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CONVERGENCE THEOREMS FOR INVERSE-STRONGLY
MONOTONE MAPPINGS AND

QUASI-φ-NONEXPANSIVE MAPPINGS

Xiaolong Qin, Shin Min Kang, and Yeol Je Cho

Abstract. In this paper, we consider a hybrid projection algorithm for a
pair of inverse-strongly monotone mappings and a quasi-φ-nonexpansive
mapping. Strong convergence theorems are established in the framework
of Banach spaces.

1. Introduction and preliminaries

Let E be a real Banach space with the norm ‖ · ‖ and let C be a nonempty
closed convex subset of E. Let J be the normalized duality mapping from E
into 2E∗ given by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖}, ∀x ∈ E,

where E∗ denotes the dual space of E and 〈·, ·〉 the generalized duality pairing
between E and E∗. The modulus of convexity of E is the function δ : (0, 2] →
[0, 1] defined by

δ(ε) = inf
{

1−
∥∥∥x + y

2

∥∥∥ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε
}

.

E is said to uniformly convex if and only if δ(ε) > 0 for all 0 < ε ≤ 2. Let
p > 1. Then E is said to be p-uniformly convex if there exists a constant c > 0
such that δ(ε) ≥ cεp for all ε ∈ [0, 2]. Let U = {x ∈ E : ‖x‖ = 1}. E is said to
be smooth if the limit limt→0

‖x+ty‖−‖x‖
t exists for all x, y ∈ U . It is also said

to be uniformly smooth if the limit is attained uniformly for x, y ∈ U .
Let E be a smooth Banach space. Consider the functional defined by

(1.1) φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x, y ∈ E.
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Alber [1] recently introduced a generalized projection operator ΠC in a real
Banach space which is an analogue of the metric projection in Hilbert spaces.
The generalized projection ΠC : E → C is a mapping that assigns to an
arbitrary point x ∈ E the minimum point of the functional φ(x, y), that is,
ΠCx = x̄, where x̄ is the solution to the minimization problem: φ(x̄, x) =
infy∈C φ(y, x). The existence and uniqueness of the operator ΠC follows from
the properties of the functional φ(x, y) and strict monotonicity of the mapping
J (see, for example, [1], [2], [7], [9], [18]).

Let C be a nonempty closed convex subset of a Banach space E and T a
mapping from C into itself. In this paper, we use F (T ) to denote the fixed
point set of the mapping T . A point p in C is said to be an asymptotic fixed
point of T [14] if C contains a sequence {xn} which converges weakly to p such
that limn→∞ ‖xn − Txn‖ = 0. The set of asymptotic fixed points of T will be
denoted by F̂ (T ). A point p in C is said to be an strong asymptotic fixed point
of T [19] if C contains a sequence {xn} which converges strongly to p such that
limn→∞ ‖xn − Txn‖ = 0. The set of strong asymptotic fixed points of T will
be denoted by F̃ (T ).

Definition 1.1. A mapping T from C into itself is said to be relatively non-
expansive [4]-[6] if F̂ (T ) = F (T ) 6= ∅ and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and
p ∈ F (T ).

The asymptotic behavior of a relatively nonexpansive mapping was studied
in [4]-[6].

Recently, Zegeye and Shahzad [19] introduced the following definition.

Definition 1.2. A mapping T from C into itself is said to be relatively weak
nonexpansive if F̃ (T ) = F (T ) 6= ∅ and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and
p ∈ F (T ).

Since, for any mapping T : C → C, we have F (T ) ⊂ F̃ (T ) ⊂ F̂ (T ). It is
obvious that the class of relatively weak nonexpansive mappings includes the
class of relatively nonexpansive mappings (see [19] for more details).

In [13], the authors introduced the following definition.

Definition 1.3. A mapping T : C → C is said to be quasi-φ-nonexpansive if
F (T ) 6= ∅ and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F (T ).

We remark that the class of quasi-φ-nonexpansive mappings is more general
than the class of relatively nonexpansive mappings and relatively weak non-
expansive mappings. To be more precise, we relaxed the strong restriction:
F (T ) = F̂ (T ) or F (T ) = F̃ (T ).

