

A STUDY ON SUBSTRUCTURES OF R-GROUPS

Yong Uk Cho

ABSTRACT. Throughout this paper, we denote that R is a near-ring and G an R-group. We initiate a study of R-substructures of G, monogenic R-groups, faithful R-groups and faithful D.G. representations of nearrings. Next, we investigate some properties of monogenic R-groups, faithful monogenic R-groups and a generalization of annihilator concepts in R-groups.

1. Introduction

A near-ring R is an algebraic system $(R, +, \cdot)$ with two binary operations + and \cdot such that (R, +) is a group (not necessarily abelian) with neutral element $0, (R, \cdot)$ is a semigroup and (a+b)c=ac+bc for all a,b,c in R. If R has a unity 1, then R is called unitary. A near-ring R with the extra axiom a0=0 for all $a\in R$ is said to be zero symmetric. An element d in R is called distributive if d(a+b)=da+db for all a and b in R.

A (two-sided) ideal of R is a subset I of R such that (i) (I, +) is a normal subgroup of (R, +), (ii) $a(I+b)-ab \subset I$ for all $a, b \in R$, (iii) $(I+a)b-ab \subset I$ for all $a, b \in R$, equivalently, $IR \subset I$. If I satisfies (i) and (ii) then it is called a $left\ ideal$ of R. If I satisfies (i) and (iii) then it is called a $right\ ideal$ of R.

On the other hand, a (two-sided) R-subgroup of R is a subset H of R such that (i) (H, +) is a subgroup of (R, +), (ii) $RH \subset H$ and (iii) $HR \subset H$. If H satisfies (i) and (ii) then it is called a left R-subgroup of R. If H satisfies (i) and (iii) then it is called a right R-subgroup of R. In case, (H, +) is normal in above, we say that normal R-subgroup, normal left R-subgroup and normal right R-subgroup instead of R-subgroup, left R-subgroup and right R-subgroup, respectively. Note that normal right R-subgroups of R are the same as right ideals of R.

Also, a subset H of R together with (i) $RH \subset H$ and (ii) $HR \subset H$ is called an R-subset of R. If this H satisfies (i) then it is called a *left R-subset* of R, and H satisfies (ii) then it is called a *right R-subset* of R.

Received October 25, 2008; Revised April 23, 2009; Accepted May 9, 2009. 2000 Mathematics Subject Classification. 16Y30.

 $Key\ words\ and\ phrases.\ R$ -groups, monogenic R-group, faithful R-group, D. G. representation and annihilator.

We will use the following notations: Given a near-ring R,

$$R_0 = \{ a \in R \mid a0 = 0 \}$$

which is called the zero symmetric part of R,

$$R_c = \{ a \in R \mid a0 = a \}$$

which is called the *constant part* of R.

Obviously, we see that R_0 and R_c are subnear-rings of R. Clearly, near-ring R is zero symmetric, in case $R = R_0$ also, in case $R = R_c$, R is called a *constant* near-ring. From the Pierce decomposition theorem, we obtain that

$$R = R_0 \oplus R_c$$

as additive groups. So every element $a \in R$ has a unique representation of the form a = b + c, where $b \in R_0$ and $c \in R_c$.

Let (G, +) be a group (not necessarily abelian). In the set

$$M(G) := \{ f \mid f : G \longrightarrow G \}$$

of all the self maps of G, if we define the sum f+g of any two mappings f,g in M(G) by the rule (f+g)x=fx+gx for all $x\in G$ and the product $f\cdot g$ by the rule $(f\cdot g)x=f(gx)$ for all $x\in G$, here, for convenience we write the image of f at a variable x, fx instead of f(x), then $(M(G),+,\cdot)$ becomes a near-ring. It is called the self map near-ring on the group G. Also, if we define the set

$$M_0(G) := \{ f \in M(G) \mid f0 = 0 \},\$$

then $(M_0(G), +, \cdot)$ is a zero symmetric near-ring.

Let R and S be two near-rings. Then a mapping θ from R to S is called a near-ring homomorphism if (i) $\theta(a+b) = \theta a + \theta b$, (ii) $\theta(ab) = \theta a \theta b$. We can replace homomorphism by momomorphism, epimorphism, isomorphism, endomorphism and automorphism, if these terms have their usual meanings as for rings ([1]).

