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블라인드 등화를 위한 최소 에러 엔트로피 

성능기준들에 관한 연구
김남용, 권기현

A Study on the Minimum Error Entropy - related Criteria
for Blind Equalization

Namyong Kim*, Kihyun Kwon**　

요 약

정보이론적 학습 기법에 해당하는 에러 엔트로피 최소화 (MEE) 성능기준과 상호 상관

엔트로피 최대화 (MCC) 성능기준은 그 동안 깊이 있게 많은 연구가 이루어져 왔다. 에

러 엔트로피 최소화 성능기준은 정보 포텐셜을 최대화하는 것으로 귀결되고 상호 상관

엔트로피 최대화 성능기준은 시스템의 출력과 원신호의 상호 상관도를 최대화하는 것으

로 정의된다. 이 두 성능기준을 적정 가중치를 두고 합성한 것이 기준점을 내포한 에러

엔트로피 최소화 기법 (MEEF) 인데 이 또한 많은 연구가 이루어지고 있다. 이 논문에서

는 블라인드 채널 등화를 위해 CMA에 쓰이는 상수 모듈러스 에러 (CME)를 도입하여

이 정보이론적 학습기법에 적용하고자 그 가능성과 문제점을 찾고자 연구하였다. 또한

MEEF 성능기준에도 이 CME 적용가능성을 연구하였다. 연구결과로부터 CME를 적용한

MEE (MEE-CME)는 상수 모듈러스 정보를 잃게 되는 결과를 낳았다. 이 결과

MEE-CME나 MEE를 사용하는 MEEF-CME 모두에게서 수렴하지 못하거나 CME를 사

용하는 다른 방식과비교할 때 수렴이 늦게 되는 문제점을 발견하게 되었다.

ABSTRACT

As information theoretic learning techniques, error entropy minimization criterion (MEE)

and maximum cross correntropy criterion (MCC) have been studied in depth for

supervised learning. MEE criterion leads to maximization of information potential and

MCC criterion leads to maximization of cross correlation between output and input

random processes. The weighted combination scheme of these two criteria, namely,

minimization of Error Entropy with Fiducial points (MEEF) has been introduced and

developed by many researchers. As an approach to unsupervised, blind channel

equalization, we investigate the possibility of applying constant modulus error (CME) to

MEE criterion and some problems of the method. Also we study on the application of

CME to MEEF for blind equalization and find out that MEE-CME loses the information

of the constant modulus. This leads MEE-CME and MEEF-CME not to converge or to

converge slower than other algorithms dependent on the constant modulus.
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I. Introduction 

In broadcast networks, multipoint

communication networks and mobile

networks, blind equalizers are very

useful to counteract multipath effects

since they do not require a training

sequence to start up or to restart after

a communications breakdown [1][2].

Recently new blind equalization

techniques have been developed

through the use of information

theoretic optimization criteria. This

technique called information -

theoretic learning (ITL) has been

introduced by Princepe [3]. This

approach is to choose the parameters

W of the mapping g(.) such that a

figure of merit based on information

theory is optimized at the output

space of the mapper. ITL algorithms

are based on a combination of a

nonparametric probability density

function (PDF) estimator and a

procedure to compute entropy or

information potential (IP). The

difficulty in approximating Shannon's

entropy is overcome by utilizing

Renyi's generalized entropy.

Estimating the data PDF

nonparametrically is based on the

Parzen window method using a

Gaussian kernel. The combination of

Renyi's quadratic entropy with the

Parzen window leads to an estimation

of entropy or information potential by

computing interactions among pairs of

output samples which is a practical

cost function for ITL.

Error entropy minimization (MEE)

criterion introduced by Erdogmus and

his coworkers leads to maximization

of information potential. Instead of

using entropy minimization in blind

equalization, a new method in which

Euclidian distance between two PDFs

is minimized has also been introduced

[4]. The authors investigated the

interactions among not only output

samples but also ramdomly generated

desired samples at the receiver by

utilizing Euclidian distance (ED) in

their previous works [5]. As another

approach in supervised learning, the

Euclidian distance between the PDF of

error and a delta function can be

minimized with respect to system

weights, and we can get two

information potentials, one for MEE

and another for MCC (maximum cross

correntropy) [6]. In that approach, the

information potentials for MEE and

MCC are in discord, that is, the

information potential for MEE is to be

maximized, and the information

potential for MCC is to be minimized.

