

CHARACTERIZATION OF f-DERIVATIONS OF A BCI-ALGEBRA

FARHAT NISAR

ABSTRACT. In this paper we characterize f-derivations of a BCI-algebra as well as its center.

1. Introduction

In [9], K. Iséki gave the concept of BCI-algebras. In [14], L. Tiande and X. Changchang introduced the class of p-semi-simple BCI-algebras. In [12], Y.B. Jun and X.L. Xin introduced the notion of derivation in BCI-algebras, which is defined in a way similar to the notion in ring theory (see [1, 2, 10, 13]), and investigated some properties related to this concept. In [15] J. Zhan and Y.L. Liu introduced the notion of f-derivation in BCI-algebras. In particular, they studied the regular f-derivations in detail and gave a characterization of regular f-derivations and characterized p-semisimple BCI-algebras using the notion of regular f-derivation. In this paper we characterize f-derivations of a BCI-algebra as well as its center.

2. Preliminaries

Definition 2.1. ([9]) Let X be an abstract algebra of type (2, o) with a binary operation * and a constant o. Then X is a BCI-algebra, if the following conditions are satisfied for all $x, y, z \in X$,

$$(1.1) \qquad ((x*y)*(x*z))*(z*y) = 0,$$

$$(1.2) (x * (x * y)) * y = o,$$

$$(1.3) x * x = o,$$

$$(1.4) x * y = o = y * x \Rightarrow x = y,$$

$$(1.5) x * o = o \Rightarrow x = o.$$

Received July 6, 2008, Accepted October 10, 2008. 2000 Mathematics Subject Classification. 03G25, 06F35.

 $\mathit{Key}\ \mathit{words}\ \mathit{and}\ \mathit{phrases}.\ \mathit{BCI-algebras},\ \mathit{initial}\ \mathit{element},\ \mathit{center},\ \mathit{branches},\ \mathit{f}\text{-derivations}.$

In any BCI-algebra X, one can define a partial order " \leq " by putting $x \leq y$ if and only if x * y = o. In a BCI-algebra X, the set $M = \{x \in X : o * x = o\}$ is called the BCK-part of X. If X = M, then X is called a BCK-algebra.

Moreover, the following properties hold in every BCI-algebra ([8,9]): Let $x, y, z \in X$:

$$(1.6) x * o = x,$$

$$(1.7) (x*y)*z = (x*z)*y,$$

$$(1.8) x \le y \Rightarrow x * z \le y * z \text{ and } z * y \le z * x,$$

$$(1.9) (x*y)*(z*y) \le x*z,$$

$$(1.10) x * (x * (x * y)) = x * y,$$

$$(1.11) o*(x*y) = (o*x)*(o*y) [5].$$

Definition 2.2. ([3]) Let X be a BCI-algebra. An element $x_o \in X$ is said to be an initial element of X, if $x \le x_o \Rightarrow x = x_o$.

Definition 2.3. ([3]) Let I_x denote the set of all initial elements of X. We call it the center of X. It is well known that the center I_x of a BCI-algebra X is p-semisimple ([4]).

Definition 2.4. ([3]) Let X be a BCI-algebra with I_x as its center. Let $x_o \in I_x$, then the set $A(x_o) = \{x \in X : x_o \leq x\}$ is known as the branch of X determined by x_o .

Definition 2.5. ([3]) A BCI-algebra X is said to be fully-nonassociative if $o * x \neq x$, for all $x \in X - \{o\}$.

Definition 2.6. ([14]) Let X be a BCI-algebra. If $M = \{o\}$ then X is called a p-semisimple BCI-algebra.

- (1.12) Let X be a BCI-algebra. The following properties are equivalent for all $x, y \in X$:
 - (i) X is p-semi-simple,
 - (ii) o * (o * x) = x,
 - (iii) $x * y = o \Rightarrow x = y$,

for all $x, y, z \in X$ ([6, 14]).

- (1.13) Let X be a BCI-algebra. If $x \leq y$, then x, y are contained in the same branch of X ([3]).
- (1.14) Let X be a BCI-algebra and $A(x_o) \subseteq X$. Then $x, y \in A(x_o) \Rightarrow x * y, y * x \in M$ ([3]).
- (1.15) Let X be a BCI-algebra with I_x as its center. If $x \in A(x_o)$, $y \in A(y_o)$, then $x * y \in A(x_o * y_o)$, for $x_o, y_o \in I_x$ ([7]).
- (1.16) Let X be a BCI-algebra with I_x as its center. Let $x_o, y_o \in I_x$. Then for all $y \in A(y_o)$, $x_o * y = x_o * y_o$ ([7]).

Definition 2.7. ([12]) Let X be a BCI-algebra. By a left-right derivation (briefly, (l,r)-derivation) of X, a self map d of X satisfying the identity $d(x*y) = (d(x)*y) \land (x*d(y))$, for all $x,y \in X$. If d satisfies the identity $d(x*y) = (x*d(y)) \land (d(x)*y)$, for all $x,y \in X$ then we say that d is a right-left derivation (briefly, (r,l)-derivation) of X. Moreover, if d is both (l,r)- and (r,l)-derivation, it is said that d is a derivation of X.

Definition 2.8. ([12]) A self-map d_f of a BCI-algebra X is said to be regular if d(o) = o.

Definition 2.9. ([15]) Let X be a BCI-algebra. By a left-right f-derivation (briefly, (l,r)-derivation) of X, a self map d_f of X satisfying the identity $d_f(x*y) = (d_f(x)*f(y)) \land (f(x)*d_f(y))$, for all $x,y \in X$ is meant, where f is an endomorphism of X. If d_f satisfies the identity $d_f(x*y) = (f(x)*d_f(y)) \land (d_f(x)*f(y))$, for all $x,y \in X$ then it is said that d_f is a right-left f-derivation (briefly, (r,l)-f-derivation) of X. Moreover, if d_f is both (l,r)- and (r,l)-f-derivation, it is said that d_f is an f-derivation of X.

Definition 2.10. ([12]) A self-map of a BCI-algebra X is said to be regular if $d_f(o) = o$. If $d_f(o) \neq o$, we call d_f an irregular f-derivation.

- (1.17) Let d_f be a regular derivation of a BCI-algebra X. Then, for all $x, y \in X$,
 - (i) $d_f(x) \leq f(x)$,
 - (ii) $d_f(x * y) = d_f(x) * f(y)$ ([15]).

Definition 2.11. ([15]) A mapping f of a BCI-algebra X into it self is called an endomorphism of X if f(x*y) = f(x)*f(y). Note that f(o) = o. Especially, f is monic if for any $x, y \in X$, $f(x) = f(y) \Rightarrow x = y$.

Definition 2.12. ([11]) A BCI-algebra X is said to be commutative if and only if $x \le y \Rightarrow y * (y * x) = x$, for all $x, y \in X$.

Theorem 2.9. ([15]) Let d_f be a self map of a BCI-algebra X defined by $d_f(x) = o * (o * f(x)) = f_x$. Then d_f is a (l, r)-f-derivation of X. Moreover, if X is a commutative BCI-algebra then d_f is a (r, l)-f-derivation of X, where f is an endomorphism of X.