Let R be any near-ring and G an additive group with an identity o. Then G is called an R-group if there exists a near-ring homomorphism

$$\theta: (R, +, \cdot) \longrightarrow (M(G), +, \cdot).$$

Such a homomorphism θ is called a representation of R on G, we write that rx (left scalar multiplication by R) for $(\theta r)x$ for all $r \in R$ and $x \in G$. If R is unitary and $\theta 1 = 1_G$, then R-group G is called unitary. That is, an R-group is an additive group G satisfying (i) (a + b)x = ax + bx, (ii) (ab)x = a(bx) and (iii) 1x = x (if R has a unity 1), for all $a, b \in R$ and $x \in G$.

Evidently, every near-ring R can be given the structure of an R-group (unitary if R is unitary) by left multiplication by R. Moreover, clearly, every group G has an M(G)-group structure, from the definition of M(G) on G given by applying the $f \in M(G)$ to the $x \in G$ as a scalar multiplication fx.

A representation θ of R on G is called faithful if $\ker \theta = \{0\}$, that is, rx = o implies that r = 0. In this case, also we say that G is a faithful R-group or R acts faithfully on G.

For an R-group G, a non-empty subset X of G such that $RX \subset X$ is called an R-subset of G, a subgroup T of G such that $RT \subset T$ is called an R-subgroup of G, a normal subgroup N of G such that $RN \subset N$ is called a normal R-subgroup of G and an R-ideal of G is a normal subgroup N of G such that

$$a(N+x) - ax \subset N$$

for all $x \in G$, $a \in R$. Also, note that every R-ideal of R is a left ideal of R, but normal R-subgroups of R are not equivalent to R-ideals of R.

Let R be a near-ring and let G be an R-group. If there exists x in G such that G = Rx, that is,

$$G = \{ rx \mid r \in R \},\$$

then G is called a monogenic R-group and the element x is called a generator of G, more specially, if G is monogenic and for each $x \in G$, Rx = o or Rx = G, then G is called a strongly monogenic R-group.

For the remainder concepts and results on near-rings, we refer to [6] and [7].

2. Some properties of faithful monogenic R-Groups

A near-ring R is called distributively generated (briefly, d.g.) by S if

$$(R, +) = gp < S >$$

where S is a semigroup of distributive elements in R (the d.g. concept is motivated by the set of all distributive elements of R which is multiplicatively closed), and gp < S > is an additive group generated by S, we denote it by (R, S). On the other hand, the set of all distributive elements of M(G) are the semigroup $\operatorname{End}(G)$ of all endomorphisms on the group G under composition. We denote that E(G) is the d.g. near-ring generated by $\operatorname{End}(G)$. It is said to be that E(G) is the endomorphism near-ring of the group G.

Let (R, S) and (T, U) be d.g. near-rings. Then a near-ring homomorphism

$$\theta: (R,S) \longrightarrow (T,U)$$

is called a d.g. near-ring homomorphism if $\theta S \subseteq U$. Note that a semigroup homomorphism $\theta: S \longrightarrow U$ is a d.g. near-ring homomorphism if it is a group homomorphism from (R, +) to (T, +) (C.G. Lyons and J.D.P. Meldrum [3], [4]).

Let (R, S) be a d.g. near-ring. Then an additive group G is called a d.g. (R, S)-group if there exists a d.g. near-ring homomorphism

$$\theta: (R, S) \longrightarrow (E(G), \operatorname{End}(G))$$

such that $\theta S \subseteq \text{End}(G)$.

If we write rx instead of $(\theta r)x$ for all $x \in G$ and $r \in R$, then a d.g. (R, S)-group is an additive group G satisfying the following conditions:

$$(r+s)x = rx + sx,$$
$$(rs)x = r(sx),$$

for all $x \in G$ and all $r, s \in R$,

$$s(x+y) = sx + sy,$$

for all $x, y \in G$ and all $s \in S$.

Such a homomorphism θ is called a d.g. representation of (R, S). This d.g. representation is said to be faithful if $\ker \theta = \{0\}$. In this case, G is called a faithful d.g. (R, S)-group.

Lemma 2.1. Every distributive near-ring R with $R^2 = R$ is a ring.

Proof. It is sufficient to show that (R, +) is abelian. Let $x, y \in R$. Then there exist $a, b, c, d \in R$ such that x = ab, y = cd. If we calculate (c + a)(b + d) by two distributive laws, we have that (c + a)b + (c + a)d = c(b + d) + a(b + d), that is,

$$cb + ab + cd + ad = cb + cd + ab + ad$$

From this equation, we see x + y = y + x. Hence (R, +) is abelian. \Box

Proposition 2.2. If R is a distributive near-ring with unity 1, then R is a ring. Furthermore, if R is a distributive near-ring with unity 1, then every d.g. (R, R)-group is a unitary R-module.

Proof. The first statement is clear by Lemma 2.1, because of $R^2 = R$.