Recall that a mapping A : C → E∗ is said to be monotone if

〈x− y, Ax−Ay〉 ≥ 0, ∀x, y ∈ C.
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A : C → E∗ is said to be α-inverse-strongly monotone if there exists a positive
real number α such that

〈x− y, Ax−Ay〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

Recall also that a monotone mapping A is said to be maximal if its graph
G(A) = {(x, f) : f ∈ Ax} is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping A is maximal if and
only if for any (x, f) ∈ E×E∗, 〈x−y, f−g〉 ≥ 0 for every (y, g) ∈ G(A) implies
f ∈ Ax. An operator A from C into E is said to be hemi-continuous if, for all
x, y ∈ C, the mapping f of [0, 1] into E defined by f(t) = A(tx + (1 − t)y) is
continuous with respect to the weak∗ topology of E∗.

Next, we consider the following variational inequality problem for a mono-
tone and hemi-continuous mapping A : C → E∗. To find an u ∈ C such
that

(1.2) 〈v − u,Au〉 ≥ 0, ∀v ∈ C.

We denoted by V I(C, A) the set of solutions of the problem (1.2).
Recently, many authors studied the hybrid projection algorithm for mono-

tone mappings and relatively nonexpansive mappings, see, for instance, [8],
[10]-[12], [16], [17], [19]. Zegeye and Shzhzad [19] proved the following theo-
rem.

Theorem ZS. Let E be a uniformly smooth and 2-uniformly convex Banach
space with dual E∗. Let K be a nonempty closed convex subset of E. Let
A : K → E∗ be a γ-inverse strongly monotone mapping and let T : K → K be a
relatively weak nonexpansive mapping with V I(K,A)∩F (T ) 6= ∅. Assume that
‖Ax‖ ≤ ‖Ax− Ap‖ for all x ∈ K and p ∈ V I(K,A). Let 0 < αn ≤ b0 := c2γ

2 ,
where c is a constant. Then sequence {xn} generated by





x0 ∈ K chosen arbitrarily,
yn = ΠK [J−1(Jxn − αnAxn)],
zn = Tyn,

H0 = {v ∈ K : φ(v, z0) ≤ φ(v, y0) ≤ φ(v, x0)},
Hn = {v ∈ Hn−1 ∩Wn−1 : φ(v, zn) ≤ φ(v, yn) ≤ φ(v, xn)},
W0 = K,

Wn = {v ∈ Wn−1 ∩Hn−1 : 〈xn − v, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wnx0, n ≥ 1,

where J is the duality mapping on E. Then {xn} converges strongly to p =
ΠF (T )∩V I(K,A)x0, where ΠF (T )∩V I(K,A) is the generalized projection form E
onto F (T ) ∩ V I(K,A).

In this paper, motivated and inspired by Zegeye and Shahzad [19], we intro-
duce a more general hybrid projection algorithm for a pair of inverse-strongly
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monotone mappings and a single quasi-φ-nonexpansive mapping. strong con-
vergence theorems are established in the framework of Banach spaces. The
results presented in this paper mainly improve the corresponding results in [8]
and [19].

In order to prove our main results, we also need the following lemmas.

Lemma 1.1 ([3]). Let E be a 2-uniformly convex Banach space. Then we have

(1.3) ‖x− y‖ ≤ 2
c2
‖Jx− Jy‖, ∀x, y ∈ E,

where J is the normalized duality mapping on E and 0 < c ≤ 1.

Lemma 1.2 ([9]). Let E be a uniformly convex and smooth Banach space and
let {xn} and {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or
{yn} is bounded, then xn − yn → 0.

Lemma 1.3 ([1]). Let C be a nonempty closed convex subset of a smooth
Banach space E and x ∈ E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx− Jx0〉 ≥ 0, ∀y ∈ C.

Lemma 1.4 ([1]). Let E be a reflexive, strictly convex and smooth Banach
space and let C be a nonempty closed convex subset of E and x ∈ E. Then

φ(y, ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀y ∈ C.

Lemma 1.5 ([13]). Let E be a uniformly convex and smooth Banach space, let
C be a nonempty closed convex subset of E and let T be a closed and quasi-φ-
nonexpansive mapping from C into itself. Then F (T ) is a closed convex subset
of C.