Proposition 2.11. ((iii)[15]) Let d_f be a (l,r)-f-derivation of a BCI-algebra X. Then $d_f(x) \in I_x$, for all $x \in I_x$.

Proposition 2.12. ((ii)[15]) Let d_f be a (r,l)-f-derivation of a BCI-algebra X. Then $d_f(x) \in I_x$, for all $x \in G(x) = \{x \in X : o * x = x\}$.

In sequel, we will denote $o * (o * f(x)) = f_x$ and $x \wedge y = y * (y * x)$.

3. Characterization of f-derivations of a BCI-algebra

In this section we characterize f-derivations of BCI-algebras.

Lemma 3.1. Let f be an endomorphism of a BCI-algebra X and I_x be its center. Then for any $x \in I_x$, $f(x) \in I_x$.

Proof. Let f be an endomorphism of a BCI-algebra X and I_x be its center. Since for $x \in I_x$, $o * (o * x) \in I_x$. So,

$$f(x) = f(o * (o * x)) = f(o) * f(o * x) \quad \text{(since } f \text{ is an endomorphism)}$$
$$= o * (f(o) * f(x)) = o * (o * f(x)) \quad \text{(since } f(o) = o).$$

Because of (1.12)-(ii), $f(x) \in I_x$. This completes the proof.

Lemma 3.2. Let X be a BCI-algebra. Then for $x \in X$, o*(o*x) and $o*x \in I_x$.

Proof. Let $x \in X$. By property 1.2, $o * (o * x) \le x$. Assume that $y \le o * (o * x)$ which implies that y * (o * (o * x)) = o. Now,

$$y \le o * (o * x)$$

$$\Rightarrow y * (o * (o * x)) \le y * y = o \quad \text{(using (1.8))}$$

$$\Rightarrow y * (o * (o * x)) = o \quad \text{(using (1.5))}$$

$$\Rightarrow (y * (o * (o * x))) * y = o * y$$

$$\Rightarrow (y * y) * (o * (o * x)) = o * y \quad \text{(using (1.7))}$$

$$\Rightarrow o * (o * (o * x)) = o * y \quad \text{(using (1.3))}$$

$$\Rightarrow o * x = o * y \quad \text{(using (1.10))}$$

$$\Rightarrow o * (o * x) = o * (o * y) \le y$$

$$\Rightarrow (o * (o * x)) * y = o.$$

Because of property 1.4, $y*(o*(o*x)) = o = (o*(o*x))*y \Rightarrow o*(o*x) = y$. So, $y \le o*(o*x) \Rightarrow y = o*(o*x)$. Thus it follows that $o*(o*x) \in I_x$. So there exists some $x_o \in I_x$ such that $o*(o*x) = x_o$, which implies $o*(o*(o*x)) = o*x_o \Rightarrow o*x = o*x_o$ (using (1.10)). Since for $o, x_o \in I_x$, $o*x_o \in I_x$, therefore $o*x \in I_x$. This completes the proof.

Theorem 3.1. Let d_f be a (r,l)-f-derivation of a BCI-algebra X. Then $d_f(x) \in I_x$, for all $x \in I_x$.

Proof. Let $x \in I_x$. Then x = o * (o * x). Since d_f is a (r, l)-f-derivation of a BCI-algebra X, therefore

$$\begin{split} d_f(x) &= d_f(o*(o*x)) = (f(o)*d_f(o*x)) \wedge (d_f(x)*f(o))) \\ &= (d_f(x)*o)*((d_f(x)*o)*(o*d_f(o*x))) \\ &\qquad \qquad (\mathrm{since} f(o) = o \quad \mathrm{and} \quad x \wedge y = y*(y*x)) \\ &\leq o*d_f(o*x) \quad (\mathrm{using}\ (1.2)). \end{split}$$

As d_f is a self map, so for $x \in I_x \subseteq X$, $d_f(x)$ and $d_f(o * x) \in X$. Because of lemma 3.2, it follows that for $d_f(o * x) \in X$, $o * d_f(o * x) \in I_x$. So, $d_f(x) \le o * d_f(o * x) \Rightarrow d_f(x) = o * d_f(o * x)$. Hence for $x \in I_x$, $d_f(x) \in I_x$. This completes the proof.

Lemma 3.3. Let d_f be an f-derivation of a BCI-algebra X. Then $d_f(x) \in I_x$, for all $x \in I_x$.

Proof. It follows directly from theorem 3.1 and part (iii) of proposition 2.11. \Box

Theorem 3.2. Let f be an endomorphism of a BCI-algebra X with center I_x . Then for $x, y \in X$, following identities hold:

- (i) $f(x) * f_x \in M$,
- (ii) $f_x * m = f_x$, for all $m \in M$,
- (iii) $f_x * f_y \in I_x$,
- (iv) $f_x * y = f_x * f_y = f_{x*y}$.

Proof. (i) Let f be an endomorphism of X. Then for $x \in X$, $f(x) \in X$. By property (1.2),

$$(o*(o*f(x)))*f(x) = o \Rightarrow (o*(o*f(x))) \le f(x)$$

$$\Rightarrow f_x \le f(x) \quad (\text{since } o*(o*f(x)) = f_x)$$

$$\Rightarrow f(x)*f(x) \le f(x)*f_x \Rightarrow o \le f(x)*f_x$$

which implies that $f(x) * f_x \in M$. Thus there exists some $m \in M$ such that $f(x) * f_x = m$.

(ii)

$$f_x * m = (o * (o * f(x))) * m = (o * m) * (o * f(x))$$
 (using (1.7))
= $o * (o * f(x)) = f_x$ (since for $m \in M, o * m = o$).

(iii) Using (1.11) repeatedly,

$$f_x * f_y = (o * (o * f(x))) * (o * (o * f(y)))$$

= $o * ((o * f(x)) * (o * f(y)))$
= $o * (o * (f(x) * f(y))).$

Since f is an endomorphism, therefore above equation becomes

(1)
$$f_x * f_y = o * (o * f(x * y)).$$

Because of lemma 3.2, for $f(x*y) \in X$, $o*(o*f(x*y)) \in I_x$. Thus it follows that $f_x*f_y \in I_x$.

(iv)

$$f_x * f(y) = (o * (o * f(x))) * f(y) = (o * f(y)) * (o * f(x)) \quad \text{(using (1.7))}$$

$$= (o * (o * (o * f(y))) * (o * f(x)) \quad \text{(using (1.10))}$$

$$= (o * (o * f(x))) * (o * (o * f(y))$$

$$= f_x * f_y.$$

From $o * (o * f(x)) = f_x$ and equation (1) of (iii) it follows

$$f_x * f_y = f_{x*y}.$$

Thus from equations (2) and (3) it follows that $f_x * f(y) = f_x * f_y = f_{x*y}$. This completes the proof.

Theorem 3.3. Let f be an endomorphism and $A(x_o)$ be any branch of a BCI-algebra X. If for any $x \in A(x_o)$, $f(x) = x_o$, then f is a regular derivation.

Proof. Let f be an endomorphism and $A(x_o)$ be any branch of a BCI-algebra X. According to given condition

(1) for any
$$x \in A(x_0)$$
, $f(x) = x_0$.

