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CHARACTERIZATION OF f-DERIVATIONS OF
A BCI-ALGEBRA

FARHAT NISAR

ABSTRACT. In this paper we characterize f-derivations of a BCI-algebra
as well as its center.

1. Introduction

In [9], K. Iséki gave the concept of BCI-algebras. In [14], L. Tiande and X.
Changchang introduced the class of p-semi-simple BClI-algebras. In [12], Y.B.
Jun and X.L. Xin introduced the notion of derivation in BCI-algebras, which
is defined in a way similar to the notion in ring theory (see [1, 2, 10, 13]),
and investigated some properties related to this concept. In [15] J. Zhan and
Y.L. Liu introduced the notion of f-derivation in BCI-algebras. In particular,
they studied the regular f-derivations in detail and gave a characterization of
regular f-derivations and characterized p-semisimple BClI-algebras using the
notion of regular f-derivation. In this paper we characterize f-derivations of a
BClI-algebra as well as its center.

2. Preliminaries

Definition 2.1. ([9]) Let X be an abstract algebra of type (2,0) with a bi-
nary operation x and a constant 0. Then X is a BCl-algebra, if the following
conditions are satisfied for all z,y,z € X,

(1.1) ((xxy)*(x*x2))*(zxy) = o,
(1.2) (% (2 y) +y =0,
(1.3) zxz =0,

(1.4) THRY=0=YxT =T =17,
(1.5) Txo=0=1 =o.
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In any BCI-algebra X, one can define a partial order “<” by putting xz < y
if and only if x x y = 0. In a BClI-algebra X, the set M = {z € X : ox 2 = o}
is called the BCK-part of X. If X = M, then X is called a BCK-algebra.

Moreover, the following properties hold in every BClI-algebra ([8,9]):

Let z,y,z € X:

(1.6) Tx0=u1,
(1.7) (zxy)*z=(x%2)*y,

(1.8) r<y=zxz<y*z and zxy < z*um,
(1.9) (xxy)*(zxy) <z *2,

(1.10) T (z*(zxy)) =y,

(1.11) ox(zxy)=(oxz)*(0*y) [5].

Definition 2.2. ([3]) Let X be a BClI-algebra. An element z, € X is said to
be an initial element of X, if x <z, = = = x,.

Definition 2.3. ([3]) Let I, denote the set of all initial elements of X. We
call it the center of X. It is well known that the center I, of a BCIl-algebra X
is p-semisimple ([4]).

Definition 2.4. ([3]) Let X be a BCI-algebra with I, as its center. Let z, € I,
then the set A(z,) = {x € X : z, < z} is known as the branch of X determined
by xz,.

Definition 2.5. ([3]) A BCl-algebra X is said to be fully-nonassociative if
oxx # x, for all x € X — {o}.

Definition 2.6. ([14]) Let X be a BCI-algebra. If M = {o} then X is called
a p-semisimple BCI-algebra.
(1.12) Let X be a BCI-algebra. The following properties are equivalent for
all z,y € X:
(i) X is p-semi-simple,
(ii) ox (0% z) = x,
(iii) zxy =0 = x =y,
for all x,y,z € X ([6, 14]).
(1.13) Let X be a BCI-algebra. If z < y, then z,y are contained in the same
branch of X ([3]).
(1.14) Let X be a BCl-algebra and A(xz,) C X. Then z,y € A(z,) = x *
y,yxz €M ([3]).
(1.15) Let X be a BClI-algebra with I, as its center. If z € A(x,), y € A(yo),
then z xy € A(x, xy,), for z,,y, € I, ([7]).
(1.16) Let X be a BCl-algebra with I, as its center. Let z,,y, € I,. Then
for all y € A(yo)7 To*Y = To *Yo ([7])
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Definition 2.7. ([12]) Let X be a BCl-algebra. By a left-right derivation
(briefly, (I,7)-derivation) of X, a self map d of X satisfying the identity d(z *
y) = (d(z) xy) A (x*d(y)), for all z,y € X. If d satisfies the identity d(z*y) =
(x = d(y)) A (d(z) * y)), for all z,y € X then we say that d is a right-left
derivation (briefly, (r,1)-derivation) of X. Moreover, if d is both (I,7)- and
(r,1)-derivation, it is said that d is a derivation of X.

Definition 2.8. ([12]) A self-map dy of a BCI-algebra X is said to be regular
if d(o) = o.

Definition 2.9. ([15]) Let X be a BCl-algebra. By a left-right f-derivation
(briefly, (I, 7)-derivation) of X, a self map dy of X satisfying the identity ds(z *
y) = (ds(z) = f(y)) A (f(x) *ds(y)), for all z,y € X is meant, where f is an
endomorphism of X. If dy satisfies the identity ds(x * y) = (f(x) * d¢(y)) A
(df(z)* f(y))), for all z,y € X then it is said that dy is a right-left f-derivation
(briefly, (r,1)-f-derivation) of X. Moreover, if dy is both (I,7)- and (r,1)-f-
derivation, it is said that ds is an f-derivation of X.

Definition 2.10. ([12]) A self-map of a BCI-algebra X is said to be regular if
ds(o) =o. If dy(0) # o, we call dy an irregular f-derivation.
(1.17) Let df be a regular derivation of a BCI-algebra X. Then, for all z,y € X,

() dy(x) < J(a)
(i) dy(z xy) = dy(x) * f(y) ([15]).