Let G be a d.g. (R,R)-group. Since G is unitary, x(1+1)=x+x, for all $x \in G$. Thus we see

$$x + y + x + y = (x + y)(1 + 1) = x(1 + 1) + y(1 + 1) = x + x + y + y$$

for all $x, y \in G$. This implies that (G, +) is abelian. Since R = S, the set of all distributive elements, r(x + y) = rx + ry, for all $x, y \in G$ and all $r \in R$. Hence G becomes a unitary R-module.

Obviously, we get the following statement.

Proposition 2.3. Let (R, S) be a d.g. near-ring. Then all R-subgroups and all R-homomorphic images of a d.g. (R, S)-group are also d.g. (R, S)-groups.

Now, we consider the following special substructures of R and G.

Let G be an R-group and X and Y be non-empty subsets of G. We can define the following.

$$(X:Y) := \{ a \in R \mid aX \subset Y \}.$$

We abbreviate that for $x \in G$

$$(\{x\}:Y) =: (x:Y).$$

Similarly for (Y:x).

(X:o) is called the *annihilator* of X, denoted it by Ann(X). We note that G is a faithful R-group if $(G:o) = \{0\}$, that is, $Ann(G) = \{0\}$.

In the above notation, note that if Y is a subgroup (normal subgroup, R-subgroup, ideal) of G, then so is (X : Y) in R as an R-group. Moreover, we have the following simple statements.

Proposition 2.4. Let G be an R-group and K_1 and K_2 non-empty subsets of G. Then we have the following conditions:

- (1) If K_2 is a normal R-subgroup of G, then $(K_1 : K_2)$ is a normal left R-subgroup of R.
- (2) If K_1 is an R-subset of G and K_2 is an R-subgroup of G, then $(K_1 : K_2)$ is a two-sided R-subgroup of R.
- (3) If K_1 is an R-subset of G and K_2 is an R-ideal of G, then $(K_1 : K_2)$ is a two-sided ideal of R.

Proof. (1) and (2) are easily proved by simple calculation.

Now, we prove only (3): Using the condition (1), $(K_1:K_2)$ is a normal subgroup of R. Let $a \in (K_1:K_2)$ and $r \in R$. Then

$$(ar)K_1 = a(rK_1) \subset aK_1 \subset K_2,$$

because K_1 is an R-subset of G, so that $ar \in (K_1 : K_2)$. Whence $(K_1 : K_2)$ is a right ideal of R.

Next, let $r_1, r_2 \in R$ and $a \in (K_1 : K_2)$. Then

$${r_1(a+r_2)-r_1r_2}k = r_1(ak+r_2k)-r_1r_2k \in K_2$$

for all $k \in K_1$, since $aK_1 \subset K_2$ and K_2 is an R-ideal of G. Thus $(K_1 : K_2)$ is a left ideal of R. Therefore $(K_1 : K_2)$ is a two-sided ideal of R.

Corollary 2.5. Let R be a near-ring and G an R-group.

- (1) ([6]) For any $x \in G$, (x : o) is a left ideal of R.
- (2) ([6]) For any R-subgroup K of G, (K:o) is a two-sided ideal of R.
- (3) For any R-subset K of G, (K:o) is a two-sided ideal of R.
- (4) For any subset K of G, $(K:o) = \bigcap_{x \in K} (x:o)$.

Lemma 2.6. ([7]) (Homomorphism theorems)

- (1) Let I be a two-sided ideal of a near-ring R. Then the canonical map $\pi: R \to R/I$ is a near-ring epimorphism. So R/I is a homomorphic image of R, and $\ker \pi = I$.
- (2) Let map $\phi: R \to S$ be a near-ring epimorphism. Then $\ker \phi$ is a two-sided ideal of R and $R/\ker \phi \cong S$.

Theorem 2.7. Let R be a near-ring and G an R-group. Then we have the following conditions:

(1) Ann(G) is a two-sided ideal of R. Moreover G is a faithful R/Ann(G)-group.

(2) For any $x \in G$, we get $Rx \cong R/(x:o)$ as R-groups.

Proof. (1) By Corollary 2.5 and Proposition 2.4, $\operatorname{Ann}(G) = (G:o)$ is a two-sided ideal of R.

We now make G an $R/\operatorname{Ann}(G)$ -group by defining, for all $r \in R$ and $r + \operatorname{Ann}(G) \in R/\operatorname{Ann}(G)$, the action $(r + \operatorname{Ann}(G))x = rx$. If $r + \operatorname{Ann}(G) = r' + \operatorname{Ann}(G)$, then $-r' + r \in \operatorname{Ann}(G)$ hence (-r' + r)x = o for all x in G, that is to say, rx = r'x. This tells us that

$$(r + \operatorname{Ann}(G))x = rx = r'x = (r' + \operatorname{Ann}(G))x;$$

thus the action of $R/\operatorname{Ann}(G)$ on G has been shown to be well defined.