For $x \in A(x_o)$, $x_o \le x \Rightarrow x_o * x = o$. By 1.15 for x_o , $x \in A(x_o)$, $x_o * x = o$ and $x * x_o \in M$. So, for some $m \ne o \in M = A(o)$, $x * x_o = m$, otherwise, $x_o * x = o = x * x_o \Rightarrow x = x_o$, a contradiction. Also by 1.16 for $o, x_o \in I_x$ and $m \ne o \in M = A(o)$, $x_o * m = x_o * o = x_o$. Now for distinct $x, y \in X$, we have following two cases:

Case 1: Both x and y belongs to the same branch of X.

Case 2: x and y belongs to different branches of X.

Case 1: Let $x, y \in A(x_o)$. So, $x_o \le x$ and $x_o \le y$. Then by (1.15), $x * y \in M = A(o)$. So using (1),

$$(2) f(x*y) = o.$$

Also

$$(3) x_o \le y \Rightarrow x_o * y = o.$$

Now

$$(f(x) * y) \land (x * f(y))$$

$$= (x_o * y) \land (x * y_o) \quad (using (1))$$

$$= (x * y_o) * ((x * y_o) * (x_o * y)) \quad (since \ x \land y = y * (y * x))$$

$$= (x * y_o) * ((x * (x_o * y)) * y_o) \quad (using (1.7))$$

$$\leq x * (x * (x_o * y)) \leq x_o * y = o \quad (using (1.9), (1.2) \text{ and equation (3)})$$

$$\Rightarrow (f(x) * y) \land (x * f(y)) = o \quad (using (1.5))$$

$$\Rightarrow (f(x) * y) \land (x * f(y)) = o = f(x * y) \quad (using (2)).$$

Thus f is an (l, r)-derivation. Now

$$(x * f(y)) \wedge (f(x) * y) = (x * x_o) \wedge (x_o * y)$$

$$= (x * x_o) \wedge o \quad (using (3))$$

$$= o * (o * (x * x_o))$$

$$= o * (o * m)$$

$$= o \quad (since \ x * x_o = m, o * m = o).$$

$$(x * f(y)) \wedge (f(x) * y) = o = f(x * y). \quad (using (2))$$

So, f is an (r, l)-derivation. Hence it follows f is a derivation.

Case 2: Let $x \in A(x_o)$ and $y \in A(y_o)$. Then by (1.15), $x * y \in A(x_o * y_o)$. So, using (1)

$$(4) f(x*y) = x_o * y_o.$$

As $x_o, y_o \in I_x$ and $y \in A(y_o)$, therefore by (1.16),

$$(5) x_o * y = x_o * y_o.$$

Now,

$$(f(x) * y) \land (x * f(y))$$

$$= (x_o * y) \land (x * y_o) \quad (using (1))$$

$$= (x * y_o) * ((x * y_o) * (x_o * y)) \quad (since \ x \land y = y * (y * x))$$

$$= (x * y_o) * ((x * (x_o * y)) * y_o) \quad (using (1.7))$$

$$\leq x * (x * (x_o * y)) \quad (using (1.9))$$

$$\leq x_o * y = x_o * y_o \quad (using (1.2) \ and (5)).$$

Since for $x_o, y_o \in I_x, x_o * y_o \in I_x$, therefore $x_o * y_o$ is an initial element. Thus it follows that

$$(f(x) * y) \wedge (x * f(y)) = x_o * y_o$$
$$= f(x * y) \quad (using (4)).$$

So, f is an (l, r)-derivation. Also

$$(x * f(y)) \land (f(x) * y)$$

$$= (x * y_o) \land (x_o * y) \quad (using (1))$$

$$= (x_o * y) * ((x_o * y) * (x * y_o))$$

$$= (x_o * y) * ((x_o * (x * y_o)) * y) \quad (using (1.7))$$

$$\leq x_o * (x_o * (x * y_o)) \leq x * y_o \quad (using (1.9) \text{ and } (1.2))$$

$$\Rightarrow (x * f(y)) \land (f(x) * y) = (x * y_o) \land (x_o * y) \leq x * y_o$$

$$\Rightarrow ((x * y_o) \land (x_o * y)) * (x_o * y_o) \leq (x * y_o) * (x_o * y_o) \quad (using (1.8))$$

$$\Rightarrow ((x * y_o) \land (x_o * y)) * (x_o * y_o) \leq x * x_o \quad (using (1.9))$$

$$\Rightarrow ((x * y_o) \land (x_o * y)) * (x_o * y_o) \leq m \quad (since x * x_o = m)$$

$$\Rightarrow ((x * y_o) \land (x_o * y)) * (x_o * y_o)) * m \leq m * m = o \quad (using (1.2) \text{ and } (1.8))$$

$$\Rightarrow ((x * y_o) \land (x_o * y)) * (x_o * y_o)) * m = o \quad (using (1.5))$$

$$\Rightarrow ((x * y_o) \land (x_o * y)) * m) * (x_o * y_o) = o \quad (using (1.7))$$

$$\Rightarrow ((x * y_o) \land (x_o * y)) * m) \leq x_o * y_o$$

$$\Rightarrow ((x_o * y) * ((x_o * y) * (x * y_o))) * m) \leq x_o * y_o \quad (since x \land y = y * (y * x)).$$

Since for $x_o, y_o \in I_x, x_o * y_o \in I_x$, therefore $x_o * y_o$ is an initial element. Thus it follows that

$$((x_o * y) * ((x_o * y) * (x * y_o))) * m) = x_o * y_o$$

$$\Rightarrow x_o * y_o = ((x_o * y) * m) * ((x_o * y) * (x * y_o)) \quad (using (1.7))$$

$$= ((x_o * m) * y) * ((x_o * y) * (x * y_o)) \quad (using (1.7))$$

$$= (x_o * y) * ((x_o * y) * (x * y_o)) \quad (since x_o * m = x_o)$$

$$= (x * y_o) \land (x_o * y) = (x * f(y)) \land (f(x) * y)$$

$$\Rightarrow f(x * y) = (x * f(y)) \land (f(x) * y).$$

So, f is an (r, l)-derivation. Thus it follows that f is a derivation of X. Since f(o) = o, therefore f is a regular f-derivation. This completes the proof. \square

Theorem 3.4. Let f be an endomorphism and d_f be a self map of a BCI-algebra X. If for $x \in X$, $d_f(x) = f(x)$, then d_f is an f-derivation.

Proof. Let f be an endomorphism and d_f be a self map of a BCI-algebra X. Assume that for any $x \in X$,

$$(1) d_f(x) = f(x).$$

Then

$$(2) d_f(y) = f(y).$$

Since for $x, y \in X$, $x * y \in X$, therefore $d_f(x * y) = f(x * y)$. Thus

(3)
$$d_f(x * y) = f(x * y) = f(x) * f(y) = d_f(x) * f(y) (using (1)) = (d_f(x) * f(y)) * o.$$

Now

$$o = f(x * y) * f(x * y)$$

= $(f(x) * f(y)) * (f(x) * f(y))$ (since f is an endomorphism)
= $(d_f(x) * f(y)) * (f(x) * d_f(y))$ (using (1)).