Definition 2.11. ([15]) A mapping f of a BCI-algebra X into it self is called

an endomorphism of X if f(z+y) = f(x)*f(y). Note that f(0) = o. Especially,

f is monic if for any z,y € X, f(z) = f(y) =z =y.

Definition 2.12. ([11]) A BCl-algebra X is said to be commutative if and
onlyifx <y=yx(yxx)=u, foral z,y € X.

Theorem 2.9. ([15]) Let dy be a self map of a BCl-algebra X defined by
d¢(z) = 0% (0 f(x)) = fz. Then dy is a (I,r)-f-deriation of X. Moreover,
if X is a commutative BCI-algebra then dy is a (r,1)-f-derivation of X, where
f is an endomorphism of X.

Proposition 2.11. ((iii)[15]) Let d¢ be a (I,r)-f-derivation of a BCI-algebra
X. Then dj(z) € I, for all x € I,.

Proposition 2.12. ((i)[15]) Let dy be a (r,1)-f-derivation of a BCI-algebra
X. Then ds(z) € I, forallz € G(z) ={x € X : 0%z = x}.

In sequel, we will denote o * (0o * f(x)) = f, and z Ay =y = (y * x).

3. Characterization of f-derivations of a BCI-algebra

In this section we characterize f-derivations of BCI-algebras.
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Lemma 3.1. Let f be an endomorphism of a BCIl-algebra X and I, be its
center. Then for any x € I, f(x) € I,.

Proof. Let f be an endomorphism of a BCI-algebra X and I, be its center.
Since for x € I, o (ox x) € I,. So,

f(x)=flox(oxx)) = f(o)* f(oxz) (since f is an endomorphism)
=ox*(f(0o) * f(x)) =0x(ox f(x)) (since f(o) = o).
Because of (1.12)-(ii), f(z) € I,. This completes the proof. O
Lemma 3.2. Let X be a BCl-algebra. Then for x € X, ox(o*xx) and oxx € I,.

Proof. Let z € X. By property 1.2, ox (oxz) < x. Assume that y < o* (0*x)
which implies that y * (0 * (0 * x)) = 0. Now,
)

= y*(ox(oxx)) <yxy=o (using (1.8))

y<ox(oxx

=yx*(o*x(oxx)) =0 (using (1.5))

= (y*x(ox(o*xx)))*xy=0xy

= (y*y)*(ox(oxx)) =0oxy (using (1.7))

=ox(o*x(oxx)) =oxy (using (1.3))

= oxx=o0x*y (using (1.10))

=ox(oxx)=o0x*(0oxy) <y

= (o* (0*xx))*y = o.
Because of property 1.4, y* (ox (oxz)) =0o=(ox (0oxz))xy = ox (o*xz) = y.
So, y < ox(oxx) = y = ox(oxx). Thus it follows that o* (oxx) € I,. So there
exists some x, € I, such that o x (0 x ) = x,, which implies 0 * (0 x (0 * x)) =

0%xT, = 0%xx = 0%z, (using (1.10)). Since for o, x, € I, , 0 x x, € I,
therefore o x x € I,. This completes the proof. (I

Theorem 3.1. Let dy be a (r,1)-f-derivation of a BCI-algebra X. Then
d¢(z) € I, for all z € I,.

Proof. Let « € I,. Then = o (o* ). Since dy is a (r,{)- f-derivation of a
BClI-algebra X, therefore

d(x) = dj(ox (0xx)) = (f(0) * ds(oxx)) A(df(x) * f(0)))
= (df(z) x 0) x ((df(x) % 0) * (0 x df (0 * x)))
(sincef(o) =0 and xAy=yx(yx*z))
<oxds(oxx) (using (1.2)).
As dy is a self map, so for z € I, C X, d¢(x) and df(o*x) € X. Because of
lemma 3.2, it follows that for ds(o* z) € X, oxdy(o*x) € I;. So, ds(x) <

o*xds(o*xx) = df(z) = oxds(o*x). Hence for x € I, df(x) € I,. This
completes the proof. (I
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Lemma 3.3. Let dy be an f-derivation of a BCI-algebra X. Then ds(x) € I,
forallx € I,.

Proof. Tt follows directly from theorem 3.1 and part (iii) of proposition 2.11. O
Theorem 3.2. Let f be an endomorphism of a BCI-algebra X with center I,.
Then for x,y € X, following identities hold:

(i) f(z)* fo € M,
(i) foxm= fy, for allme M,

i)
(iil) fo* fy € L,
(iv) foxy = foxfy = fouw.
Proof. (i) Let f be an endomorphism of X. Then for xz € X, f(z) € X. By
property (1.2),
(0% (0% f(x))) % f(x) = 0= (0% (0x f(x))) < f(x)
= fo < f(z) (since ox* (0ox f(x)) = fz)
= f(x) * f(x) < f(@) * fo = 0 < f(2) * fa
which implies that f(z) % f, € M. Thus there exists some m € M such that
f(@) x fo =m.
(i)
fexm=(ox(ox f(x)))*m = (oxm)x(0ox f(x)) (using (1.7))
=ox*(ox* f(z)) = fr (since for m € M,0xm = o).
(iii) Using (1.11) repeatedly,
fox fy = (0 (0% f(2))) * (0% (0% f(y)))
=ox ((0x f(2)) * (0% f(y)))

=ox(0x (f(z)* f(y)))-
Since f is an endomorphism, therefore above equation becomes
(1) faox fy = o0x (0% f(zxy)).

