DOI QR코드

DOI QR Code

Detection of Avian Influenza-DNA Hybridization Using Wavelength-scanning Surface Plasmon Resonance Biosensor

  • Kim, Shin-Ae (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Kim, Sung-June (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Lee, Sang-Hun (School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University) ;
  • Park, Tai-Hyun (School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University) ;
  • Byun, Kyung-Min (Department of Biomedical Engineering, Kyung Hee University) ;
  • Kim, Sung-Guk (College of Veterinary Medicine, Cornell University) ;
  • Shuler, Michael L. (Department of Biomedical Engineering, Cornell University)
  • 투고 : 2009.06.01
  • 심사 : 2009.08.05
  • 발행 : 2009.09.25

초록

We designed a wavelength interrogation-based surface plasmon resonance (SPR) biosensor to detect avian influenza DNA (AI-DNA). Hybridization reactions between target AI-DNA probes and capture probes immobilized on a gold surface were monitored quantitatively by measuring the resonance wavelength in the visible waveband. The experimental results were consistent with numerical calculations. Although the SPR detection technique does not require the DNA to be labeled, we also evaluated fluorescently-labeled targets to verify the hybridization behavior of the AI-DNA. Changes in resonance were found to be linearly proportional to the amount of bound analyte. A wavelength interrogation-type SPR biosensor can be used for rapid measurement and high-throughput detection of highly pathogenic AI viruses.

키워드

참고문헌

  1. K. Hidari, S. Shimada, Y. Suzuki, and T. Suzuki, 'Binding kinetics of influenza viruses to sialic acid-containing carbohydrates,' Glycoconj. J. 24, 583-590 (2007) https://doi.org/10.1007/s10719-007-9055-y
  2. J. Xu, D. Suarez, and D. S. Gottfried, 'Detection of avian influenza virus using an interferometric biosensor,' Anal. Bioanal. Chem. 389, 1193-1199 (2007) https://doi.org/10.1007/s00216-007-1525-3
  3. A. J. Thiel, A. G. Frutos, C. E. Jordan, R. M. Corn, and L. M. Smith, 'In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces,' Anal. Chem. 69, 4948-4956 (1997) https://doi.org/10.1021/ac9708001
  4. J. Homola, S. S. Yee, and G. Gauglitz, 'Surface plasmon resonance sensors: review,' Sens. Actuators B 54, 3-15 (1999) https://doi.org/10.1016/S0925-4005(98)00321-9
  5. M. G. Manera, J. Spadavecchia, A. Leone, F. Quaranta, R. Rella, D. Dell'arri, M. Minunni, M. Mascini, and P.Siciliano, 'Surface plasmon resonance imaging technique for nucleic acid detection,' Sens. Actuators B 130, 82-87 (2008) https://doi.org/10.1016/j.snb.2007.02.060
  6. W. Y. Chen, W. P. Hu, Y. D. Su, A. Taylor, S. Jiang, and G. L. Chang, 'A multisport DNA chip fabricated with mixed ssDNA/oligo(ethylene glycol) self-assembled monolayers for detecting the effect of secondary structures on hybridization by SPR imaging,' Sens. Actuators B 125, 607-614 (2007) https://doi.org/10.1016/j.snb.2007.03.006
  7. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, 'Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,' J. Lightwave Technol. 26, 1472-1478 (2008) https://doi.org/10.1109/JLT.2008.922182
  8. M. Mir and I. Katakis, 'Target label-free, reagentless electrochemical DNA biosensor based on sub-optimum displacement,' Talanta 75, 432-441 (2008) https://doi.org/10.1016/j.talanta.2007.11.035
  9. A. B. Steel, T. M. Herne, and M. J. Tarlov, 'Electrochemical quantitation of DNA immobilized on gold,' Anal. Chem. 70, 4670-4677 (1998) https://doi.org/10.1021/ac980037q
  10. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, 'Experimental study of sensitivity enhancement in surface'plasmon resonance biosensors by use of periodic metallic nanowires,' Opt. Lett. 32, 1902-1904 (2007) https://doi.org/10.1364/OL.32.001902
  11. M. G. Moharam and T. K. Gaylord, 'Diffraction analysis dielectric surface-relief gratings,' J. Opt. Soc. Am. 72, 1385-1392 (1982) https://doi.org/10.1364/JOSA.72.001385
  12. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, 'Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,' Opt. Lett. 30, 3404-3406 (2005) https://doi.org/10.1364/OL.30.003404
  13. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, '100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,' Appl. Phys. Lett. 78, 142-143 (2001) https://doi.org/10.1063/1.1339845
  14. E. D. Palik, Handbook of Optical Constants of Solids(Academic Press, Orlando, FL, USA, 1985)

피인용 문헌

  1. Development of Nanostructured Plasmonic Substrates for Enhanced Optical Biosensing vol.14, pp.2, 2010, https://doi.org/10.3807/JOSK.2010.14.2.065
  2. An Impedance Aptasensor with Microfluidic Chips for Specific Detection of H5N1 Avian Influenza Virus vol.15, pp.12, 2015, https://doi.org/10.3390/s150818565
  3. Analysis of a Triangular-shaped Plasmonic Metal-Insulator-Metal Bragg Grating Waveguide vol.15, pp.2, 2011, https://doi.org/10.3807/JOSK.2011.15.2.118
  4. Surface Plasmon Resonator Using High Sensitive Resonance Telecommunication Wavelengths for DNA Sensors of Mycobacterium Tuberculosis with Thiol-Modified Probes vol.15, pp.12, 2015, https://doi.org/10.3390/s150100331
  5. Preliminary approach of real-time monitoring in vitro matrix mineralization based on surface plasmon resonance detection vol.108, pp.6, 2011, https://doi.org/10.1002/bit.23049
  6. Surface plasmon beam splitting by the photon tunneling through the plasmonic nanogap vol.97, pp.13, 2010, https://doi.org/10.1063/1.3496012
  7. Development of a Magnetic Electrochemical Bar Code Array for Point Mutation Detection in the H5N1 Neuraminidase Gene vol.5, pp.12, 2013, https://doi.org/10.3390/v5071719
  8. Influenza viral detection on microfluidic delivery assisted biosensors vol.24, pp.2, 2018, https://doi.org/10.1007/s00542-017-3555-x
  9. Mycobacterium tuberculosis DNA Detection Using Surface Plasmon Resonance Modulated by Telecommunication Wavelength vol.14, pp.12, 2013, https://doi.org/10.3390/s140100458