So equation (3) becomes

$$d_f(x * y) = (d_f(x) * f(y)) * (d_f(x) * f(y)) * (f(x) * d_f(y))$$

= $(f(x) * d_f(y)) \wedge (d_f(x) * f(y)) \quad (since x \wedge y = y * (y * x)).$

So, d_f is an (r, l)-f-derivation. Further,

(4)
$$d_f(x * y) = f(x * y) = f(x) * f(y) = f(x) * d_f(y)(using (2))$$
$$= (f(x) * d_f(y)) * o.$$

Now

$$o = f(x * y) * f(x * y) = (f(x) * f(y)) * (f(x) * f(y))$$

= $(f(x) * d_f(y)) * (d_f(x) * f(y))$ (using (1) and (2)).

So equation (4) becomes

$$\begin{aligned} &d_f(x*y) \\ &= (f(x)*d_f(y))*(f(x)*d_f(y))*(d_f(x)*f(y)) \\ &= (d_f(x)*f(y)) \wedge (f(x)*d_f(y)) \quad (since \ x \wedge y = y*(y*x)). \end{aligned}$$

Thus d_f is an (l,r)-f-derivation. Hence d_f is an f-derivation.

Theorem 3.5. Let d_f be a f-derivation of a BCI-algebra of X. If $d_f(m) = o$, for all $m \in M = A(o)$, then $d_f(x) = f(x_o)$, for all $x \in A(x_o)$.

Proof. If $d_f(m) = o$, for all $m \in M = A(o)$, then $d_f(o) = o$. So d_f is a regular derivation of X. Because of (1.17)-(i), for all $x \in A(x_o) \subseteq X$,

$$(1) d_f(x) \le f(x).$$

For any $x \in A(x_o)$, $x_o \le x \Rightarrow x_o * x = o$. So,

(2)
$$o = f(o) = f(x_o * x) = f(x_o) * f(x)$$
 (since f is an endomorphism.)
 $\Rightarrow f(x_o) < f(x)$.

By lemma 3.1, for $x_o \in I_x$, $f(x_o) \in I_x$, so $f(x_o)$ is an initial element. Thus from (2) it follows that $f(x) \in A(f(x_o))$. Because of (1.13), from (1) and (2) it follows that $f(x_o)$, f(x) and $d_f(x)$ belong to the same branch. So

(3)
$$f(x_o) \le d_f(x) \Rightarrow f(x_o) * d_f(x) = o.$$

For $x \in A(x_o)$, $x_o \le x \Rightarrow x_o * x = o$. By (1.14) for x_o , $x \in A(x_o)$, $x_o * x = o$ and $x * x_o \in M$. So, for some $m \ne o \in M = A(o)$, $x * x_o = m$, otherwise, $x_o * x = o = x * x_o \Rightarrow x = x_o$, a contradiction. Now by (1.17)-(ii), for x_o , $x \in A(x_o) \subseteq X$,

(4)
$$d_f(x) * f(x_o) = d_f(x * x_o) = d_f(m) = o \quad (using given condition)$$
$$\Rightarrow d_f(x) \le f(x_o) \Rightarrow d_f(x) * f(x_o) = o.$$

Because of (1.4), from (3) and (4) it follows that $d_f(x) = f(x_o)$. This completes the proof.

Theorem 3.6. Let d_f be a f-derivation of a commutative BCI-algebra X, where f is an endomorphism of X. Then $x \le y \Rightarrow d_f(x) \le d_f(y)$.

Proof. Let d_f be a f-derivation of a commutative BCI-algebra X, where f is an endomorphism of X. Since X is a commutative BCI-algebra, therefore $x \leq y \Rightarrow y*(y*x) = x$. So,

$$\begin{split} d_f(x) &= d_f(y*(y*x)) \\ &= (d_f(y)*f(y*x)) \land (f(y)*d_f(y*x)) \\ &= (f(y)*d_f(y*x))*((f(y)*d_f(y*x))*(d_f(y)*f(y*x))) \\ &\leq d_f(y)*f(y*x) \end{split}$$

 $\Rightarrow d_f(x) \le d_f(y) * (f(y) * f(x))$ (A)(since f is an endomorphism).

Since $x \leq y \Rightarrow x * y = o$, therefore $o = f(o) = f(x * y) = f(x) * f(y) \Rightarrow f(x) \leq f(y)$. By (1.13), f(x) and f(y) belong to the same branch of X and by (1.14), f(x)*f(y) and $f(y)*f(x) \in M$. As f(x)*f(y) = o, so $f(y)*f(x) \neq o$, otherwise because of property (1.4), $f(x)*f(y) = o = f(y)*f(x) \Rightarrow f(x) = f(y)$, a

contradiction. Thus there exists some $m \neq o \in M$ such that f(y) * f(x) = m. Hence inequality (A) becomes

$$\begin{aligned} &d_f(x) \leq d_f(y) * m \\ &\Rightarrow d_f(x) * d_f(y) \leq (d_f(y) * m) * d_f(y) \quad (using \ (1.8)) \\ &\Rightarrow d_f(x) * d_f(y) \leq (d_f(y) * d_f(y)) * m \quad (using \ (1.7)) \\ &\Rightarrow d_f(x) * d_f(y) \leq o * m \quad (using \ (1.3)) \\ &\Rightarrow d_f(x) * d_f(y) \leq o \quad (since m \in M) \\ &\Rightarrow d_f(x) * d_f(y) = o \quad (using \ (1.5)) \end{aligned}$$

which shows that $d_f(x) \leq d_f(y)$. This completes the proof.

Theorem 3.7. Let d_f be a f-derivation of a BCI-algebra X, where f is an endomorphism of X. If for all $x \in A(x_o)$, $y \in A(y_o)$, $f(x) \in A(x_o)$ then $d_f(x) = y_o \Rightarrow d_f(y) \in A(x_o)$.

Proof. Assume that for all $x \in A(x_o)$, $d_f(x) = y_o$. Since d_f is a f-derivation of BCI-algebra X, therefore d_f is a (l, r)-f-derivation. So for all $x \in A(x_o)$, $y \in A(y_o)$,

$$\begin{split} &d_f(x*y) \\ &= (d_f(x)*f(y)) \wedge (f(x)*d_f(y)) \\ &= (f(x)*d_f(y))*((f(x)*d_f(y))*(d_f(x)*f(y))) \ \ (since \ x \wedge y = y*(y*x)) \\ &\leq d_f(x)*f(y) \quad (using \ (1.2)) \\ &\Rightarrow d_f(x*y) \leq y_o*f(y) \quad (since \ d_f(x) = y_o). \end{split}$$

According to given condition $y \in A(y_o), f(y) \in A(y_o)$. So by definition 2.4, $f(y) \in A(y_o) \Rightarrow y_o \leq f(y)$. Now $y_o \leq f(y) \Rightarrow y_o * f(y) = o$. So above inequality becomes

