$

where J is the duality mapping on E. Then $\left\{x_{n}\right\}$ converges strongly to $p=$ $\Pi_{F(T) \cap V I(K, A)} x_{0}$, where $\Pi_{F(T) \cap V I(K, A)}$ is the generalized projection form E onto $F(T) \cap V I(K, A)$.

In this paper, motivated and inspired by Zegeye and Shahzad [19], we introduce a more general hybrid projection algorithm for a pair of inverse-strongly
monotone mappings and a single quasi- ϕ-nonexpansive mapping. strong convergence theorems are established in the framework of Banach spaces. The results presented in this paper mainly improve the corresponding results in [8] and [19].

In order to prove our main results, we also need the following lemmas.
Lemma 1.1 ([3]). Let E be a 2-uniformly convex Banach space. Then we have

$$
\begin{equation*}
\|x-y\| \leq \frac{2}{c^{2}}\|J x-J y\|, \quad \forall x, y \in E \tag{1.3}
\end{equation*}
$$

where J is the normalized duality mapping on E and $0<c \leq 1$.
Lemma 1.2 ([9]). Let E be a uniformly convex and smooth Banach space and let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences of E. If $\phi\left(x_{n}, y_{n}\right) \rightarrow 0$ and either $\left\{x_{n}\right\}$ or $\left\{y_{n}\right\}$ is bounded, then $x_{n}-y_{n} \rightarrow 0$.
Lemma 1.3 ([1]). Let C be a nonempty closed convex subset of a smooth Banach space E and $x \in E$. Then, $x_{0}=\Pi_{C} x$ if and only if

$$
\left\langle x_{0}-y, J x-J x_{0}\right\rangle \geq 0, \quad \forall y \in C .
$$

Lemma 1.4 ([1]). Let E be a reflexive, strictly convex and smooth Banach space and let C be a nonempty closed convex subset of E and $x \in E$. Then

$$
\phi\left(y, \Pi_{C} x\right)+\phi\left(\Pi_{C} x, x\right) \leq \phi(y, x), \quad \forall y \in C
$$

Lemma 1.5 ([13]). Let E be a uniformly convex and smooth Banach space, let C be a nonempty closed convex subset of E and let T be a closed and quasi- ϕ nonexpansive mapping from C into itself. Then $F(T)$ is a closed convex subset of C.

We denote by $N_{C}(x)$ the normal cone for C at a point $x \in C$, that is $N_{C}(x):=\left\{x^{*} \in E^{*}:\left\langle x-y, x^{*}\right\rangle \geq 0\right.$ for all $\left.y \in C\right\}$. The following lemma is important for our main results.
Lemma 1.6 ([15]). Let C be a nonempty closed convex subset of a Banach space E and let A be a monotone and hemi-continuous operator of C into E. Let $Q \subset E \times E^{*}$ be an operator defined as follows:

$$
Q x:= \begin{cases}A x+N_{C} x, & x \in C, \\ \emptyset, & x \notin C .\end{cases}
$$

Then Q is maximal monotone and $Q^{-1}(0)=V I(C, A)$.
Albert [1] studied the following functional $V: E \times E^{*} \rightarrow \mathbb{R}$ defined by

$$
V\left(x, x^{*}\right)=\|x\|^{*}-2\left\langle x, x^{*}\right\rangle+\left\|x^{*}\right\|^{2}, \quad \forall x \in E, x^{*} \in E^{*} .
$$

From the definition of the functional V, we see that $V\left(x, x^{*}\right)=\phi\left(x, J^{-1} x^{*}\right)$.
Lemma 1.7 ([1]). Let E be a reflexive, strictly convex and smooth Banach space with E^{*} as its dual. Then

$$
V\left(x, x^{*}\right)+2\left\langle J^{-1} x^{*}-x, y^{*}\right\rangle \leq V\left(x, x^{*}+y^{*}\right), \quad \forall x \in E, x^{*}, y^{*} \in E^{*}
$$