We denote by NC(x) the normal cone for C at a point x ∈ C, that is
NC(x) := {x∗ ∈ E∗ : 〈x − y, x∗〉 ≥ 0 for all y ∈ C}. The following lemma is
important for our main results.

Lemma 1.6 ([15]). Let C be a nonempty closed convex subset of a Banach
space E and let A be a monotone and hemi-continuous operator of C into E.
Let Q ⊂ E × E∗ be an operator defined as follows:

Qx :=

{
Ax + NCx, x ∈ C,

∅, x /∈ C.

Then Q is maximal monotone and Q−1(0) = V I(C, A).

Albert [1] studied the following functional V : E × E∗ → R defined by

V (x, x∗) = ‖x‖∗ − 2〈x, x∗〉+ ‖x∗‖2, ∀x ∈ E, x∗ ∈ E∗.

From the definition of the functional V , we see that V (x, x∗) = φ(x, J−1x∗).

Lemma 1.7 ([1]). Let E be a reflexive, strictly convex and smooth Banach
space with E∗ as its dual. Then

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗), ∀x ∈ E, x∗, y∗ ∈ E∗.
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2. Main results

Now, we are ready to give our main results in this paper.

Theorem 2.1. Let C be a nonempty closed convex subset of a 2-uniformly
convex and uniformly smooth Banach space E. Let A : C → E∗ be an α-inverse
strongly monotone mapping, let B : C → E∗ be a β-inverse strongly monotone
mapping and let T : C → C be a closed quasi-φ-nonexpansive mapping. Assume
that F = F (T ) ∩ V I(C, A) ∩ V I(C, B) 6= ∅. Let {xn} be a sequence generated
by the following manner:

(2.1)





x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

un = ΠC [J−1(Jxn − ηnBxn)],
zn = ΠC [J−1(Jun − λnAun)],
yn = Tzn,

Cn+1 = {v ∈ Cn : φ(v, yn) ≤ φ(v, zn) ≤ φ(v, un) ≤ φ(v, xn)},
xn+1 = ΠCn+1x0,

where J is the duality mapping on E. Assume that ‖Ax‖ ≤ ‖Ax − Aq‖ and
‖Bx‖ ≤ ‖Bx−Bq‖ for all x ∈ C and q ∈ V I(C, A)∩ V I(C, B). Let {λn} and
{ηn} be positive number sequences such that 0 < d ≤ λn and ηn ≤ c2γ

2 for all
n ≥ 1, where c is the constant defined by (1.3) and γ = min{α, β}. Then {xn}
converges strongly to p = ΠF x0.

Proof. By mathematical induction, it is not hard to see that Cn is closed and
convex for each n ≥ 1. Next, we prove that F ⊂ Cn for all n ≥ 1. F ⊂ C1 = C
is obvious. Suppose F ⊂ Ck for some k ∈ N. Then, for all v ∈ F ⊂ Ck, from
Lemma 1.4, Lemma 1.7 and the assumption 0 < ηn ≤ c2γ

2 for all n ≥ 1, one
see that

(2.2)

φ(v, uk)

≤ φ(v, J−1(Jxk − ηkBxk))

= V (v, Jxk − ηkBxk)

≤ V (v, Jxk − ηkBxk + ηkBxk)− 2〈J−1(Jxk − ηkBxk)− v, ηkBxk〉
≤ φ(v, xk)− 2ηk〈J−1(Jxk − ηkBxk)− J−1Jxk, Bxk〉
− 2ηkβ‖Bxk −Bv‖2

≤ φ(v, xk) + 2ηk‖J−1(Jxk − ηkBxk)− J−1Jxk‖‖Bxk‖
− 2ηkβ‖Bxk −Bv‖2

≤ φ(v, xk) +
4
c2

η2
k‖Bxk −Bv‖2 − 2ηkβ‖Bxk −Bv‖2

≤ φ(v, xk).
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In similar way, we can obtain that

(2.3) φ(v, zk) ≤ φ(v, uk).