(1)
$$d_f(x*y) \le o \Rightarrow d_f(x*y) = o.$$

As d_f is also a (r, l)-f-derivation. So for all $x \in A(x_o), y \in A(y_o)$,

$$d_f(x * y) = (f(x) * d_f(y)) \wedge (d_f(x) * f(y))$$

$$d_f(x * y) = (d_f(x) * f(y)) * ((d_f(x) * f(y))) * (f(x) * d_f(y)))$$

$$(since \ x \wedge y = y * (y * x))$$

$$\leq f(x) * d_f(y) \quad (using \ (1.2)).$$

Since d_f is both (l, r)- and (r, l)-f-derivation. So from (1) and (2), it follows that

$$o \le f(x) * d_f(y)$$

$$\Rightarrow o * f(x) \le (f(x) * d_f(y)) * f(x) \quad (using (1.8))$$

$$\Rightarrow o * f(x) \leq (f(x) * f(x)) * d_f(y) \quad (using (1.7))$$

$$\Rightarrow o * f(x) \leq o * d_f(y) \quad (using (1.3))$$

$$\Rightarrow o * (o * d_f(y)) \leq o * (o * f(x)) = f(x_o) \quad (using theorem 4.1 - (iii))$$

$$\Rightarrow o * (o * d_f(y)) = f(x_o) \quad (since f(x_o) \in I_x)$$

$$\Rightarrow f(x_o) \leq d_f(y) \quad (using (1.2)).$$

By (1.13) both $d_f(y)$ and $f(x_o)$ belong to the same branch of X. Since $f(x_o) \in A(x_o)$, therefore $d_f(y) \in A(x_o)$. This completes the proof.

Theorem 3.8. Let d_f be a f-derivation of a BCI-algebra X. If for distinct $x, y \in I_x$, $d_f(x) = f(y) \Rightarrow d_f(y) = f(x)$, then d_f is not regular.

Proof. Assume that for distinct $x, y \in I_x$,

(1)
$$d_f(x) = f(y) \Rightarrow d_f(y) = f(x).$$

Since d_f is a f-derivation of X, therefore d_f is a (l, r)-f-derivation as well as (r, l)-f-derivation. When d_f is a (r, l)-f-derivation, then

$$d_f(x * y) = (d_f(x) * f(y)) \land (f(x) * d_f(y))$$

$$= (f(x) * d_f(y)) * ((f(x) * d_f(y)) * (d_f(x) * f(y)))$$

$$\leq d_f(x) * f(y) = f(y) * f(y) = o \quad (using \ d_f(x) = f(y) \ and \ (1.3))$$

$$\Rightarrow d_f(x * y) = o \quad (using (1.5)).$$

Since for $x, y \in I_x$, $x * y \in I_x$ and $x * y \neq o$, otherwise by (1.12)-(ii), $x * y = o \Rightarrow x = y$, a contradiction, therefore by our assumption

$$d_f(x * y) = o = f(o) \Rightarrow d_f(o) = f(x * y).$$

Thus it follows that $d_f(o) \neq o$ as $x * y \neq o$, so d is not regular. This completes the proof.

Note that Lemma 3.3 of this paper generalizes the part (iii) of proposition 2.11[15] and from Lemma 3.2, it follows that $G(X) \subseteq I_x$, thus part (ii) of proposition 2.12[15] becomes a corollary of our Lemma 3.1. Now we generalize the first half of theorem 2.9 and first part of proposition 3.3 of [15] vide theorem 3.9 and theorem 3.10 respectively.

Theorem 3.9. A self map d_f of a BCI-algebra X defined as $d_f(x) = o * (o * f(x)) = f_x$, for all $x \in X$, is an f-derivation of X, where f is an endomorphism of X.

Proof. Let d_f be a self map of a BCI-algebra X, where f is an endomorphism of X, defined as follows:

(1)
$$d_f(x) = o * (o * f(x)) = f_x$$

for all $x \in X$. As for $x, y \in X$, $x*y \in X$, therefore $d_f(x*y) = o*(o*f(x*y)) = f_{x*y}$ which implies that

(2)
$$d_f(x*y) = f_x * f_y \quad (using theorem 3.2, (iv)).$$

Now

$$(f(x) * d_f(y)) \wedge (d_f(x) * f(y))$$

$$= (f(x) * f_y) \wedge (f_x * f(y)) \quad (using equation (1))$$

$$= (f_x * f(y)) * ((f_x * f(y)) * (f(x) * f_y)) \quad (since \ x \wedge y = y * (y * x))$$

$$= (f_x * f(y)) * ((f_x * (f(x) * f_y)) * f(y)) \quad (using (1.7))$$

$$\leq f_x * (f_x * (f(x) * f_y)) \quad (using (1.9))$$

$$\leq f(x) * f_y \quad (using (1.2))$$

$$\Rightarrow (f(x) * d_f(y)) \wedge (d_f(x) * f(y)) = (f(x) * f_y) \wedge (f_x * f(y)) \leq f(x) * fy$$

$$\Rightarrow ((f(x) * f_y) \wedge (f_x * f(y))) * (f_x * f_y)$$

$$\leq (f(x) * f_y) \wedge (f_x * f_y) \quad (using (1.8))$$

$$\Rightarrow \leq f(x) * f_x \quad (using (1.9))$$

$$\Rightarrow (((f(x) * f_y) \wedge (f_x * f(y))) * (f_x * f_y)) * m \leq m * m \quad (using (1.8))$$

$$\Rightarrow (((f(x) * f_y) \wedge (f_x * f(y))) * m) * (f_x * f_y) \leq o \quad (using (1.3))$$

$$\Rightarrow (((f(x) * f_y) \wedge (f_x * f(y))) * m) * (f_x * f_y) = o \quad (using (1.5))$$

$$\Rightarrow (((f(x) * f_y) \wedge (f_x * f(y))) * m \leq (f_x * f_y).$$

Since $f_x * f_y \in I_x$, therefore $f_x * f_y$ is an initial element. Thus it follows that

$$\begin{split} &((f(x)*f_y) \wedge (f_x*f(y)))*m = (f_x*f_y) \\ &\Rightarrow ((f_x*f(y))*((f_x*f(y))*(f(x)*f_y)))*m \\ &= f_x*f_y(since \ x \wedge y = y*(y*x)) \\ &\Rightarrow ((f_x*f(y))*m)*((f_x*f(y))*(f(x)*f_y)) = f_x*f_x \quad (using \ (1.7)) \\ &\Rightarrow ((f_x*m)*f(y))*((f_x*f(y))*(f(x)*f_y)) = f_x*f_y \quad (using \ (1.7)) \\ &\Rightarrow ((f_x*f(y)))*((f_x*f(y))*(f(x)*f_y)) \\ &= f_x*f_y \quad (using \ Theorem \ 3.2, (ii)) \\ &\Rightarrow (f(x)*d_f(y)) \wedge (d_f(x)*f(y) = f_x*f_y = d_f(x*y) \quad (using \ equation \ (2)). \end{split}$$

Thus d_f is an (r, l)-f-derivation.

From first half of theorem 2.9[15], it follows that d_f is a (l,r)-f-derivation of X. Thus it follows d_f is both (l,r)- and (r,l)-f-derivations of X, therefore d_f is a f-derivation of X.

Theorem 3.10. Let X be a BCI-algebra and let d_f be a regular (r,l)-f-derivation of X. Then both f(x) and $d_f(x)$ belongs to the same branch of X.