2. Main results

Now, we are ready to give our main results in this paper.
Theorem 2.1. Let C be a nonempty closed convex subset of a 2-uniformly convex and uniformly smooth Banach space E. Let $A: C \rightarrow E^{*}$ be an α-inverse strongly monotone mapping, let $B: C \rightarrow E^{*}$ be a β-inverse strongly monotone mapping and let $T: C \rightarrow C$ be a closed quasi- ϕ-nonexpansive mapping. Assume that $F=F(T) \cap V I(C, A) \cap V I(C, B) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by the following manner:

$$
\left\{\begin{array}{l}
x_{0} \in E \quad \text { chosen arbitrarily } \tag{2.1}\\
C_{1}=C \\
x_{1}=\Pi_{C_{1}} x_{0} \\
u_{n}=\Pi_{C}\left[J^{-1}\left(J x_{n}-\eta_{n} B x_{n}\right)\right] \\
z_{n}=\Pi_{C}\left[J^{-1}\left(J u_{n}-\lambda_{n} A u_{n}\right)\right] \\
y_{n}=T z_{n} \\
C_{n+1}=\left\{v \in C_{n}: \phi\left(v, y_{n}\right) \leq \phi\left(v, z_{n}\right) \leq \phi\left(v, u_{n}\right) \leq \phi\left(v, x_{n}\right)\right\} \\
x_{n+1}=\Pi_{C_{n+1}} x_{0}
\end{array}\right.
$$

where J is the duality mapping on E. Assume that $\|A x\| \leq\|A x-A q\|$ and $\|B x\| \leq\|B x-B q\|$ for all $x \in C$ and $q \in V I(C, A) \cap V I(C, B)$. Let $\left\{\lambda_{n}\right\}$ and $\left\{\eta_{n}\right\}$ be positive number sequences such that $0<d \leq \lambda_{n}$ and $\eta_{n} \leq \frac{c^{2} \gamma}{2}$ for all $n \geq 1$, where c is the constant defined by (1.3) and $\gamma=\min \{\alpha, \beta\}$. Then $\left\{x_{n}\right\}$ converges strongly to $p=\Pi_{F} x_{0}$.

Proof. By mathematical induction, it is not hard to see that C_{n} is closed and convex for each $n \geq 1$. Next, we prove that $F \subset C_{n}$ for all $n \geq 1$. $F \subset C_{1}=C$ is obvious. Suppose $F \subset C_{k}$ for some $k \in \mathbb{N}$. Then, for all $v \in F \subset C_{k}$, from Lemma 1.4, Lemma 1.7 and the assumption $0<\eta_{n} \leq \frac{c^{2} \gamma}{2}$ for all $n \geq 1$, one see that

$$
\begin{align*}
& \phi\left(v, u_{k}\right) \\
\leq & \phi\left(v, J^{-1}\left(J x_{k}-\eta_{k} B x_{k}\right)\right) \\
= & V\left(v, J x_{k}-\eta_{k} B x_{k}\right) \\
\leq & V\left(v, J x_{k}-\eta_{k} B x_{k}+\eta_{k} B x_{k}\right)-2\left\langle J^{-1}\left(J x_{k}-\eta_{k} B x_{k}\right)-v, \eta_{k} B x_{k}\right\rangle \\
\leq & \phi\left(v, x_{k}\right)-2 \eta_{k}\left\langle J^{-1}\left(J x_{k}-\eta_{k} B x_{k}\right)-J^{-1} J x_{k}, B x_{k}\right\rangle \\
& -2 \eta_{k} \beta\left\|B x_{k}-B v\right\|^{2} \tag{2.2}\\
\leq & \phi\left(v, x_{k}\right)+2 \eta_{k}\left\|J^{-1}\left(J x_{k}-\eta_{k} B x_{k}\right)-J^{-1} J x_{k}\right\|\left\|B x_{k}\right\| \\
& -2 \eta_{k} \beta\left\|B x_{k}-B v\right\|^{2} \\
\leq & \phi\left(v, x_{k}\right)+\frac{4}{c^{2}} \eta_{k}^{2}\left\|B x_{k}-B v\right\|^{2}-2 \eta_{k} \beta\left\|B x_{k}-B v\right\|^{2} \\
\leq & \phi\left(v, x_{k}\right) .
\end{align*}
$$