Because of lemma 3.2, for f(xxy) € X, ox (o f(x*xy)) € I,. Thus it follows
that f, * fy € L.

(iv)
fox fy) = (0% (0% f())) % f(y) = (0% f(y)) * (0 f(x)) (using (1.7))
@) = (0% (0% (0% f(y))) * (0x f(x)) (using (1.10))
= (0% (0% f(x))) * (0% (0% f(y))

= fax fy.
From o * (o * f(x)) = f, and equation (1) of (iii) it follows

Thus from equations (2) and (3) it follows that fy * f(y) = fy * fy = frsy. This
completes the proof. O
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Theorem 3.3. Let f be an endomorphism and A(x,) be any branch of a BCI-
algebra X. If for any x € A(x,), f(x) = x,, then f is a regqular derivation.

Proof. Let f be an endomorphism and A(z,) be any branch of a BCI-algebra
X. According to given condition

(1) for any x € A(z,), f(x)=x,.

For x € A(x,), To < = z,*xx = 0. By 1.15 for z,, x € A(x,), o *x = 0
and z x x, € M. So, for some m # o € M = A(o), x x x, = m, otherwise,
To* T =0=X*Ty = T = T,, a contradiction. Also by 1.16 for o, z, € I, and
m#o0€ M= A(0), zo *m =, % 0 = x,. Now for distinct z,y € X, we have
following two cases:

Case 1: Both x and y belongs to the same branch of X.

Case 2: x and y belongs to different branches of X.

Case 1: Let x,y € A(z,). So, z, < z and z, < y. Then by (1.15), z xy €
M = A(o). So using (1),

(2) flaxy) =

Also

(3) To <Y = Toxy = o.
Now

(f(@) = y) Az f(y))
= (To *y) Nz *yo) (using (1))
= (@ % yo) * ((xxYo) * (1o xy)) (since x Ny =yx(yxx))
= (zxyo) * ((xx (xoxy)) xyo) (using (1.7))
<zxx(xx(xoxy)) <zoxy=o0 (using (1.9), (1.2) and equation (3))
= (fx)xy) A (z = f(y)) =0 (using (1.5))
= (fl@)xy) A= f(y)) =o=flzxy) (using (2)).
Thus f is an (,r)-derivation. Now
(@ f(y) A (f(x)*y) = (25 20) A (20 % y)
=(xxx,) Ao (using (3))
=ox (0% (T *x,))
=o0x*(0xm)
=0 (since x*x, =m,0%m = o).
(@ fy) A (flx)*y) =0=flzxy). (using (2))

So, f is an (r,l)-derivation. Hence it follows f is a derivation.
Case 2: Let = € A(x,) and y € A(y,). Then by (1.15), zxy € Az, *y,). So,

using (1)
(4) flaxy) =20 % yo.
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As z,, yo € I, and y € A(y,), therefore by (1.16),

(5) To % Y = To * Yo.
Now,

(f(x) xy) A (2 * f(y))

= (zoxy) N (*yo) (using (1))

= (zxyo) * ((x xyo) * (xoxy)) (since x Ay =yx(y*1))
(@ xyo) * ((z x (2o xy)) ¥ yo)  (using (1.7))
(x (2o xy))  (using (1.9)))

T %
To*x Y =To*Yo (using (1.2) and (5)).

IN N I

Since for x,, yo € I, T, * Y, € I, therefore x, * y, is an initial element. Thus
it follows that

(f(x)*xy) Az f(y) =0 * Yo
= f(zxy) (using (4)).

So, f is an (I,r)-derivation.

Also
(@ f(y)) A (f(z)*y)
= (z*yo) N (o xy) (using (1))
(o xy) * (o + y) * (2 % Yo))
= (o *xy) * (o % (x*y,)) *y) (using (1.7))
<Zox(Tox(x*y,)) <z*y, (using (1.9) and (1.2))
= (zx f(y) AN (f(z)xy) = (2 xyo) A (2o *y) < x5 Yo
= ((@xyo) N (o % Y)) * (To % Yo) < (5 Yo) * (20 % yo) (using (1.8))
= (T *xYo) A (T *y)) * (T xYo) < T xT (using (1.9))
= ((x*yo) A (To % y)) * (To *yo) <m  (since T *x, =m)
= ((xxyo) N(To*Y)) * (o % Yo)) xm <msxm =0 (using (1.2) and (1.8))
= ((*yo) A (To*xy)) * (Toxyo)) xm =0 (using (1.5))
= (T *Yo) A (o *xy)) *m) x (o xyo) =0 (using (1.7))
= ((z*yo) A (Toxy)) *m) < To * Yo
= (o xy) * (o xy) x (T *Yy))) *m) <xp*xyo (since x Ay =yx*(yxzx)).

Since for x,, Yo € I, T, * Y, € I, therefore x, * y, is an initial element. Thus
it follows that

(o xy) x ((xoxy) *x (T *xYy))) xm) = Ty * Yo
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(o y) xm) * (2o % y) * (x*yo)) (using (1.7))
(% wm) ok y) * (2o xy) * (T xyo)) (using (1.7))
To*xY) * ((To xy) * (T xy,)) (since Ty * m = x,)
T *Yo) N (o xy) = (x* f(y)) A (f(x) *y)

= flzxy) = (z = f(y) A (f(z) xy).