Proof. Let $x \in X$. Then by property (1.2), $o*(o*x) \le x$. As shown in Lemma 3.2, $o*(o*x) = x_o$, for some $x_o \in I_x$. So for any $x \in X$, $o*(o*x) \le x \Rightarrow x_o \le x$

which implies $x \in A(x_o)$ and $x_o * x = o$. Since d_f is a regular (r, l)-f-derivation of X, therefore

$$o = d_f(o) = d_f(x_o * x) = (f(x_o) * d_f(x)) \land (d_f(x_o) * f(x))$$

$$= (d_f(x_o) * f(x)) * ((d_f(x_o) * f(x)) * ((f(x_o) * d_f(x)))$$

$$(since \ x \land y = y * (y * x))$$

$$\leq f(x_o) * d_f(x) \quad (using \ (1.2))$$

$$\Rightarrow f(x_o) * (f(x_o) * d_f(x))) \leq f(x_o) * o = f(x_o) \quad (using \ (1.8) \ and \ (1.6)).$$

Because of lemma 3.1, for $x_o \in I_x$, $f(x_o) \in I_x$. Thus it follows that $f(x_o)$ is an initial element. So,

$$f(x_o) * (f(x_o) * d_f(x))) \le f(x_o) \Rightarrow f(x_o) * (f(x_o) * d_f(x))) = f(x_o).$$

Now by property (1.2),

(A)
$$f(x_0) = f(x_0) * (f(x_0) * df(x)) \le d_f(x).$$

Also,

(B)
$$o = f(x_o * x) = f(x_o) * f(x) \Rightarrow f(x_o) \le f(x).$$

Because of (1.13), from inequalities (A) and (B), it follows f(x) and $d_f(x)$ belongs to the same branch of X. This completes the proof.

4. Characterization of f- f-derivations of the center of a BCI-algebras

In this section we characterize the role of f-derivations of the center of BCI-algebra.

Lemma 4.1. Let f be an endomorphism of a BCI-algebra X. Then,

- (i) for all $x \in A(x_o)$, $f(x_o)$ and f(x) belong to the same branch of X.
- (ii) for all $x \in A(x_o)$, $o * f(x) \in I_x$.
- (iii) for all $x \in A(x_o)$, $f(x_o) = o * (o * f(x))$.
- (iv) for all $m \in A(o)$, $f(m) \in A(o) = M$.

Proof. (i) Let f be an endomorphism of a BCI-algebra X. Then, for $x \in A(x_o)$, $x_o \le x \Rightarrow x_o * x = o$. So that,

(1)
$$o = f(o) = f(x_o * x) = f(x_o) * f(x) \Rightarrow f(x_o) \le f(x).$$

Because of (1.13), from inequality (1) it follows that $f(x_o)$ and f(x) belong to the same branch of X.

(ii) From the proof of part (i) it follows that for $x \in A(x_o)$, $f(x_o) \leq f(x)$. Because of (1.8) it implies that $o * f(x) \leq o * f(x_o)$. Since for $x_o \in I_x$, $f(x_o) \in I_x \subseteq X$, therefore by lemma 3.2, $o * f(x_o) \in I_x$. Thus it follows that $o * f(x_o)$ is an initial point. So, $o * f(x) = o * f(x_o)$. Hence $o * f(x) \in I_x$.

(iii) From the proof of part (ii) it follows that

$$o * f(x) = o * f(x_o)$$

$$\Rightarrow o * (o * f(x)) = o * (o * f(x_o))$$

$$\Rightarrow o * (o * f(x)) = f(x_o) \quad (since \ f(x_o) \in I_x, \ therefore \ using \ (1.12) - (ii).$$

(iv) From the proof of part (i) it follows that for all $m \in A(o) = M$, $f(o) \le f(m) \Rightarrow o \le f(m) \Rightarrow f(m) \in A(o) = M$. This completes the proof.

Theorem 4.2. Let d_f be an irregular f-derivation of a BCI-algebra X, where f is an endomorphism of X. Then the center I_x of X is not fully non-associative.

Proof. Let d_f be an irregular f-derivation and I_x be the center of a BCI-algebra X. Since d_f is a f-derivation of X, therefore d_f is a (l, r)-f-derivation. So,

$$\begin{split} d_f(o) &= d_f(o*o) = (d_f(o)*f(o)) \land (f(o)*d_f(o)) \\ &= (d_f(o)*o) \land (o*d_f(o)) \quad (using \ f(o) = o) \\ &= d_f(o) \land (o*d_f(o)) \quad (using \ (1.6)) \\ &= (o*d_f(o))*((o*d_f(o))*d_f(o)) \quad (since \ x \land y = y*(y*x)) \\ &\leq o*(o*d_f(o)) \leq d_f(o) \quad (using \ (1.9) \ and \ (1.2)) \\ &\Rightarrow d_f(o) = o*(o*d_f(o)) \quad (1). \end{split}$$

Because of (1.12)-(ii), it implies that $d_f(o) \in I_x$. Since d_f is an irregular f-derivation therefore $d_f(o) \neq o$. Thus there exists some $x_o \neq o \in I_x$ such that

$$(2) d_f(o) = x_o.$$

Since d_f is a f-derivation of X, therefore d_f is a (r, l)-f-derivation. So,

$$d_f(o) = d_f(o * o) = (f(o) * d_f(o)) \land (d_f(o) * g(o)))$$

$$= (o * d_f(o)) \land (d_f(o) * o) \quad (since \ f \ is \ an \ endomorphism)$$

$$= (o * d_f(o)) \land d_f(o)$$

$$= d_f(o) * (d_f(o) * (o * d_f(o))) \le o * d_f(o).$$

By lemma 3.2, for $d_f(o) \in I_x \subseteq X$, $o * d_f(o) \in I_x$. Thus $o * d_f(o)$ is an initial point. Hence,

$$(3) d_f(o) = o * d_f(o).$$

Since d_f is a f-derivation, therefore from equations (1), (2) and (3),

$$x_o = o * x_o \Rightarrow o * x_o = o * (o * x_o).$$

Because of (1.12)-(ii), it implies $x_o = o * x_o$. Hence it follows the center I_x of X is not fully non-associative.

Theorem 4.3. Let d_f be a f-derivation of a BCI-algebra X. If its center I_x is fully non-associative and for all $x \in A(x_o)$, $f(x) \in A(x_o)$ then d_f is regular.

Proof. Contrarily assume that d_f is not regular. So, $d_f(o) \neq o$. By lemma 3.3, $d_f(o) \in I_x$, thus there exists some $x_o \neq o \in I_x$ such that

$$(1) d_f(o) = x_o.$$

Since d_f is a derivation, therefore d_f is a (l,r)-derivation as well as (r,l)-f-derivation. When d_f is a (l,r)-derivation then

$$\begin{split} &d_f(o*x_o) \\ &= (d_f(o)*f(x_o)) \wedge (f(o)*d_f(x_o)) \\ &= (d_f(o)*f(x_o)) \wedge (o*d_f(x_o)) \\ &= (o*d_f(x_o))*((o*d_f(x_o))*(d_f(o)*f(x_o))) \quad (since \ x \wedge y = y*(y*x)) \\ &\leq d_f(o)*f(x_o). \end{split}$$

By lemma 3.3 and 3.1, for o, $x_o \in I_x$, $d_f(o)$ and $f(x_o) \in I_x$. Thus $d_f(o) * f(x_o) \in I_x$. So, Above inequality becomes