It follows that

(2.4) φ(v, yk) = φ(v, Tzk) ≤ φ(v, zk) ≤ φ(v, uk) ≤ φ(v, xk),

which implies that v ∈ Ck+1. This shows that F ⊂ Cn for all n ≥ 1.
On the other hand, from xn = ΠCn

x0, one sees that

(2.5) 〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn.

Since F ⊂ Cn for all n ≥ 1, we arrive at

(2.6) 〈xn − v, Jx0 − Jxn〉 ≥ 0, ∀v ∈ F.

It follows from Lemma 1.4 that

φ(xn, x0) = φ(ΠCn
x0, x0) ≤ φ(v, x0)− φ(v, xn) ≤ φ(v, x0)

for all v ∈ F ⊂ Cn and n ≥ 1. Therefore, the sequence φ(xn, x0) is bounded.
Noticing that xn = ΠCn

x0 and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn, one obtains
that

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 1.

This shows that the sequence {φ(xn, x0)} is nondecreasing. It follows that the
limit of {φ(xn, x0)} exists. By the construction of Cn, one has Cm ⊂ Cn and
xm = ΠCmx0 ∈ Cn for any positive integer m ≥ n. It follows that

(2.7)

φ(xm, xn) = φ(xm,ΠCnx0)

≤ φ(xm, x0)− φ(ΠCnx0, x0)

= φ(xm, x0)− φ(xn, x0).

Letting m,n →∞ in (2.7), one has φ(xm, xn) → 0. It follows from Lemma 1.2
that xm− xn → 0 as m,n →∞. Hence {xn} is a Cauchy sequence. Since E is
a Banach space and C is closed and convex, one can assume that

(2.8) xn → p ∈ C (n →∞).

By taking m = n + 1 in (2.7), we arrive at

(2.9) lim
n→∞

φ(xn+1, xn) = 0.

From Lemma 1.2, we see that

(2.10) lim
n→∞

‖xn+1 − xn‖ = 0.

Since xn+1 ∈ Cn+1, we obtain that

(2.11) φ(xn+1, yn) ≤ φ(xn+1, zn) ≤ φ(xn+1, un) ≤ φ(xn+1, xn).

It follows from (2.9) and (2.11) that

lim
n→∞

φ(xn+1, yn) = 0, lim
n→∞

φ(xn+1, zn) = 0.
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In virtue of Lemma 1.2, we obtain that

(2.12) lim
n→∞

‖xn+1 − yn‖ = 0, lim
n→∞

‖xn+1 − zn‖ = 0.

On the other hand, we have

‖Tzn − zn‖ = ‖yn − zn‖ ≤ ‖xn+1 − yn‖+ ‖xn+1 − zn‖.
It follows from (2.12) that

(2.13) lim
n→∞

‖Tzn − zn‖ = 0.

Notice that
‖xn − zn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zn‖.

Combining (2.10) with (2.12), we assert that

(2.14) lim
n→∞

‖xn − zn‖ = 0.

From (2.8), we arrive at

(2.15) zn → p ∈ C (n →∞).

From the closed-ness of the mapping T , we obtain that p ∈ F (T ).
Next, we show that p ∈ V I(C, A). Let Q be the maximal monotone operator

defined by Lemma 1.6:

Qx :=

{
Ax + NCx, x ∈ C,

∅, x /∈ C.

For any given (x, y) ∈ G(Q), we see that y −Ax ∈ NCx. Since zn ∈ C, by the
definition of NCx, we have

〈x− zn, y −Ax〉 ≥ 0.

On the other hand, from zn = ΠC [J−1(Jun − λnAun)] and Lemma 1.3, we
obtain that 〈

x− zn,
Jzn − Jun

λn
+ Aun

〉
≥ 0.

Therefore, we have

(2.16)

〈x− zn, y〉
≥ 〈x− zn, Ax〉

≤ 〈x− zn, Ax〉 −
〈
x− zn,

Jzn − Jun

λn
+ Aun

〉

= 〈x− zn, Ax−Azn〉+ 〈x− zn, Azn −Aun〉 −
〈
x− zn,

Jzn − Jun

λn

〉

≥ 〈x− zn, Azn −Aun〉 −
〈
x− zn,

Jzn − Jun

λn

〉
.