So, f is an (r,l)-derivation. Thus it follows that f is a derivation of X. Since
f(0) = o, therefore f is a regular f-derivation. This completes the proof. O

= Ty * Yo = (
=
(
=

Theorem 3.4. Let f be an endomorphism and ds be a self map of a BCI-
algebra X. If for x € X, dy(x) = f(z), then dy is an f-derivation.

Proof. Let f be an endomorphism and d; be a self map of a BCI-algebra X.
Assume that for any = € X,

(1) dy(x) = f(z).
Then
(2) dy(y) = f(y)-

Since for z,y € X, x xy € X, therefore d¢(z * y) =
dp(zxy) = f(zxy) = f(z)* f(y)
(3) =dy(z) = f(y) (usmg (1))
= (ds() * f(y)) *

f(z xy). Thus

Now
o= f(zxy)xflx*y)
= (f(x)x f(y) = (f(z)* f(y)) (since f is an endomorphism)
= (dy(x) * f(y) * (f(x) xds(y)) (using (1)).
So equation (3) becomes
dy(zxy) = (df(x) * f(y)) * (df(2) * f(y)) * (f(2) * ds(y))
= (f(@) xdp(y)) A (ds(x) * fy)) (sincex Ny =y = (y*x)).
So, dy is an (r,1)- f-derivation. Further,
@ di(z+y) = f(zxy) = f(x)* f(y) = f(x) * ds(y)(using (2))
= (f(z) x ds(y)) * 0.
Now

o= f(xxy)x flzry)=(f(z)*f(y)*(f(@)*f(y)
= (f(z) xds(y)) = (ds(x) = f(y)) (using (1) and (2)).
So equation (4) becomes
dy(z*y)
= (f(@) = ds(y)) = (f(x) * dp(y)) = (ds(x) = f(y))
= (df(@) = f(y)) A (f(z) xdf(y)) (since z Ny =yx*(y*x)).
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Thus dy is an (I, r)- f-derivation. Hence d¢ is an f-derivation. O

Theorem 3.5. Let dy be a f-derivation of a BCI-algebra of X. If df(m) = o,
for allm € M = A(o), then ds(x) = f(x,), for all x € A(x,).

Proof. If dy(m) = o, for all m € M = A(o), then d¢(0) = 0. So dy is a regular
derivation of X. Because of (1.17)-(i), for all z € A(z,) C X,

(1) ds(z) < f().

For any = € A(x,), o, < & = z, *x = 0. So,

0= f(0) = f(zo xx) = f(xo) * f(x) (since f is an endomorphism.)
= [f(zo) < f(2).

By lemma 3.1, for z, € I, f(x,) € I, so f(x,) is an initial element. Thus
from (2) it follows that f(z) € A(f(z,). Because of (1.13), from (1) and (2) it
follows that f(xz,), f(z) and d¢(x) belong to the same branch. So

3) f(xo) < df(x) = f(x,) xdy(z) = 0.

For x € A(z,), o < = 2, *x2 = 0. By (1.14) for z,, x € A(x,), z, %z =0
and z x x, € M. So, for some m # o € M = A(o), x x x, = m, otherwise,
To*T =0 =T *T, = T = Z,, a contradiction. Now by (1.17)-(ii), for z,,
z € Alz,) C X,

@ di(z) * f(zo) =dj(z*z,) =df(m) =0 (using given condition)
S dp(z) < f(wo) = dy2) 5 f(zo) = o.

Because of (1.4), from (3) and (4) it follows that d(x) = f(z,). This completes
the proof. 0

(2)

Theorem 3.6. Let df be a f-derivation of a commutative BCI-algebra X,
where f is an endomorphism of X. Then x <y = d¢(z) < df(y).

Proof. Let dy be a f-derivation of a commutative BCI-algebra X, where f
is an endomorphism of X. Since X is a commutative BCI-algebra, therefore
x<y=yx*(yxx)=x. So,

dp(z) = dy(y * (y * x))

= (ds(y) = fly*x)) A (f(y) * dy(y * x))
() * dy(y* ) = ((f(y) * dp(y * x)) * (dp(y) * £y * 2)))
(y) * [y =)
=ds(x) <ds(y) = (fly) * f(z)) (A)(since f is an endomorphism).

Since x < y = x xy = o, therefore 0o = f(0) = f(zxy) = f(x)* f(y) = f(z) <
f(y). By (1.13), f(z) and f(y) belong to the same branch of X and by (1.14),

f(@)xf(y) and f(y)*f(z) € M. As f(2)xf(y) = o, so f(y)*f(x) # o, otherwise
because of property (1.4), f(x) * f(y) = o = f(y) * f(x) = f(x) = f(y), a

=(f
< dj
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contradiction. Thus there exists some m # o € M such that f(y) * f(z) = m.
Hence inequality (A) becomes

df(x) <dj(y) *m

S dy(x) * dp(y) < (dp(y) £ m) * dy(y) (using (1.8))
S dy(@) + dy(y) < (dr () * dy(w)) s m (using(1.T))
=dp(x)*ds(y) <oxm (using (1.3))
=ds(x)*ds(y) <o (sincem € M)
=ds(z)*xds(y) =0 (using (1.5))
which shows that d;(x) < dy(y). This completes the proof. O

Theorem 3.7. Let dy be a f-derivation of a BCI-algebra X, where f is an
endomorphism of X. If for all x € A(x,), y € A(yo), f(z) € A(z,) then
d(x) = yo = ds(y) € A(zo).