(2)
$$d_f(o * x_o) = d_f(o) * f(x_o) \quad (since \ d_f(o) * f(x_o) \in I_x)$$
$$\Rightarrow d_f(o * x_o) = x_o * f(x_o) \quad (using \ (1)).$$

Since $f(x) \in A(x_o)$, therefore by lemma 3.1, $f(x_o) \in A(x_o)$ which implies that

$$x_o \le f(x_o) \Rightarrow x_o = f(x_o) \quad (since \ f(x_o) \in I_x).$$

So, equation (2) implies

 $\leq o * d_f(x_o)(using(1.2))$

(3)
$$d_f(o * x_o) = x_o * x_o = o.$$

Since d_f is also a (r, l)-f-derivation. So for all $x \in A(x_o)$,

$$\begin{split} &d_f(o*x_o) \\ &= (f(o)*d_f(x_o)) \wedge (d_f(o)*f(x_o)) \\ &= (d_f(o)*f(x_o))*((d_f(o)*f(x_o)))*(o*d_f(x_o)))(since \ x \wedge y = y*(y*x)) \end{split}$$

$$(4) \qquad \Rightarrow d_f(o * x_o) = o * d_f(x_o) \quad (since \ o * f(x_o) \in I_x).$$

As d_f is a f-derivation. So from (3) and (4), it follows that

$$o = o * d_f(x_o) \Rightarrow o \le d_f(x_o) \Rightarrow o = d_f(x_o) \quad (since \ d_f(x_o) \in I_x).$$

Since I_x is fully non-associative, therefore there exists some $y_o \neq x_o \in I_x$ such that $o * y_o = x_o$. So,

$$\begin{split} o &= d_f(x_o) = d_f(o * y_o) = (d_f(o) * f(y_o)) \land (f(o) * d_f(y_o)) \\ &= d_f(o * y_o) = (d_f(o) * f(y_o)) \land (o * d_f(y_o)) \\ &= (o * d_f(y_o)) * ((o * df(y_o)) * (d_f(o) * f(y_o))) \quad (since \ x \land y = y * (y * x)) \\ &\leq d_f(o) * f(y_o) \Rightarrow o = d_f(o) * f(y_o) \quad (since d_f(o) * f(y_o) \in I_x) \end{split}$$

$$(5) \qquad \Rightarrow o = x_o * f(y_o) \quad (using (1)).$$

According to given condition $f(y_o) \in A(y_o)$. So, $y_o \le f(y_o)$. Since $f(y_o) \in I_x$. So, $f(y_o)$ is an initial element. Hence $y_o = f(y_o)$. Thus equation (5) becomes

$$o = x_o * y_o \Rightarrow x_o \le y_o \Rightarrow x_o = y_o \quad (using (1.12) - (iii))$$

a contradiction. Thus our assumption is wrong. Hence d_f is regular.

Theorem 4.4. Let d_f be a f-derivation of a BCI-algebra X. If its center I_x is fully non-associative and for all $x \in A(x_o)$, $f(x) \in A(x_o)$ then for all $x \in A(x_o)$, $d_f(x) \in A(x_o)$.

Proof. Let d_f be a f-derivation of a BCI-algebra X. If its center I_x is fully non-associative and for all $x \in A(x_o)$, $f(x) \in A(x_o)$ then by theorem 3.2, d_f is regular, so $d_f(o) = o$. For $x \in A(x_o)$, $x_o \le x \Rightarrow x_o * x = o$. Since d_f is a regular f-derivation of X, therefore d_f is a (l, r)-f-derivation. So,

$$\begin{split} o &= d_f(o) = d_f(x_o * x) = (d_f((x_o)) * f(x)) \land (f((x_o)) * d_f(x)) \\ &= (f((x_o)) * d_f(x)) * ((f((x_o)) * d_f(x)) * (d_f((x_o)) * f(x))) \\ &\qquad \qquad (since \ x \land y = y * (y * x)) \\ &\leq d_f((x_o)) * f(x) \quad (using(1.2)) \\ &\Rightarrow o * d_f(x_o) \leq (d_f(x_o) * f(x)) * d_f(x_o) \quad (using \ (1.8)) \\ &\Rightarrow o * d_f(x_o) \leq (d_f(x_o) * d_f(x_o)) * f(x) \quad (using(1.7)) \\ &\Rightarrow o * d_f(x_o) \leq o * f(x) \\ &\Rightarrow o * (o * f(x))) \leq o * (o * d_f(x_o)) \\ &\Rightarrow o * (o * f(x))) \leq o * (o * d_f(x_o) \leq d_f(x_o) \quad (using \ (1.2)) \\ &\Rightarrow o * (o * f(x))) = d_f(x_o) \quad (since \ d_f(x_o) \in I_x) \\ &\Rightarrow d_f(x_o) = o * (o * f(x)) \leq f(x) \quad (using(1.2)) \end{split}$$

By (1.13) both $d_f(x_o)$ and f(x) belong to the same branch of X. Since $f(x) \in A(x_o)$, therefore $d_f(x_o) \in A(x_o)$. Since d_f is also a (r, l)-f-derivation. Therefore

$$o = d_{f}(o) = d_{f}(xo * x) = (f(x_{o}) * d_{f}(x)) \land (d_{f}(x_{o}) * f(x))$$

$$= (d_{f}(x_{o}) * f(x)) * ((d_{f}(x_{o}) * f(x)) * (f(x_{o}) * d_{f}(x)))$$

$$(since \ x \land y = y * (y * x))$$

$$\leq f(x_{o}) * d_{f}(x) \quad (2)(using \ (1.2))$$

$$\Rightarrow o * f(x_{o}) \leq (f(x_{o}) * d_{f}(x)) * f(x_{o}) \quad (using \ (1.8))$$

$$\Rightarrow o * f(x_{o}) \leq (f(x_{o}) * f(x_{o})) * d_{f}(x) \quad (using \ (1.7))$$

$$\Rightarrow o * f(x_{o}) \leq o * d_{f}(x) \Rightarrow o * (o * d_{f}(x)) \leq o * (o * f(x_{o})) \quad (using \ (1.8))$$

$$\Rightarrow o * (o * d_{f}(x)) \leq f(x_{o})$$

$$\Rightarrow o * (o * d_{f}(x)) = f(x_{o})$$

$$\Rightarrow f(x_{o}) \leq d_{f}(x) \quad (using \ lemma \ 3.1 \ and \ (1.2)).$$

By (1.13) both $d_f(x)$ and $f(x_o)$ belong to the same branch of X. Since $f(x_o) \in A(x_o)$, therefore $d_f(x) \in A(x_o)$. This completes the proof.

Theorem 4.5. Let d_f be a regular f-derivation and f be an endomorphism of a BCI-algebra X with center I_x . Then for $x_o \in I_x$, $d_f(x_o) = f(x_o)$.