From (2.11) and Lemma 1.2, we see that

(2.17) lim
n→∞

‖xn+1 − un‖ = 0.
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Notice that
‖zn − un‖ ≤ ‖zn − xn+1‖+ ‖xn+1 − un‖.

It follows from (2.12) and (2.17), we arrive at

(2.18) lim
n→∞

‖zn − un‖ = 0.

Since A is α-inverse strongly monotone, we obtain that

lim
n→∞

‖Azn −Aun‖ = 0.

From (2.16), we arrive at 〈x − p, y〉 ≥ 0. Since Q is maximal monotone, we
obtain that p ∈ A−1(0) and hence p ∈ V I(C,A). It follows from (2.18) that

un → p (n →∞).

Similarly, we can show that p ∈ V I(C,B). That is, p ∈ F = F (T )∩V I(C,A)∩
V I(C, B).

Finally, we prove that p = ΠF x0. From (2.6), we see that

〈p− v, Jx0 − Jp〉 ≥ 0, ∀v ∈ F.

Thanks to Lemma 1.3, we obtain that p = ΠF x0. This completes the proof. �

As some applications of Theorem 2.1, we have the following results immedi-
ately.

Corollary 2.1. Let C be a nonempty closed convex subset of a 2-uniformly
convex and uniformly smooth Banach space E. Let A : C → E∗ be an α-
inverse strongly monotone mapping and let T : C → C be a closed quasi-φ-
nonexpansive mapping. Assume that F = F (T )∩V I(C, A) 6= ∅. Let {xn} be a
sequence generated by the following manner:





x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

zn = ΠC [J−1(Jxn − λnAxn)],
yn = Tzn,

Cn+1 = {v ∈ Cn : φ(v, yn) ≤ φ(v, zn) ≤ φ(v, xn)},
xn+1 = ΠCn+1x0,

where J is the duality mapping on E. Assume that ‖Ax‖ ≤ ‖Ax−Aq‖ for all
x ∈ C and q ∈ V I(C,A). Let {λn} be a positive number sequence such that
0 < d ≤ λn ≤ c2α

2 for all n ≥ 1, where c is the constant defined by (1.3). Then
{xn} converges strongly to p = ΠF x0.

Remark 2.1. Corollary 2.1 improves the corresponding results announced by
Zegeye and Shahzad [19] in the following sense.
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(1) from relatively weak nonexpansive mappings to quasi-φ-nonexpansive
mappings. To be more precise, we relax the strict: F̃ (T ) = F (T ), where F̃ (T )
denote the set of strong asymptotic fixed point of T , see [19] for more details;

(2) from the computational point of view, we relax the iterative step of “Wn”
in the algorithm of Zegeye and Shazad [19].

If T = I, the identity mapping, in Theorem 2.1, we have the following result.

Corollary 2.2. Let C be a nonempty closed convex subset of a 2-uniformly
convex and uniformly smooth Banach space E. Let A : C → E∗ be an α-
inverse strongly monotone mapping and let B : C → E∗ be a β-inverse strongly
monotone mapping. Assume that F = V I(C, A) ∩ V I(C,B) 6= ∅. Let {xn} be
a sequence generated by the following manner:





x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

un = ΠC [J−1(Jxn − ηnBxn)],
zn = ΠC [J−1(Jun − λnAun)],
Cn+1 = {v ∈ Cn : φ(v, zn) ≤ φ(v, un) ≤ φ(v, xn)},
xn+1 = ΠCn+1x0,

where J is the duality mapping on E. Assume that ‖Ax‖ ≤ ‖Ax − Aq‖ and
‖Bx‖ ≤ ‖Bx−Bq‖ for all x ∈ C and q ∈ V I(C, A)∩ V I(C, B). Let {λn} and
{ηn} be positive number sequences such that 0 < d ≤ λn and ηn ≤ c2γ

2 for all
n ≥ 1, where c is the constant defined by (1.3) and γ = min{α, β}. Then {xn}
converges strongly to p = ΠF x0.

Remark 2.2. Corollary 2.2 can be viewed as an improvement of the correspond-
ing results in Iiduka and Takahashi [8].

Acknowledgments. The authors are extremely grateful to the referees for
useful suggestions that improved the contents of the paper.
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