In similar way, we can obtain that

$$
\begin{equation*}
\phi\left(v, z_{k}\right) \leq \phi\left(v, u_{k}\right) \tag{2.3}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\phi\left(v, y_{k}\right)=\phi\left(v, T z_{k}\right) \leq \phi\left(v, z_{k}\right) \leq \phi\left(v, u_{k}\right) \leq \phi\left(v, x_{k}\right), \tag{2.4}
\end{equation*}
$$

which implies that $v \in C_{k+1}$. This shows that $F \subset C_{n}$ for all $n \geq 1$.
On the other hand, from $x_{n}=\Pi_{C_{n}} x_{0}$, one sees that

$$
\begin{equation*}
\left\langle x_{n}-z, J x_{0}-J x_{n}\right\rangle \geq 0, \quad \forall z \in C_{n} \tag{2.5}
\end{equation*}
$$

Since $F \subset C_{n}$ for all $n \geq 1$, we arrive at

$$
\begin{equation*}
\left\langle x_{n}-v, J x_{0}-J x_{n}\right\rangle \geq 0, \quad \forall v \in F . \tag{2.6}
\end{equation*}
$$

It follows from Lemma 1.4 that

$$
\phi\left(x_{n}, x_{0}\right)=\phi\left(\Pi_{C_{n}} x_{0}, x_{0}\right) \leq \phi\left(v, x_{0}\right)-\phi\left(v, x_{n}\right) \leq \phi\left(v, x_{0}\right)
$$

for all $v \in F \subset C_{n}$ and $n \geq 1$. Therefore, the sequence $\phi\left(x_{n}, x_{0}\right)$ is bounded. Noticing that $x_{n}=\Pi_{C_{n}} x_{0}$ and $x_{n+1}=\Pi_{C_{n+1}} x_{0} \in C_{n+1} \subset C_{n}$, one obtains that

$$
\phi\left(x_{n}, x_{0}\right) \leq \phi\left(x_{n+1}, x_{0}\right), \forall n \geq 1 .
$$

This shows that the sequence $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is nondecreasing. It follows that the limit of $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ exists. By the construction of C_{n}, one has $C_{m} \subset C_{n}$ and $x_{m}=\Pi_{C_{m}} x_{0} \in C_{n}$ for any positive integer $m \geq n$. It follows that

$$
\begin{align*}
\phi\left(x_{m}, x_{n}\right) & =\phi\left(x_{m}, \Pi_{C_{n}} x_{0}\right) \\
& \leq \phi\left(x_{m}, x_{0}\right)-\phi\left(\Pi_{C_{n}} x_{0}, x_{0}\right) \tag{2.7}\\
& =\phi\left(x_{m}, x_{0}\right)-\phi\left(x_{n}, x_{0}\right)
\end{align*}
$$

Letting $m, n \rightarrow \infty$ in (2.7), one has $\phi\left(x_{m}, x_{n}\right) \rightarrow 0$. It follows from Lemma 1.2 that $x_{m}-x_{n} \rightarrow 0$ as $m, n \rightarrow \infty$. Hence $\left\{x_{n}\right\}$ is a Cauchy sequence. Since E is a Banach space and C is closed and convex, one can assume that

$$
\begin{equation*}
x_{n} \rightarrow p \in C \quad(n \rightarrow \infty) \tag{2.8}
\end{equation*}
$$

By taking $m=n+1$ in (2.7), we arrive at

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, x_{n}\right)=0 \tag{2.9}
\end{equation*}
$$

From Lemma 1.2, we see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{2.10}
\end{equation*}
$$

Since $x_{n+1} \in C_{n+1}$, we obtain that

$$
\begin{equation*}
\phi\left(x_{n+1}, y_{n}\right) \leq \phi\left(x_{n+1}, z_{n}\right) \leq \phi\left(x_{n+1}, u_{n}\right) \leq \phi\left(x_{n+1}, x_{n}\right) \tag{2.11}
\end{equation*}
$$