Proof. Let d_f be a regular f-derivation and f be an endomorphism of a BCI-algebra X with center I_x . Since d_f is a regular f-derivation of X, therefore $d_f(o) = o$. As d_f is a f-derivation, so d_f is a (l,r)-f-derivation. Also for $x_o \in I_x$, $o * (o * x_o)) = x_o$, so

$$\begin{split} d_f(x_o) &= d_f(o*(o*x_o)) = (d_f(o)*f(o*x_o)) \land (f(o)*d_f(o*x_o)) \\ &= (o*f(o*x_o)) \land (o*d_f(o*x_o))) (sinced_f(o) = o = f(o)) \\ &= (o*(f(o)*f(x_o)) \land (o*d_f(o*x_o))) \\ &= (o*(o*f(x_o)) \land (o*d_f(o*x_o))) \\ &= f(x_o) \land (o*d_f(o*x_o))) \quad (using \ lemma \ 3.1, (iii)) \\ &= (o*d_f(o*x_o)) * ((o*d_f(o*x_o)) * f(x_o)) (since \ x \land y = y * (y * x)) \\ &\leq f(x_o) \quad (using(1.2)). \end{split}$$

Since $f(x_o) \in I_x$, therefore $f(x_o)$ is an initial element. So,

$$(1) d_f(x_o) = f(x_o).$$

As d_f is also a (r, l)-f-derivation. So,

$$\begin{aligned} &d_f(x_o) \\ &= d_f(o*(o*x_o)) = (f(o)*d_f(o*x_o)) \land (d_f(o)*f(o*x_o))) \\ &= (o*d_f(o*x_o)) \land (o*(f(o)*f(x_o))) \quad (since \ f \ is \ an \ endomorphism) \\ &= (o*d_f(o*x_o)) \land (o*(o*f(x_o))) \\ &= (o*d_f(o*x_o)) \land f(x_o) \quad (since \ f(x_o) \in I_x) \\ &= f(x_o) * (f(x_o) * (o*d_f(o*x_o))) \\ &\leq o*d_f(o*x_o) \quad (using \ (1.2)) \\ &= o*((f(o)*d_f(x_o)) \land (d_f(o)*f(x_o))) \\ &= o*((o*d_f(x_o)) \land (o*f(x_o))) \quad (since \ f(o) = o) \\ &= o*((o*f(x_o)) * ((o*f(x_o)) * (o*d_f(x_o))) \quad (since \ x \land y = y * (y * x)) \\ &= (o*(o*f(x_o)) * (o*(o*f(x_o)) * (o*d_f(x_o))) \quad (using \ (1.11)) \\ &= f(x_o) * (o*(o*f(x_o)) * (o*(o*d_f(x_o))) \quad (using \ (1.11)) \\ &= f(x_o) * (f(x_o) * (o*(o*d_f(x_o))). \end{aligned}$$

(2)
$$\begin{aligned} d_f(x_o)) &\leq o*(o*d_f(x_o)) \leq d_f(x_o) \quad (using \ (1.2) \ repeatedly) \\ &\Rightarrow d_f(x_o) = o*(o*d_f(x_o)(using(1.4)). \end{aligned}$$

Since d_f is a f-derivation of X, therefore d_f is both (l, r)- and (r, l)-f-derivation. So, from (1) and (2) it follows $f(x_o) = o * (o * d_f(x_o)) = d_f(x_o)$ (using theorem 4.1). This completes the proof.

Theorem 4.6. Let d_f be a f-derivation of a BCI-algebra X. Then for distinct $x, y \in I_x$, $d_f(x) = f(y) \iff d_f(y) = f(x)$.

Proof. Let $x, y \in I_x$ and $d_f(x) = f(y)$. Since d_f is a f-derivation of X, therefore d_f is a (l, r)-f-derivation as well as (r, l)-f-derivation. When d_f is a (r, l)-f-derivation, then

$$d_f(x * y) = (d_f(x) * f(y)) \land (f(x) * d_f(y))$$

$$= (f(x) * d_f(y)) * ((f(x) * d_f(y)) * (d_f(x) * f(y)))$$

$$\leq d_f(x) * f(y)$$

$$= f(y) * f(y) = o \quad (since \ d_f(x) = f(y) \ and \ (1.3)),$$

$$d_f(x * y) = o \quad (using \ (1.5)).$$

Also, when d_f is a (l,r)-f-derivation, then

$$d_f(x * y) = (f(x)) * d_f(y)) \wedge (d_f(x) * f(y))$$

$$= (d_f(x) * f(y)) * ((d_f(x) * f(y)) * (f(x)) * d_f(y))$$

$$\leq f(x) * d_f(y).$$

Thus it follows that

$$o = d_f(x * y) \le f(x) * d_f(y) \Rightarrow f(x) * (f(x) * d_f(y)) \le f(x).$$

Since by lemma 3.1 for any $x \in I_x$, $f(x) \in I_x$, therefore f(x) is an initial element. So, above inequality implies $f(x) * (f(x) * d_f(y)) = f(x)$. Because of property 1.2, it implies $f(x) \leq d_f(y)$. By theorem 3.1, for any $y \in I_x$, $d_f(y) \in I_x$. So, $d_f(y)$ is an initial element. Thus $f(x) = d_f(y)$. Likewise we can prove that $d_f(y) = f(x) \Rightarrow d_f(x) = f(y)$. This completes the proof. \square

References

- [1] H. E. Bell and L. C. Kappe, Rings in which derivations satisfy certain algebraic Conditions, Acta Math. Hunger, 53(3-4),(1989), 339–346).
- [2] H. E. Bell and G. Mason, On derivation in near rings and near fields, North Holland, Math. Studies 137, (1987), 31–35.
- [3] S. A. Bhatti, M. A. Chaudhry and B. Ahmad, On classification of BCI-algebras, Math Japonica 34, (1989), 865–876.
- [4] S. A. Bhatti and M. A. Chaudhry, *Ideals in BCI algebras*, INT. J. MATH. EDUC. SCI. TECHNOL. Vol. 21, No. 4, (1990), 637–643.
- [5] Changchang Xi, On a class of BCI-algebras, Math Japonica 35, No.1, (1990), 13–17.
- [6] M. Daoje, BCI-algebras and abelian groups, Math Japonica, 32, No. 5, (1987), 693-696.
- [7] Farhat Nisar and S. A. Bhatti, A note on BCI-algebras of order 5, Punjab University J. of Math., Vol.38, (2006), 15–37.
- [8] K. Iséki and S. Tanaka, An introduction to the theory of BCK- algebras, Math. Japonica, 23, (1978), 1–26.
- [9] K. Iséki, On BCI-algebras, Math. Seminar notes, 8, (1980), 125-130.

- [10] K. Kaya, Prime rings with α -derivation Haceettepe, Bull. Master. Sci. Eng. 16-17, (1987-1988).
- [11] J. Meng and X. L. Xin, Commutative BCI-algebras, Math. Japonica 37, No 3, (1992), 33–43.
- [12] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Information Sciences 159, (2004), 167–176.
- $[13] \ \ \text{E. Posner}, \ \textit{Derivations in prime rings}, \ \text{Proc. An. Math. Japonica}, \ \textbf{30}, \ (1985), \ 511-517.$
- [14] L. Tiande and X. Changchang, p-radical in BCI-algebras, Math. Japonica, **30**, (1985), 511–517.
- [15] J. Zhan and Y. L. Liu, On f-derivations of BCI-algebras, IJMMS, 2005:11(2005), 1673–1684.

Department of Mathematics

QUEEN MARY COLLEGE

Lahore, Pakistan

E-mail address: fhtnr2003@yahoo.com