DOI QR코드

DOI QR Code

Frequency Swept Laser at 1300 nm Using a Wavelength Scanning Filter Based on a Rotating Slit Disk

  • Jeon, Man-Sik (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Jung, Un-Sang (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Song, Jae-Won (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Kim, Jee-Hyun (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Oh, Jung-Hwan (Mechanical Engineering, Pukyong National University) ;
  • Eom, Jin-Seob (Department of Electric and Electronic Engineering, Kangwon National University) ;
  • Kim, Chang-Seok (School of Nano Science and Technology, Pusan National University) ;
  • Park, Young-Ho (School of Electronics and Electrical Engineering, Kyungpook National University)
  • Received : 2009.06.09
  • Accepted : 2009.08.04
  • Published : 2009.09.25

Abstract

A simple and compact frequency swept laser is demonstrated at $1.3{\mu}m$ using a wavelength scanning filter based on a rotating slit disk. The laser is comprised of a pigtailed semiconductor optical amplifier, a circulator, and a wavelength scanning filter in an extended cavity configuration. The wavelength scanning filter is composed of a collimator, a diffraction grating, a rotating slit disk, and a mirror. The instantaneous laser output power is more than 5 mW. The scanning range of the laser is extended to 80 nm at the maximum level, and 55 nm in the full width at half maximum at a scanning rate of 2 kHz.

Keywords

References

  1. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, 'Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,' Opt. Lett. 22, 1704-1706 (1997) https://doi.org/10.1364/OL.22.001704
  2. S. H. Yun, D. J. Richardson, and B. Y. Kim, 'Inter-rogation of fiber grating sensor arrays with a wavelengthswept fiber laser,' Opt. Lett. 23, 843-845 (1998) https://doi.org/10.1364/OL.23.000843
  3. E. J. Jung, C.-S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, 'Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,' Opt. Exp. 16, 16552-16560 (2005) https://doi.org/10.1364/OE.16.016552
  4. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, 'Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,' IEEE Photon. Technol. Lett. 16, 293-295 (2004) https://doi.org/10.1109/LPT.2003.820096
  5. G. J. Tearney, R. H. Webb, and B. E. Bouma, 'Spectrally encoded confocal microscopy,' Opt. Lett. 23, 1152-1154 (1998) https://doi.org/10.1364/OL.23.001152
  6. J. H. Oh, H. Lee, and J. H. Kim, 'Detection of magnetic nanoparticles in tissue using magneto-motive DP-OCT,' J. Opt. Soc. Korea 11, 26-33 (2007) https://doi.org/10.3807/JOSK.2007.11.1.026
  7. J. I. Youn, 'Evaluation of morphological changes in degenerative cartilage using 3-D optical coherence tomography,' J. Opt. Soc. Korea 12, 98-102 (2008) https://doi.org/10.3807/JOSK.2008.12.2.98
  8. W. J. Choi, J. H. Na, S. Y. Ryu, B. H. Lee, and D. S. Ko, 'Realization of 3-D topographic and tomograpic images with ultrahigh-resolution full-field optical coherence tomography,' J. Opt. Soc. Korea 11, 18-25 (2008) https://doi.org/10.3807/JOSK.2007.11.1.018
  9. V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, 'Highspeed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,' Opt. Lett. 32, 361-363 (2007) https://doi.org/10.1364/OL.32.000361
  10. S. W. Lee, C.-S. Kim, and B.-M. Kim, 'External linecavity wavelength-swept source at 850 nm for optical coherence tomography,' IEEE Photon. Technol. Lett. 19, 176-178 (2007) https://doi.org/10.1109/LPT.2006.890043
  11. M. A. Choma, K. Hsu, and J. A. Izatt, 'Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,' Journal of Biomedical Optics 10, 044009-1~044009-6, (2005) https://doi.org/10.1117/1.1961474
  12. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, 'Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,' Opt. Exp. 13, 3513-3528 (2005) https://doi.org/10.1364/OPEX.13.003513
  13. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, 'High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,' Opt. Lett. 28, 1981-1983 (2003) https://doi.org/10.1364/OL.28.001981
  14. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, 'Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers,' IEEE Photon. Technol. Lett. 17, 678-680 (2005) https://doi.org/10.1109/LPT.2004.841003

Cited by

  1. Polarization Dependence Suppression of Optical Fiber Grating Sensor in a π-Shifted Sagnac Loop Interferometer vol.10, pp.12, 2010, https://doi.org/10.3390/s100504373
  2. Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band vol.22, pp.17, 2014, https://doi.org/10.1364/OE.22.020014
  3. Development of SD-OCT for Imaging the in vivo Human Tympanic Membrane vol.15, pp.1, 2011, https://doi.org/10.3807/JOSK.2011.15.1.074
  4. High-Speed SD-OCT for Ultra Wide-field Human Retinal Three Dimensions Imaging using GPU vol.34, pp.3, 2013, https://doi.org/10.9718/JBER.2013.34.3.135
  5. High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging vol.17, pp.1, 2013, https://doi.org/10.3807/JOSK.2013.17.1.068
  6. A Compact Tunable VCSEL and a Built-in Wavelength Meter for a Portable Optical Resonant Reflection Biosensor Reader vol.14, pp.4, 2010, https://doi.org/10.3807/JOSK.2010.14.4.395