On the other hand, the authors in [6]

tried to unify MEE and MCC where

both information potentials are to be
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minimized under some weighted

combination schemes. This cost

function is named as Minimization of

Error Entropy with Fiducial points

(MEEF). The MEEF has shown

enhanced performance in a robust

regression example and nonlinear

short term prediction of the

Mackey-Glass time series.

As an approach to unsupervised,

blind channel equalization, we can

adopt the strategy that the constant

modulus error (CME) becomes

minimum or zero. In this paper, we

investigate the possibility of applying

CME to MEE criterion and some

problems of the method. Also we

study on the application of CME to

MEEF for blind equalization and find

out any obstacles or problems for that

approach.

II. Euclidian Distance of PDFs

Recently, Erdogmus introduced an

information theoretic framework based

on Kullback-Leibler (KL) divergence

[7] minimization for training adaptive

systems in supervised learning

settings using both labeled and

unlabeled data [4]. The KL divergence

is a way to estimate mutual

information which is capable of

quantifying the entropy between pairs

of random variables. The KL

divergence between two PDFs, xf

and yf is

ò= xxxx dfffffKL yxxyx )](/)(log[)(],[ . (1)

Since it is not quadratic in the PDFs,

it can not be easily integrated with

the information potential [3]. Based on

the quadratic entropy theory, a new

difference measure between the

desired and output samples has been

introduced as follows.

III. Supervised MEE Criterion

Entropy is a scalar quantity that

provides a measure for the average

information contained in a given PDF.

When error entropy is minimized, the

error distribution of adaptive systems is

concentrated. Renyi's quadratic error

entropy which is effectively used in ITL

methods is defined as

))(log()( 2ò-= xx dfeH E . (2)

Substituting information potential eIP ,

for ò xx dfE )(2
in (2), we obtain

)log()( eIPeH -= , (3)

where
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Obviously, minimizing the error

entropy )(eH is equivalent to

maximizing the information potential

eIP . This criterion maximizing eIP is

referred to as MEE [8].

By applying gradient ascent method to

maximization of eIP , supervised MEE

algorithm in [8][9] can be obtained as
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IV. MEE Criterion based on CME

Supervised MEE criterion in (8) deals

with ij ee - . By replacing ie with

CME 2
2 Ryi - , information potential

using constant modulus error CMEIP

becomes independent of the constant

modulus 2R as

CMEIP

å å
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(6)

To maximize the cost function (6) we

adopt the gradient ascent method. The

gradient is evaluated from

å å
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MEE-CME can be written using the

gradient as following.

W
WW

¶
¶
×+=+

CME
MEECMEk1k

IP
m

, (8)

where MEECMEm is the step-size for

MEE-CME.

CMEIP is maximized when equalizer

output powers are the same

22
ji yy = . In binary modulation,

each desired signal 1±=id has the

same absolute value. That is, the

power of each desired signal has a

common value 12 =id . This can be

viewed as the equalizer tries to cluster

the outputs to have their desired

power values. However, in M -ary

modulation schemes, the power of

each desired signal has different

values. The force induced from

maximizing CMEIP will lose its target

direction because the cost function

forces the equalizer outputs obtain the

same output power
22

ji yy = in spite
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of different desired powers.

Consequently, MEE-CME loses the

information of the constant modulus

2R . This may lead MEE-CME not to

converge or to converge slower than

other algorithms dependent on the

constant modulus 2R .

V. MEEF Criterion based on CME

In the unified version of MEE and

MCC, both information potentials are

to be minimized under some weighted

combination schemes. This supervised

cost function MEEF has shown

enhanced performance in a robust

regression example and nonlinear

short term prediction of the

Mackey-Glass time series.