It follows from (2.9) and (2.11) that

$$
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, y_{n}\right)=0, \quad \lim _{n \rightarrow \infty} \phi\left(x_{n+1}, z_{n}\right)=0
$$

In virtue of Lemma 1.2, we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-y_{n}\right\|=0, \quad \lim _{n \rightarrow \infty}\left\|x_{n+1}-z_{n}\right\|=0 \tag{2.12}
\end{equation*}
$$

On the other hand, we have

$$
\left\|T z_{n}-z_{n}\right\|=\left\|y_{n}-z_{n}\right\| \leq\left\|x_{n+1}-y_{n}\right\|+\left\|x_{n+1}-z_{n}\right\| .
$$

It follows from (2.12) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T z_{n}-z_{n}\right\|=0 \tag{2.13}
\end{equation*}
$$

Notice that

$$
\left\|x_{n}-z_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-z_{n}\right\| .
$$

Combining (2.10) with (2.12), we assert that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0 \tag{2.14}
\end{equation*}
$$

From (2.8), we arrive at

$$
\begin{equation*}
z_{n} \rightarrow p \in C \quad(n \rightarrow \infty) . \tag{2.15}
\end{equation*}
$$

From the closed-ness of the mapping T, we obtain that $p \in F(T)$.
Next, we show that $p \in V I(C, A)$. Let Q be the maximal monotone operator defined by Lemma 1.6:

$$
Q x:= \begin{cases}A x+N_{C} x, & x \in C, \\ \emptyset, & x \notin C\end{cases}
$$

For any given $(x, y) \in G(Q)$, we see that $y-A x \in N_{C} x$. Since $z_{n} \in C$, by the definition of $N_{C} x$, we have

$$
\left\langle x-z_{n}, y-A x\right\rangle \geq 0 .
$$

On the other hand, from $z_{n}=\Pi_{C}\left[J^{-1}\left(J u_{n}-\lambda_{n} A u_{n}\right)\right]$ and Lemma 1.3, we obtain that

$$
\left\langle x-z_{n}, \frac{J z_{n}-J u_{n}}{\lambda_{n}}+A u_{n}\right\rangle \geq 0 .
$$

Therefore, we have

$$
\begin{align*}
& \left\langle x-z_{n}, y\right\rangle \\
\geq & \left\langle x-z_{n}, A x\right\rangle \\
\leq & \left\langle x-z_{n}, A x\right\rangle-\left\langle x-z_{n}, \frac{J z_{n}-J u_{n}}{\lambda_{n}}+A u_{n}\right\rangle \tag{2.16}\\
= & \left\langle x-z_{n}, A x-A z_{n}\right\rangle+\left\langle x-z_{n}, A z_{n}-A u_{n}\right\rangle-\left\langle x-z_{n}, \frac{J z_{n}-J u_{n}}{\lambda_{n}}\right\rangle \\
\geq & \left\langle x-z_{n}, A z_{n}-A u_{n}\right\rangle-\left\langle x-z_{n}, \frac{J z_{n}-J u_{n}}{\lambda_{n}}\right\rangle .
\end{align*}
$$

From (2.11) and Lemma 1.2, we see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-u_{n}\right\|=0 \tag{2.17}
\end{equation*}
$$

Notice that

$$
\left\|z_{n}-u_{n}\right\| \leq\left\|z_{n}-x_{n+1}\right\|+\left\|x_{n+1}-u_{n}\right\| .
$$

It follows from (2.12) and (2.17), we arrive at

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-u_{n}\right\|=0 \tag{2.18}
\end{equation*}
$$

Since A is α-inverse strongly monotone, we obtain that

$$
\lim _{n \rightarrow \infty}\left\|A z_{n}-A u_{n}\right\|=0
$$

From (2.16), we arrive at $\langle x-p, y\rangle \geq 0$. Since Q is maximal monotone, we obtain that $p \in A^{-1}(0)$ and hence $p \in V I(C, A)$. It follows from (2.18) that

$$
u_{n} \rightarrow p \quad(n \rightarrow \infty)
$$

Similarly, we can show that $p \in V I(C, B)$. That is, $p \in F=F(T) \cap V I(C, A) \cap$ $V I(C, B)$.

