DOI QR코드

DOI QR Code

Direct Decomposition of Nitrous Oxide over Fe-beta Zeolite

Fe-베타제올라이트 상에서 아산화질소의 직접분해반응

  • Park, Jung-Hyun (Department of Chemical Engineering, Chungbuk National University) ;
  • Jeon, Seong-Hee (Department of Chemical Engineering, Chungbuk National University) ;
  • Khoa, Nguyen Van (Department of Chemical Engineering, Chungbuk National University) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University)
  • Published : 2009.06.30

Abstract

The effect of calcination temperature or hydrothermal treatment of commercial Fe-beta zeolites in the range of $450{\sim}900^{\circ}C$ were examined in the direct decomposition of $N_2O$. Fe-beta zeolites used were characterized using XRD, $N_2$ sorption, $^{27}Al$ MAS NMR and XPS. Although the surface area and micropore volume of Fe-beta zeolite after calcination at $900^{\circ}C$ and hydrothermal treatment at $750^{\circ}C$ decreased ca. 30%, a larger decrease in the surface area and micropore volume by hydrothermal treatment was observed than by calcination treatment alone. However, the Al sites in frameworks of zeolite were conserved in stable tetrahedral form resulting from low degree of dealumination which was related to the adjacent Fe ions on the Al sites. This could likely be correlated with the conservation of high surface area and micropore volume of Fe-beta zeolites. The increase in the calcination or hydrothermal treatment temperature caused the increase of decomposition temperature of $N_2O$ and the severe deactivation was observed after hydrothermal treatment than calcination treatment.

철이 이온교환된 상업용 베타제올라이트를 $450{\sim}900^{\circ}C$ 범위에서의 소성 및 수열처리 온도에 따른 아산화질소 직접분해 반응성을 관찰하였다. Fe-베타제올라이트의 특성분석을 위하여 XRD, $N_2$ 흡착 및 탈착, $^{27}Al-NMR$, XPS 분석을 수행하였다. $900^{\circ}C$에서의 소성처리 온도 및 $750^{\circ}C$에서의 수열처리 후의 Fe-베타제올라이트의 비표면적 및 기공 부피는 30% 정도 감소하였지만, 감소 정도는 수열처리 후에 더욱 심각하게 관찰되었다. 하지만 격자 안의 Al은 이온 교환된 Fe에 의하여 $900^{\circ}C$에서의 소성처리 후에도 낮은 탈알루미늄화에 의해 안정된 사면체 형태의 Al 상태를 유지하였다. 소성 및 수열처리 온도 증가에 따라 아산화질소의 분해반응 온도는 증가하였고 수열처리 후의 비활성화가 소성처리 후보다 심각하게 관찰되었다.

Keywords

References

  1. Kaptejin, F., Rodriguez-Mirasol, J., and Moulijin, J. A., "Heterogeneous Catalytic Decomposition of Nitrous Oxide," Appl. Catal. B: Environ., 9, 25-195 (1996). https://doi.org/10.1016/0926-3373(96)90072-7
  2. Winter, E. R. S., "The Decomposition of Nitrous Oxide on Metallic Oxides Part II," J. Catal, 19, 32-40 (1970). https://doi.org/10.1016/0021-9517(70)90293-9
  3. Paek, J.-Y., Park, Y.-S., Shun, D., and Bae, D.-H., "A study of Nitrous Oxide Decomposition using Calcium Oxide," HWAHAK KONGHAK, 40, 746-751 (2002).
  4. Ohnishi, C, Asano, K., Iwamoto, S., Chikama, K., and Inoue, M., "Alkali-Doped $Co_3O_4$ Catalysts for Direct Decomposition of $N_2O$ in the Presence of Oxygen," Catal. Today, 120, 145-150 (2007). https://doi.org/10.1016/j.cattod.2006.07.042
  5. Russo, N., Mescia, D., Fino, D., Saracco, and G., Specchia, V, '$N_2O$ decomposition over Perovskite Catalysts." Ind. Eng. Chan. Res., 46, 4226-4231 (2007). https://doi.org/10.1021/ie0612008
  6. Fierro, G., Ferraris, G., Dragone, R, Jacono, M. L., and Faticant. M., "$H_2$ Reduction Behavior and NO/$N_2O$ Abatement Catalytic Activity of Manganese Base Spinels Doped with Copper, Cobalt and Iron Ions," Catal. Today. 16, 38-49 (2006).
  7. Perez-Ramirez, J., Kaptejin, F., Mul, G., and Moulijin, J., "Direct N2O Decomposition ova Ex-framework Fe-MFI Catalysts. Role of Extra-framework Species," Catal. Commum., 3, 19-23 (2002). https://doi.org/10.1016/S1566-7367(01)00072-3
  8. Leglise, J., Petunchi, J. O., and Hall, W. H., "$N_2O$ Decomposition over Iron-exchanged Mordenite," J. Catal., 86. 392-399 (1984). https://doi.org/10.1016/0021-9517(84)90384-1
  9. http://izasc.ethz.ch/frni/xsl/IZA-SC/
  10. Jeon, S.-H., "Direct decomposition of $N_2O$ over Fe-IM-5 Catalysts," Master thesis, Chungbuk National University (2007)
  11. Median, F., Dutartre, R, Tichit, D., Coq, B., Dung, N. T., and Salagre, P., "Characterization and Activity of Hydrotalcite-Type Catalysts for Acetonitrile Hydrogenation," J. Mol. Catal. A: Chem., 119, 201-212 (1997). https://doi.org/10.1016/S1381-1169(96)00484-0
  12. Abraham, A, Lee S.-H., Shin C.-H., Hong S. B., Prins, R, and van Bikhoven J. A., "Influence of Framework Silicon to Aluminum Ratio on Aluminum Coordination and Distribution in Zeolite Beta Investigated by $^{27}Al$ MAS and $^{27}Al$ MQ MAS NMR," Phys. Chem. Chem. Phys., 6, 3031-3036 (2004). https://doi.org/10.1039/b401235f
  13. Ramirez, J. P., Kaptejin, F., and Bruckner, A., "Active Site Structure Sensitivity in $N_2O$ Conversion over Fe-MFI Zeolites," J. Catal, 218, 234-238 (2003). https://doi.org/10.1016/S0021-9517(03)00087-3
  14. Park, J.-H., Choung, J.-H., Nam, I.-S., and Ham, S.-W., "$N_2O$ Decomposition over Wet- and Solid-exchanged Fe-ZSM-5 Catalysts," Appl. Catal. B: Environ., 78, 342-354 (2008). https://doi.org/10.1016/j.apcatb.2007.09.020
  15. Barr, T. L., Seal, S., He, H., and Klinowski, L., "X-ray Photoelectron Spectroscopic Studies of Kaolinite and Montmorillonite," Vacuum, 46, 1391-1395 (1995). https://doi.org/10.1016/0042-207X(95)00159-X
  16. Waclaw, A., Nowinska, K., Schwieger, W., and Zielinska, A, "$N_2O$ Decomposition over Iron Modified Zeolites ZSM-5," Catal. Today, 90, 21-25 (2004). https://doi.org/10.1016/j.cattod.2004.04.003