Proof. Assume that for all « € A(z,), d¢(z) = y,. Since dy is a f-derivation
of BClI-algebra X, therefore ds is a (,r)- f-derivation. So for all z € A(z,),

Yy € A(Yo),
dy(z*y)
= (dy(@) * f(y)) A (f(z) xds(y))
= (f() = ds(y)) = ((f(2) *ds(y)) = (dy(z) * f(y))) (since x Ny =y=x(y*z))
<dg(z)* f(y) (using (1.2))
= dp(z*y) <yox f(y) (since dg(z) = y,).

According to given condition y € A(y,),f(y) € A(y,). So by definition 2.4,

fy) € Alyo) = yo < f(y). Now yo < f(y) = yo* f(y) = 0. So above
inequality becomes

(1) di(z*y) <o=ds(rxy) =o.

As dy is also a (r,1)- f-derivation. So for all z € A(z,), y € A(Yo),
dy(@ o y) = () () A (ds (@) « F()
dy(xxy) = (ds(x) * f(y)) * (df(x) * f(9))) * (f () * df(y)))

(2) (since x Ny =y * (y*x))

< f(@)*xds(y) (using (1.2)).

Since dyis both (I,7)- and (r,!)- f-derivation. So from (1) and (2), it follows
that

o < fa) xds(y)

= ox f(x) < (f(2) *ds(y)) * f(x) (using (1.8))
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F@)* F(@)) xdply) (using (17))

cdp(y) (using (1.3))

= o0x(0oxdypy)) <ox(ox f(z)) = f(x,) (using theorem4.l — (iii))
S 0w (0w ds(y)) = f(z) (since f(z,) € L)

= [flzo) <dj(y) (using(1.2)).
By (1.13) both ds(y) and f(z,) belong to the same branch of X. Since f(z,) €
A(z,), therefore d¢(y) € A(z,). This completes the proof. O

= ox f(2)
= ox f(x)

—~

<
<

Q

~—

Theorem 3.8. Let dy be a f-derivation of a BCl-algebra X. If for distinct
z,y € I, d¢(z) = f(y) = d¢(y) = f(x), then dy is not reqular.

Proof. Assume that for distinct x,y € I,

(1) df(x) = fy) = ds(y) = f(2).
Since dy is a f-derivation of X, therefore dy is a (I, r)- f-derivation as well as
(r,1)- f-derivation. When d; is a (r,[)- f-derivation, then
d(@+y) = (ds(z) * f(y)) A (f(2) = dy(y))
= (f(2) xds(y)) = ((f (@) * ds(y)) = (dy (z) * f(y)))
<dp(z) = fly) = f(y) = fy) =0 (using ds(z) = f(y) and (1.3))
=ds(xxy) =0 (using(l.h)).
Since for z,y € I, zxy € I, and = x y # o, otherwise by (1.12)-(ii), x x y =
0 = x =y, a contradiction, therefore by our assumption
dy(z*y) = 0= f(o) = ds(o) = f(z*y).
Thus it follows that ds(0) # o0 as x *y # o, so d is not regular. This completes
the proof. O

Note that Lemma 3.3 of this paper generalizes the part (iii) of proposition
2.11[15] and from Lemma 3.2, it follows that G(X) C I,, thus part (ii) of
proposition 2.12[15] becomes a corollary of our Lemma 3.1. Now we generalize
the first half of theorem 2.9 and first part of proposition 3.3 of [15] vide theorem
3.9 and theorem 3.10 respectively.

Theorem 3.9. A self map dy of a BCI-algebra X defined as d¢(z) = o* (o *
f(@) = fz, forallx € X, is an f-derivation of X, where f is an endomorphism
of X.

Proof. Let dy be a self map of a BCl-algebra X, where f is an endomorphism
of X, defined as follows:

(1) df(z) = ox (0 f(z)) = fa
forallz € X. Asforz,y € X, xxy € X, therefore ds(z*y) = ox(ox f(x*y)) =
fary which implies that

(2) di(x*xy) = fa* fy, (using theorem 3.2, (iv)).
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Now
(f(@) = ds(y)) A (dg(x) = f(y))
=(f(x ) F) AN (fox f(y)) (using equation (1))
= (fax f() * ((fo = f(y)) = (f(2) * fy)) (since x Ny =y *(y*x))
= (fox f(y) * ((fo = (f(2) x fy)) * f(y)) (using (1.7))
< fox (fox (f(2)* fy))  (using (1.9))
< flx)« fy  (using (1.2))
= (f(z) xdg(y)) A (dg (@) = f(y)) = (f(x) * fy) A (fax f(y) < flz) = fy
= ((f(2) * fy) A (fa* f(y)) * (fa * fy)
< (f(@) = fy) * (fa * fy) (usmg (1.8))
=< f(x) * fy (using (1.9)
= ((f(x)* fy) A (fax f(y)) * (fa fy) <m (By Theorem3.2,(i))
= ((f(@) = fy) A (fax f(9)) * (fo x fy)) xm <msm  (using (1.8))
= ((f(@) = fy) A (fa* f(y))) *m) * ( * fy) <o (using (1.3))
= ((f(@) = fy) A(fax f(y)) xm) = (fo = fy) =0 (using (1.5))
= ((f(z) * fy) A (fax f(y))) xm < (fo* fy).