The supervised cost function MEEF is

ei2e IP1eGMEEF ×-+×= å )()( ll s . (9)

where is a weighting constant

between 0 and 1. Unifying two cost

functions actually retains all the

merits of being robust with outlier

resistance and kernel size resilience

[6].

Now introducing constant modulus

error signals 2
2

kCME Rye -= to the

MEEF cost function, we can obtain

the unsupervised MEEF cost function

as follows

CMECME2CME IP1eGMEEF ×-+×= å )()( ll
s (10)

Minimization of the cost function leads

to the following algorithm (we will

call this MEEF-CME in this paper).
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VI. Results and Discussion

In this section we present and

discuss simulation resultsthat illustrate

the comparative performance of the

MEE-CME and MEEF-CME for blind

equalization. They
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Fig. 1. MSE convergence of

MEE-CME.

are studied for the three channel

models in [10].The transfer functions

of each channel models are

CH1:
21

1 26.093.026.0)( -- ++= zzzH .(12)

CH2:

21
2 304.0903.0304.0)( -- ++= zzzH .(13)

CH3:
21

3 407815.0407.0)( -- ++= zzzH .

(14)

These channel models are typical

multipath channel models and result in

severe inter-symbol interference.

Especially the channel model 3, CH3

poses worst spectral nulls in spectral

characteristics.

The number of weights in the linear

TDL equalizer structure is set to 11.

The channel noise for MSE

convergence performance is zero mean

white Gaussian with the variance of

0.001. As measures of equalizer

performance, we use MSE

convergence, probability densities for

errors and error rate versus signal to

noise ratio (SNR). The 4 level (

4=M ) random signal {-3, -1, 1, 3}

is transmitted to the channel.

We use a common data-block size

20=N for ITL-type blind algorithms.

For MEE-CME, we use 0.3=s and

MEECMEm = 03.0 . The parameters for

ITL algorithms are

(a)
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(b)

Fig. 2. MSE convergence of

MEEF-CME:

(a) CH1, (b) CH2. Red, blue and

green lines are for lamda=0.3, 0.5, and

0.7, respectively.

commonly used in three channel

models CH1, CH2, and CH3.

As discussed previously, MEE-CME

loses the information of the constant

modulus 2R . In those channel models,

MEE-CME show ill-convergence as

depicted in Fig. 1. This result

indicates that MEE-CME can not be

used in blind equalization due to the

absence of the information on constant

modulus.

MEEF (maximum error entropy with

fiducial points) is a method of

weighted combination of MEE and

MCC. As a part of the MEEF, MEE

works well in supervised equalization

but in blind equalization applications

based on constant modulus error,

MEE-CME loses the information of

the constant modulus 2R . In simulation

MEE-CME shows ill-convergence as

depicted in Fig. 1. MEE-CME is

considered not appropriate in blind

equalization due to the absence of the

information on constant modulus

2R .As a result, MEE-CME can play a

negative role in the combination of

MEE-CME MCC-CME as shown in

the following figure of learning

performance with the variation of the

balancing weight. (a) is for channel

model 1 and (b) is for channel model

2. Red lines are for lamda=0.3, blue

lines are for lamda=0.5, and green

lines are for lamda=0.7. The case of

lamda=0.3 means the portion of

MEE-CME is bigger than MCC-CME

and the case of lamda=0.7 means the

portion of MEE-CME is smaller than

MCC-CME. According these results,

we could include MEEF based on

constant modulus error can not be

applied to blind equalization which

requires rigorous performance.

             VI. Conclusion

MEE criterion has been a robust

ITL criterion for many machine

learning applications. MEE leads to

maximization of information potential



94   한국정보전자통신기술학회논문지 제2권 제3호

and MCC criterion leads to

maximization of cross correlation

between output and input random

processes. As an approach to blind

channel equalization, we investigate

the possibility of applying constant

modulus error (CME) to MEE

criterion and some problems of the

method and also the application of

CME to MEEF for blind equalization.

From the results, we find out that

MEE-CME loses the information of

the constant modulus. This leads

MEE-CME and MEEF-CME not to

converge or to converge slower than

other algorithms dependent on the

constant modulus. This implicates that

other compensation techniques are

needed to be developed for blind

equalization.
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