Finally, we prove that $p=\Pi_{F} x_{0}$. From (2.6), we see that

$$
\left\langle p-v, J x_{0}-J p\right\rangle \geq 0, \quad \forall v \in F .
$$

Thanks to Lemma 1.3, we obtain that $p=\Pi_{F} x_{0}$. This completes the proof.
As some applications of Theorem 2.1, we have the following results immediately.

Corollary 2.1. Let C be a nonempty closed convex subset of a 2-uniformly convex and uniformly smooth Banach space E. Let $A: C \rightarrow E^{*}$ be an α inverse strongly monotone mapping and let $T: C \rightarrow C$ be a closed quasi- ϕ nonexpansive mapping. Assume that $F=F(T) \cap V I(C, A) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by the following manner:

$$
\left\{\begin{array}{l}
x_{0} \in E \quad \text { chosen arbitrarily } \\
C_{1}=C \\
x_{1}=\Pi_{C_{1}} x_{0} \\
z_{n}=\Pi_{C}\left[J^{-1}\left(J x_{n}-\lambda_{n} A x_{n}\right)\right] \\
y_{n}=T z_{n} \\
C_{n+1}=\left\{v \in C_{n}: \phi\left(v, y_{n}\right) \leq \phi\left(v, z_{n}\right) \leq \phi\left(v, x_{n}\right)\right\} \\
x_{n+1}=\Pi_{C_{n+1}} x_{0}
\end{array}\right.
$$

where J is the duality mapping on E. Assume that $\|A x\| \leq\|A x-A q\|$ for all $x \in C$ and $q \in V I(C, A)$. Let $\left\{\lambda_{n}\right\}$ be a positive number sequence such that $0<d \leq \lambda_{n} \leq \frac{c^{2} \alpha}{2}$ for all $n \geq 1$, where c is the constant defined by (1.3). Then $\left\{x_{n}\right\}$ converges strongly to $p=\Pi_{F} x_{0}$.

Remark 2.1. Corollary 2.1 improves the corresponding results announced by Zegeye and Shahzad [19] in the following sense.
(1) from relatively weak nonexpansive mappings to quasi- ϕ-nonexpansive mappings. To be more precise, we relax the strict: $\widetilde{F(T)}=F(T)$, where $\widetilde{F(T)}$ denote the set of strong asymptotic fixed point of T, see [19] for more details;
(2) from the computational point of view, we relax the iterative step of " W_{n} " in the algorithm of Zegeye and Shazad [19].

If $T=I$, the identity mapping, in Theorem 2.1, we have the following result.
Corollary 2.2. Let C be a nonempty closed convex subset of a 2-uniformly convex and uniformly smooth Banach space E. Let $A: C \rightarrow E^{*}$ be an α inverse strongly monotone mapping and let $B: C \rightarrow E^{*}$ be a β-inverse strongly monotone mapping. Assume that $F=V I(C, A) \cap V I(C, B) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by the following manner:

$$
\left\{\begin{array}{l}
x_{0} \in E \quad \text { chosen arbitrarily } \\
C_{1}=C \\
x_{1}=\Pi_{C_{1}} x_{0} \\
u_{n}=\Pi_{C}\left[J^{-1}\left(J x_{n}-\eta_{n} B x_{n}\right)\right] \\
z_{n}=\Pi_{C}\left[J^{-1}\left(J u_{n}-\lambda_{n} A u_{n}\right)\right] \\
C_{n+1}=\left\{v \in C_{n}: \phi\left(v, z_{n}\right) \leq \phi\left(v, u_{n}\right) \leq \phi\left(v, x_{n}\right)\right\} \\
x_{n+1}=\Pi_{C_{n+1}} x_{0}
\end{array}\right.
$$