Since f * f, € I, therefore f, * f, is an initial element. Thus it follows that

((f(@) = ) A (fax f (@) xm = (fo * fy)
= ((fax f (W) * ((fa x f () * (f(2) % fy))) xm
= fox fy(sincex Ny =y = (y*x))
= ((fe x f()) xm) + ((fo x f(y) * (f(2) % fy)) = fox fo (using (1.7))
= ((faxm)* f(y) * ((fo x () * (f(2) % fy)) = fox [y (using (1.7))
= ((fo* f()) * ((fa * f(y) * (f(2) * fy))
= fox fy (using Theorem 3.2, (ii))
S (&) % dg(0)) A () * f(g) = fu % fy = dylasy) (using equation (2)).
Thus dy is an (r,[)- f-derivation.
From first half of theorem 2.9[15], it follows that dy is a (I, r)-f-derivation of

X. Thus it follows d; is both (I,7)- and (r,1)- f-derivations of X, therefore d
is a f-derivation of X. O

Theorem 3.10. Let X be a BCl-algebra and let dy be a regular (r,l)-f-
derivation of X. Then both f(x) and ds(x) belongs to the same branch of
X.

Proof. Let x € X. Then by property (1.2), ox(o*z) < z. As shown in Lemma
3.2, ox(o*x) = x,, for some x, € I,. So for any z € X, ox(o*xz) <z =z, <z
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which implies x € A(x,) and z, %z = o. Since dy is a regular (r,)- f-derivation
of X, therefore

0=dj(0) = df(xo x x) = (f(wo) * dy(x)) A (df(x0) * f())
= (dy (o) * f(2)) * ((df (x0) * f(2)) * (f(20) * dy (2)))
(since x ANy =y * (y*x))
< f(zo) *dg(z) (using (1.2))
= flxo) * (f(zo) ¥ df(x))) < f(zo) ¥ 0 = f(2o) (using (1.8) and (1.6)).

Because of lemma 3.1, for z, € I, f(x,) € I,. Thus it follows that f(x,) is an
initial element. So,

f(@o) x (f(wo) x df(x))) < flxo) = f(wo) x (f(2o) x dy(x))) = f(o).
Now by property (1.2),

(4) f(xo) = f(wo) % (f(wo) * df (x)) < dy ().

Also,

(B) O:f(ito*x):f(wo)*f($):>f($o)Sf(iﬂ)

Because of (1.13), from inequalities (A) and (B), it follows f(z) and d(z)
belongs to the same branch of X. This completes the proof. O

4. Characterization of f- f-derivations of the center of a
BClI-algebras

In this section we characterize the role of f-derivations of the center of BCI-
algebra.

Lemma 4.1. Let f be an endomorphism of a BCI-algebra X. Then,
(i) for all x € A(x,), f(z,) and f(x) belong to the same branch of X.
(i) for all x € A(x,), o* f(z) € I,.
(i) for all x € A(x,), f(zo) =0x (0* f(x)).
(iv) for all m € A(o), f(m) € A(o) = M.

Proof. (i) Let f be an endomorphism of a BCI-algebra X. Then, for x € A(z,),
T, < T = x,*x = o0. So that,

(1) 0= f(o) = fzoxx) = flzo) * f(2) = f(z0) < [f(2).

Because of (1.13), from inequality (1) it follows that f(z,) and f(x) belong to
the same branch of X.

(ii) From the proof of part (i) it follows that for x € A(z,), f(z,) < f(x).
Because of (1.8) it implies that o x f(z) < ox* f(z,). Since for z, € I,
flz,) € I, C X, therefore by lemma 3.2, 0 x f(z,) € I,. Thus it follows that
0% f(x,) is an initial point. So, o * f(z) = o * f(x,). Hence o * f(x) € I,.
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(iil) From the proof of part (ii) it follows that

ox f(x) = 0x f(x,)

= ox (0ox f(z)) = ox* (0* f(z,))

=ox(ox f(z)) = f(zx,) (since f(z,) € I, therefore using (1.12) — (ii).
(iv) From the proof of part (i) it follows that for all m € A(o) = M, f(0) <

f(m)=0< f(m)= f(m) € A(o) = M. This completes the proof.
]

Theorem 4.2. Let dy be an irregular f-derivation of a BCI-algebra X, where f
is an endomorphism of X. Then the center I, of X is not fully non-associative.

Proof. Let df be an irregular f-derivation and I, be the center of a BCI-algebra
X. Since dy is a f-derivation of X, therefore dy is a (I, r)- f-derivation. So,

df(0) = dg(ox0) = (df(0) * f(0)) A (f(0) * dy(0))
= (ds(0) x0) A (0xdg(0)) (using f(o) = o)
=ds(o) A (oxds(0)) (using (1.6))
= (oxds(0)) * ((oxds(0)) xds(0)) (since x Ny =ysx*(y*x))
<ox(oxds(0)) <ds(o) (using (1.9) and (1.2))
= ds(0) =o0x (oxds(0)) (1).

