Spectroscopic Characteristics of Sapphire from Madagascar Diffused with Beryllium

베릴륨 확산 처리 된 마다가스카르산 사파이어의 분광특성분석

  • Jung, Soon-Hee (Department of Materials & Chemical Engineering, Hanyang University) ;
  • Ahn, Yong-Kil (Department of Materials & Chemical Engineering, Hanyang University) ;
  • Seo, Jin-Gyo (Division of Materials Science & Engineering, Hanyang University) ;
  • Park, Jong-Wan (Division of Materials Science & Engineering, Hanyang University)
  • 정순희 (한양대학교 공학대학원 보석학과) ;
  • 안용길 (한양대학교 공학대학원 보석학과) ;
  • 서진교 (한양대학교 공과대학 신소재공학과) ;
  • 박종완 (한양대학교 공과대학 신소재공학과)
  • Published : 2009.06.30

Abstract

The spectroscopic characteristics of the diffusion of beryllium into sapphire are investigated by UV-Vis and FTIR spectroscopy. The $Be^{2+}$ diffused samples are observed in an immersion filled with methylene iodide. The blue colors were fainteddue tochanges of iron's electrovalence ($Fe^{2+}$${\rightarrow}$$Fe^{3+}$) after heat treatment in an oxidation atmosphere and the pink color appeared due to $Cr^{3+}$ in case of violet sapphire. The blue sapphire containing light brown showed yellow orange color due to reaction of beryllium with trace elements during the beryllium diffusion. From analysis of immersion filled with methylene iodide, we could demonstrate to show yellow orange with concentrated color in the rim of samples. Also, there were some changes to the pre-existed inclusions.

마다가스카르산 사파이어를 수평 알루미나 튜브의 전기로에서 대기중의 산화분위기 하에 $1650^{\circ}C$, 50시간의 조건으로 $Be^{2+}$의 확산 처리를 하였다. 자외선-가시광선 분광분석 결과는 각 시료 마다 차이는 있으나 전체적으로 $Fe^{2+}$에서 $Fe^{3+}$로 산화의 원인으로 청색이 옅어졌고 청자색 사파이어는 $Cr^{3+}$에 의한 분홍색이 나타났다. $Be^{2+}$의 확산 처리로 부분적인 갈색이 나타난 청색 사파이어에서는 진한 주황색 부분이 나타났고, 옥화메틸렌에 의한 침적실험 관찰 결과로 시료들의 가장자리에 주황색의 집중현상이 나타났음을 확인하였다. 또한 기존에 있던 내포물도 변화가 나타났다. 그러나 확산 처리 온도의 한계로 더 많은 양의 $Be^{2+}$의 확산이 이루어 지지는 못했다.

Keywords

References

  1. Andriamarofahatra J., de la Boisse, H., and Nicollet, C. (1990) Datation U-Pb sur monazites et zircons du demier espisode tectono-metamorphique granulitique majeur dans le Sud-Est de Madagascar. C. R. Acad. Sci., Paris, 310, 1643-1648
  2. Atichat, W., Somboon, C., Leelawhatanasuk, T., PisuthaAmond, V., Wathanakul, P., Sutthirat, C., Sriprasert, B., and Jakkawanvibul, J. (2008) Beryllium treated light-colored sapphires from Illakaka. Proceeding, The 2ndIntemational Gem and Jewelry Conference in Bangkok, Thailand
  3. Besairie, H. (1967) The Precambrian of Madagascar, In: Rankama (Ed.) The Precambrian, Interscience Publ., London, 3, 133-142
  4. Besairie, H. (1973) La geologie globale et ses application a l'ocean indien et a Madagascar. Document du Bureau Geologique, Tananarive, 186, 30
  5. Bigelow, M.S., Lepeshkin, N.N., and Boyd, R.W. (2003) Superluminal and slow light propagation in a room-temperature solid. Science, 301, 200 https://doi.org/10.1126/science.1084429
  6. Caen-vachette, M. (1979) Le Precambrien de Madagascar. radiochronologie par isochrones Rb/Sr sur roches totals. Revue de Geologie dynamique et de geographie physique, 21, 331-338
  7. Callister, W.D. Jr. (2007) Materials science and engineering an introduction (7th Ed.), John Wiley & Sons, New York, 128
  8. Emmett, J.L., Scarratt, K., McClure, S.F., Moses, T., Douthit, T.R., Hughes, R., Novak, S., Shigley, J.E., Wang, W., Bordelon, O., and Kane, R.E. (2003) BeryIlium diffusion of ruby and sapphire. Gems & Gemology, 84-135
  9. Garcia-Lastra, J.M., Aramburu, J.A., Barriuso, M.T., and Moreno, M. (2006) Optical propertis of $Cr{^{3}^{+}}$-doped oxides: Different behavior of two centers in alexandrite. Physical Review B, 74, 115-118
  10. Geschwind, S. and Remeika, J.P. (1961) Phys. Rev., 122, 757 https://doi.org/10.1103/PhysRev.122.757
  11. Heber, J. and Platz, W. (1979) J. Lumin, 18/19, 170 https://doi.org/10.1016/0022-2313(79)90096-6
  12. Kroener, A. (1977) The Precambriangeotectonic evolution of Africa: plate accretion versus plate destruction. Precamb. Res., 77, 3-40
  13. Lodzinski, M., Sitarz, M., Stec, K., Kozanecki, F., and Jurgae, S. (2005) ICP, IR, Raman, NMR investigations of beryls from pegmatites of the Sudety Mts. Joumal of Molecular Structure, 744-747
  14. Martelat, J.E., Nicollet, C., Lardeaux, J.M., Vidal, G., and Rakotondrazafy, R. (1997) Lithospheric tectonic structures developed under high-grade metamorphism in the southern part of Madagascar. Geodinarnica Acta, 10, 94-114
  15. Mercier, A., Rakotondrazafy, M., and Ravolomiandrinarivo, B. (1999) Ruby MineralizatÎon in Southwest Madagascar. Gondwana Rescarch, 2, 433-438 https://doi.org/10.1016/S1342-937X(05)70281-1
  16. Miessler, G.L. and Tarr, D.A. (2004) Inorganic chemistry (3rd Ed.), Pearson Education, Inc, New Jersey, 344-345
  17. Paquette, J.L., Nedelec, A., Moine, B., and Rakotondrazafy, M. (1994) U-Pb, single zircon Pb-evaporation, and Sm-Nd isotopic study of a granulite domain in SE Madagscar. J. Geol, 102, 523-538 https://doi.org/10.1086/629696
  18. Rolin, P. (1991) Presence de decrochements precarnbriens dans le bouclier mcridional de Madagscar: implications structurales et geodynamiqucs. C. R. Acid. Sci., Paris, v. 312, 625-629
  19. Schmetzer, K. and Gubelin, E. (1980) Alexandrite-like natural spinel from Sri Lanka. N. Jb. Miner. Mh., H., 9, 428-432
  20. Schmetzer, K. and Schwarz, D. (2004) The causes oc coIour in untreated, heat treated and diffusion treated orange and pinkish -orange sapphires- a review. J. Gemm., 9(3), 149-182
  21. Schmetzer, K., Bank, H. and Gubelin, E. (1980) The Alexandrite effcct in minerals; Chrysoberyl, Garnet, Corundum, Fluorite. N. Jb. Miner. Abh., 138, 147 -164
  22. Winotai, P., Wichan, T., Tang, L.M., and Yaokulbodee, J. (2000) Heat treatments of Tanzania ruby as monitored by ESR spectroscopy. International J. of Mordern Physic B, V 14,16, 1693-1700