where J is the duality mapping on E. Assume that $\|A x\| \leq\|A x-A q\|$ and $\|B x\| \leq\|B x-B q\|$ for all $x \in C$ and $q \in V I(C, A) \cap V I(C, B)$. Let $\left\{\lambda_{n}\right\}$ and $\left\{\eta_{n}\right\}$ be positive number sequences such that $0<d \leq \lambda_{n}$ and $\eta_{n} \leq \frac{c^{2} \gamma}{2}$ for all $n \geq 1$, where c is the constant defined by (1.3) and $\gamma=\min \{\alpha, \beta\}$. Then $\left\{x_{n}\right\}$ converges strongly to $p=\Pi_{F} x_{0}$.

Remark 2.2. Corollary 2.2 can be viewed as an improvement of the corresponding results in Iiduka and Takahashi [8].

Acknowledgments. The authors are extremely grateful to the referees for useful suggestions that improved the contents of the paper.

References

[1] Ya. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, Theory and applications of nonlinear operators of accretive and monotone type, 15-50, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York, 1996.
[2] Ya. I. Alber and S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J. 4 (1994), no. 2, 39-54.
[3] B. Beauzamy, Introduction to Banach Spaces and Their Geometry (Second edition), North-Holland Mathematics Studies, 68. Notas de Matematica [Mathematical Notes], 86. North-Holland Publishing Co., Amsterdam, 1985.
[4] D. Butnariu, S. Reich, and A. J. Zaslavski, Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal. 7 (2001), no. 2, 151-174.
\qquad , Weak convergence of orbits of nonlinear operators in reflexive Banach spaces, Numer. Funct. Anal. Optim. 24 (2003), no. 5-6, 489-508.
[6] Y. Censor and S. Reich, Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization 37 (1996), no. 4, 323-339.
[7] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Mathematics and its Applications, 62. Kluwer Academic Publishers Group, Dordrecht, 1990.
[8] H. Iiduka and W. Takhashi, Strong convergence studied by a hybrid type method for monotone operators in a Banach space, Nonlinear Anal. 68 (2008), no. 12, 3679-3688.
[9] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), no. 3, 938-945.
[10] S. Y. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory 134 (2005), no. 2, 257-266.
[11] S. Ohsawa and W. Takahashi, Strong convergence theorems for resolvents of maximal monotone operators in Banach spaces, Arch. Math. (Basel) 81 (2003), no. 4, 439-445.
[12] X. Qin and Y. Su, Strong convergence theorems for relatively nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), no. 6, 1958-1965.
[13] X. Qin, Y. J. Cho, and S. M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math. 225 (2009), no. 1, 20-30.
[14] S. Reich, A weak convergence theorem for the alternating method with Bregman distances, Theory and applications of nonlinear operators of accretive and monotone type, 313-318, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York, 1996.
[15] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), no. 5, 877-898.
[16] M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Program. 87 (2000), no. 1, Ser. A, 189-202.
[17] Y. Su and X. Qin, Monotone CQ iteration processes for nonexpansive semigroups and maximal monotone operators, Nonlinear Anal. 68 (2008), no. 12, 3657-3664.
[18] W. Takahashi, Nonlinear Functional Analysis, Fixed point theory and its applications. Yokohama Publishers, Yokohama, 2000.
[19] H. Zegeye and N. Shahzad, Strong convergence theorems for monotone mappings and relatively weak nonexpansive mappings, Nonlinear Anal. 70 (2009), no. 7, 2707-2716.

Xiaolong Qin

Department of Mathematics
Gyeongsang National University
Jinju 660-701, Korea
E-mail address: qxlxajh@163.com
Shin Min Kang
Department of Mathematics
The Research Institute of Natural Science
Gyeongsang National University
Jinju 660-701, Korea
E-mail address: smkang@gnu.ac.kr
Yeol Je Cho
Department of Mathematics Education
The Research Institute of Natural Science
Gyeongsang National University
Jinju 660-701, Korea
E-mail address: yjcho@gnu.ac.kr