Because of (1.12)-(ii), it implies that d¢(o) € I,. Since dy is an irregular
f-derivation therefore ds(0) # o. Thus there exists some x, # o € I, such that

(2) dg(0) = zo.
Since dy is a f-derivation of X, therefore dy is a (r,)- f-derivation. So,
df(0) = dy(ox0) = (f(0) * df(0)) A (df(0) * g(0)))
= (0 dys(0)) A(dg(0) *0) (since f is an endomorphism)
= (0x ds(0)) Ndy(0)
= dj(0) x (df(0) * (0% df(0))) < 0xdf(0).

By lemma 3.2, for ds(o) € I, € X, oxds(0) € I,. Thus o*dy(0) is an initial
point. Hence,

3) d(0) = 0% ds o).
Since dy is a f-derivation, therefore from equations (1), (2) and (3),
To =0%To=>0%Ty=0%(0%Tp).

Because of (1.12)-(ii), it implies x, = 0 * 2,. Hence it follows the center I, of
X is not fully non-associative. O

Theorem 4.3. Let df be a f-derivation of a BCI-algebra X . If its center I,
is fully non-associative and for all x € A(z,), f(x) € A(z,) then dy is reqular.
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Proof. Contrarily assume that dy is not regular. So, d¢(0) # o. By lemma 3.3,
dys(o) € I, thus there exists some z, # o € I, such that

(1) df(0) = o.
Since dy is a derivation, therefore dy is a (I,r)-derivation as well as (r,1)-f-
derivation. When d; is a (I, r)-derivation then

dy(o*x,)

= (dg(0) * f(xo)) N (f(0) x df(x,))

= (ds(0) * f(20)) A (0% df(,))

= (0% df(xo)) * (0% dy(xo)) * (df(0) x f(x0))) (since x Ay =y (y*x))
< dy(0) * f (o).

By lemma 3.3 and 3.1, for o, z, € I, df(0) and f(z,) € I,. Thusds(o)f(z,) €
I.. So, Above inequality becomes

@ di(o*x,) =ds(0) * f(x,) (since ds(o) * f(z,) € 1)
= df(o*xo) = a0 f(mo) (using (1)).
Since f(z) € A(x,), therefore by lemma 3.1, f(z,) € A(z,) which implies that
zo < f(x0) = 2o = f(x0) (since f(z,) € I).
So, equation (2) implies
(3) di(o% o) = Tp %o = 0.
Since dy is also a (r,1)- f-derivation. So for all z € A(x,),
df(o*xz,)
= (f(0) xdy(wo)) A (ds(0) * f(2,))
= (dg(0) * f(xo)) * ((df(0) * f(20))) * (0% dy(x,)))(since x Ny =y * (y *x))
< oxdf(x,)(using(1.2))

(4) = ds(oxz,) =0xds(x,) (since ox f(x,) € I;).
As dy is a f-derivation. So from (3) and (4), it follows that
o=o0xds(z,) = 0 <ds(x,) = 0=dys(z,) (since ds(z,) € I;).

Since I, is fully non-associative, therefore there exists some y, # x, € I, such
that o * y, = x,. So,

0= ds(xo) = d(0xyo) = (d(0) * f(yo)) N (f(0) * ds(yo))
=dg(0xyo) = (ds(0) * f(Y0)) N (0% ds(yo))
= (0% ds(Yo)) * (0% df (yo)) * (df (0) * f(yo)))  (since x Ny =y *(y*))
< dg(0) % f(Yo) = 0= ds(0) * f(yo) (sincedy(o) * f(yo) € 1)

(5) = 0=1ao% f(yo) (using (1)).
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According to given condition f(y,) € A(yo). S0, Yo < f(yo). Since f(yo) € Iy.
So, f(yo) is an initial element. Hence y, = f(y,). Thus equation (5) becomes
0O=1To*Yp = To < Yo = To=Yo (using (1.12) — (4ii))

a contradiction. Thus our assumption is wrong. Hence d; is regular.
O

Theorem 4.4. Let d; be a f-derivation of a BCl-algebra X. If its center
I, is fully non-associative and for all x € A(z,), f(x) € A(z,) then for all
x € Alx,), df(z) € A(z,).

Proof. Let dy be a f-derivation of a BCl-algebra X. If its center I, is fully
non-associative and for all € A(z,), f(z) € A(z,) then by theorem 3.2, df
is regular, so df(0) = o. For z € A(x,), 2o < & = 2, %2 = 0. Since dy is a
regular f-derivation of X, therefore dy is a (I,7)- f-derivation. So,

0=dj(0) = ds(xo*x) = (dy((xo)) * f(x)) N (f((20)) * df(x))
= (f((wo)) * dy(2)) * (f (o)) * dy(2)) * (df (o)) * f(2)))

(since x ANy =y (y*x))

< dg((wo)) * f(x) (using(1.2))
= 0xdf(x,) < (dp(xo) * f(x)) * d(2o) (using (1.8))
= 0xdy(xo) < (dp(xo) * df(,))  f(x) (using(1.7))
= oxdyp(x,) < ox f(x)
=ox(0x f(x))) <ox(oxds(z,))
=o0x(0x f(z))) <ox(oxds(z,) < dj(z,) (using (1.2))
=ox (0% f(z))) =ds(z,) (since df(z,) € I;)