The verification of the structure of an $R/\operatorname{Ann}(G)$ -group is a routine triviality. Finally, to see that G is a faithful $R/\operatorname{Ann}(G)$ -group, we note that if $(r+\operatorname{Ann}(G))x=0$ for all $x\in G$, then by the definition of $R/\operatorname{Ann}(G)$ -group structure, we have rx=0. Hence $r\in\operatorname{Ann}(G)$. This says that only the zero element of $R/\operatorname{Ann}(G)$ annihilates all of G. Thus G is a faithful $R/\operatorname{Ann}(G)$ -group.

(2) For any $x \in G$, clearly Rx is an R-subgroup of G. The map $\phi: R \longrightarrow Rx$ defined by $\phi(r) = rx$ is an R-epimorphism, so that from Lemma 2.6, since the kernel of ϕ is (x:o), we deduce that

$$Rx \cong R/(x:o)$$

as R-groups.

Corollary 2.8. Let G be a monogenic R-group with x as a generator. Then we have the following isomorphic relation.

$$G \cong R/(x:o)$$
.

Theorem 2.9. If R is a near-ring and G an R-group, then $R/\operatorname{Ann}(G)$ is embedded in a near-ring M(G).

Proof. Let $a \in R$. We define $\tau_a : G \longrightarrow G$ by $\tau_a x = ax$ for each $x \in G$. Then τ_a is in M(G). Consider the mapping $\phi : R \longrightarrow M(G)$ defined by $\phi(a) = \tau_a$. Then obviously, we see that from the definition of τ_a

$$\phi(a+b) = \phi(a) + \phi(b)$$
 and $\phi(ab) = \phi(a)\phi(b)$,

that is, ϕ is a near-ring homomorphism from R to M(G).

Next, we must show that $\ker \phi = \operatorname{Ann}(G)$: Indeed, if $a \in \ker \phi$, then $\tau_a = O$, which implies that $aG = \tau_a G = o$, that is, $a \in \operatorname{Ann}(G)$. On the other hand, if $a \in \operatorname{Ann}(G)$, then by the definition of $\operatorname{Ann}(G)$, aG = o hence $O = \tau_a = \phi(a)$, this implies that $a \in \ker \phi$. Therefore from Lemma 2.6 on R-groups, the image of R is a near-ring isomorphic to $R/\operatorname{Ann}(G)$. Consequently, $R/\operatorname{Ann}(G)$ is isomorphic to a subnear-ring of M(G).

From Theorem 2.9, we obtain the important statement of the fact that if G is a faithful R-group, then R is embedded in M(G), as in ring theory.

Corollary 2.10. If (R, S) is a d.g. near-ring, then every monogenic R-group is a d.g. (R, S)-group.

Proof. Let G be a monogenic R-group with x as a generator. Then the map $\phi: r \mapsto rx$ is an R-epimorphism from R to G as R-groups. We see that by the Corollary 2.8, $G \cong R/\operatorname{Ann}(x)$, where $\operatorname{Ann}(x) = (x:o) = \ker \phi$. From Proposition 2.3, we see that G is a d.g. (R,S)-group.

References

- [1] F. W. Anderson and K. R. Fuller, *Rings and categories of modules*, Springer-Verlag, New York, Heidelberg, Berlin, 1974.
- [2] G. Betsch, Primitive near-rings, Math. Z., 130 (1973), 351–361.
- [3] C. G. Lyons and J. D. P. Meldrum, Characterizing series for faithful d.g. near-rings, Proc. Amer. Math. Soc., 72 (1978), 221–227.
- [4] S. J. Mahmood and J. D. P. Meldrum, d.g. near-rings on the infinite dihedral groups, Near-rings and Near-fields, Elsevier Science Publishers B. V.(North-Holland) (1987), 151, 166
- [5] J. D. P. Meldrum, Upper faithful d.g. near-rings, Proc. Edinburgh Math. Soc., 26 (1983), 361–370.
- [6] J. D. P, Meldrum, Near-rings and their links with groups, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1985.
- [7] G. Pilz, Near-rings, North Holland Publishing Company, Amsterdam, New York, Oxford, 1983.

DEPARTMENT OF MATHEMATICS
COLLEGE OF EDUCATION
SILLA UNIVERSITY
PUSAN 617-736, KOREA

E-mail address: yuchosilla.ac.kr