= df(x,) = 0x(0x f(x)) < f(x) (using(1.2))
By (1.13) both df(z,) and f(z) belong to the same branch of X. Since
f(z) € A(z,), therefore dy(z,) € A(z,). Since d; is also a (r,1)- f-derivation.
Therefore
0=df(0) =dy(xoxx) = (f(xo) * ds(x)) A (ds(x,) * f())
= (df (o) * f(2)) * ((df (o) * f(2)) * (f(20) * dy(x)))
(since x Ay =y * (y*x))

< flwo) xdgp(z) (2)(using (1.2))
= 0x f(xo) < (f(2o) *dy(x)) * f(o) (using(1.8))
= 0x f(z,) < (f(mo) * f(z0)) xdp(x) (using(1.7))
= 0% f(z,) <oxdp(z) = ox(oxds(z)) <ox(o* f(zx,)) (using (1.8))
=ox(0oxds(x)) < f(zo)
= o0 (0xdf(x)) = f(2,)

= f(zo) < dgy(x) (using lemma 3.1 and (1.2)).
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By (1.13) both d¢(z) and f(z,) belong to the same branch of X. Since f(z,) €
A(x,), therefore dy(x) € A(z,). This completes the proof. O

Theorem 4.5. Let dy be a regular f-derivation and f be an endomorphism of
a BCI-algebra X with center I,. Then for x, € I, df(x,) = f(x,).

Proof. Let df be a regular f-derivation and f be an endomorphism of a BCI-
algebra X with center I,. Since dy is a regular f-derivation of X, therefore
df(o) = o. As dy is a f-derivation, so dy is a (,r)-f-derivation. Also for
Zo € I, 0% (0%2,)) =T, , SO

dy(zo) = dyg(o* (0% xo)) = (df(0) * flo*x,)) A (f(0) * df(0*z0))
= (o floxz,)) A (0xd(o*x,)))(sinceds(o) =0 = f(0))
= (0% (f(0) * f(x0)) A (0 df(0*x,)))
= (o (0% f(xo)) A (0xdf(0*x,)))
= f(zo) N (oxds(oxxp))) (using lemma 3.1, (1ii))
= (oxds(oxz,)) * ((0xdf(o*x,)) * f(xo))(since x Ny =y * (y *x))
< f(zo) (using(1.2)).

Since f(z,) € I, therefore f(z,) is an initial element. So,

(1) df(xo) = [ (o).
As dy is also a (r,1)- f-derivation. So,
dy (o)
= ds(ox (0% x,)) = (f(0) xdy(0xxo)) A (dg(0)  flox,)))
= (oxdf(oxx,)) N(ox (f(0) * f(xo))) (since f is an endomorphism)
= (oxds(o%x o)) A (0% (0% f(x,)))
= (oxdf(ox o)) N fzo) (since f(z,) € 1)

f(@o) * (f(2o) * (0% df (0% x,)))
oxds(oxx,) (using (1.2))

A

ox ((f(0) xdy(wo)) A (df(0) * f(x,)))
=ox ((oxdy(xo)) N(o* f(zo))) (since f(o) = o)
=ox ((0x f(20)) * (0% f(z0)) * (0% df(20))) (since x Ny =y (y*x))
= (0% (0% f(2o)) * (0% (0% f(wo)) * (0% df(x0))) (using (1.11))
f(@o) % (0% (0% f(w0)) * (0% dj(20)))
= f(wo) (0 (0% f(20)) (0% (0% d(20))) (using (1.11))
= f(@o) * (f(2o) * (0% (0% dy(20))).

df(xo)) <ox(oxds(x,)) <df(z,) (using (1.2) repeatedly)
= dy¢(z,) = 0% (0xdf(z,)(using(1.4)).
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Since dy is a f-derivation of X, therefore dy is both (I, r)- and (r,[)- f-derivation.
So, from (1) and (2) it follows f(x,) = 0% (o*ds(x,)) = df(z,)(using theorem
4.1). This completes the proof. O

Theorem 4.6. Let dy be a f-derivation of a BCI-algebra X. Then for distinct
T,y € I, df(x) = f(y) < dy(y) = f(2).

Proof. Let z,y € I, and dy(z) = f(y). Since dy is a f-derivation of X, therefore
dy is a (I,r)-f-derivation as well as (r,1)- f-derivation. When dy is a (r,1)-f-
derivation, then

fly) =0 (since dy(z) = f(y) and (1.3)),
di(xxy) =0 (using (1.5)).
Also, when dy is a (I, 7)- f-derivation, then
dy(wxy) = (f(2)) * ds(y)) A (ds(2) * f(y)))
= (ds () * fy)) = ((ds(x) * fy)) *
< f(x) = dy(y).
Thus it follows that
0= dp(wxy) < () * dgly) = f(x) = (F(2) * dg () < S ().
Since by lemma 3.1 for any « € I, f(x) € I, therefore f(z) is an initial
element. So, above inequality implies f(z) * (f(z) * ds(y)) = f(z). Because
of property 1.2, it implies f(z) < ds(y). By theorem 3.1, for any y € I,

ds(y) € I;. So, ds(y) is an initial element. Thus f(x) = d;(y). Likewise we
can prove that ds(y) = f(x) = dy(z) = f(y). This completes the proof. O

(f(x)) * ds(y))
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