연속식 다중 초음파 반응조에서 TCE의 초음파 분해

Sonolysis of Trichloroethylene in a Continuous Flow Reactor with the Multi Ultrasound Irradiation

  • 이민주 (중앙대학교 건설환경공학과) ;
  • 오재일 (중앙대학교 건설환경공학과)
  • Lee, Min-Ju (Department of Civil & Environmental Engineering, Chung-Ang University) ;
  • Oh, Je-Ill (Department of Civil & Environmental Engineering, Chung-Ang University)
  • 발행 : 2009.06.30

초록

초음파 기술의 연속식 처리 적용성에 대한 연구를 수행하기 위해서 584 kHz 다중 조사 반응조를 제작하여 회분식과 연속식 조건에서 TCE 수용액의 초음파 분해 실험을 수행하였다. 600 W의 3면과 4면 조사 조건에서의 회분식 실험 결과, TCE의 1차 저감 속도 상수는 4면 조사 조건에서 더욱 큰 것으로 나타났으며, $H_2O_2$와 CT의 발생은 두 조건 모두 비슷한 것으로 나타났다. 600 W 4면 다중 조사 조건에서 67${\sim}$300 mL/min의 유량 범위에서 정상 상태에서의 TCE 제거율은 83에서 48%로 약 35% 감소하였다. 100 mL/min, 600 W의 4면 다중 초음파 조사 조건에서 100${\sim}$600 W로 초음파 출력을 증가시킬 때 정상 상태에서 TCE의 제거율은 14에서 75%로 61% 증가하였다. 600 W의 4면 다중 조사 조건에서 100mL/min의 유량으로 실제 TCE 오염지하수에 대한 초음파 분해를 수행한 결과 증류수에서의 제거율 75%에 비해 약 10% 정도 감소하여 약 65%로 나타났다.

To test applicability for continuous flow treatment of ultrasound technology, sonolysis of TCE aqueous solution using 584 kHz multi irradiation reactor was performed under batch and continuous flow conditions. Under batch condition (3 and 4 sides irradiation, 600 W), first order degradation rate constant of TCE was higher under 4 sides than 3 sides irradiation conditions, while the generation of $H_2O_2$ and chloride was similar under both irradiation conditions. Under continuous flow condition with 4 sides irradiation, removal efficiencies of TCE in steady-state were decreased from 83 to 48% with increasing flow rate from 67 to 300 mL/min at 600 W, and were increased from 14 to 75% with increasing acoustic power from 100 to 600 W at 100 mL/min. Removal efficiency of TCE in groundwater was decreased 10% compared to in distilled water at 100 mL/min and 600 W.

키워드

참고문헌

  1. Watts, R. J., Hazardous Wastes: Sources, Pathways, Receptors, Wiley, New York, NY, 304(1998)
  2. U.S. Environmental Protection Agency, Technical Background Document to Support 308 Rulemaking Pursuant to the Clean Air ActCSection 112 (g). Ranking of Pollutants with 309 Respect to Hazard to Human Health, EPAB450/3-92-010, Emissions Standards Division, 310 Office of Air Quality Planning and Standards, Research Triangle Park, NC(1994)
  3. Munter, R., "Advanced oxidation processes - Current status and prospects," Proc. Estonian Acad. Sci. Chem., 50, 59-80(2001)
  4. Adewuyi, Y. G., "Sonochemistry: environmental science and engineering applications," Ind. Eng. Chern. Res., 40, 4681-4715(2001) https://doi.org/10.1021/ie010096l
  5. Flint, E. B., Suslick, K. S., "The temperature of cavitation," Science, 253, 1397(1991) https://doi.org/10.1126/science.253.5026.1397
  6. Suslick, K. S., "Sonochemistry," Science, 247, 1439-1445(1990) https://doi.org/10.1126/science.247.4949.1439
  7. Thompson, L. H., Doraiswamy, L. K., "Sonochemistry: science and engineering," Ind. Eng. Chern. Res., 38, 1215-1249(1999) https://doi.org/10.1021/ie9804172
  8. Yim, B., Okuno, H., Nagata, Y., Maeda, Y., "Sonochemical degradation of chlorinated hydrocarbons using a batch and continuous flow system," J Hazard. Mater., 81, 253-263(2001) https://doi.org/10.1016/S0304-3894(00)00344-7
  9. Suri, R. P. S., Nayak, M., Devaiah, u., Helmig, E., "Ultrasound assisted destruction of estrogen hormones in aqueous solution: Effect of power density, power intensity and reactor configuration," J Hazard. Mater., 146, 472-478(2007) https://doi.org/10.1016/j.jhazmat.2007.04.072
  10. Kormann, c., Bahnemann, D. W., Hoffinan, M. R., "Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand," Environ. Sci. Tech., 22, 798-806(1988) https://doi.org/10.1021/es00172a009
  11. Mason, T. J., Lorimer, J. P., Applied sonochemistry, Wiley-VCH Weinheim(2002)
  12. Jiang, Y., Petrier, C., Waite, T. D., "Kinetics and mechanisms of ultrasonic degradation of volatile chlorinated aromatics in aqueous solutions," Ultrason. Sonochern., 9, 317-323(2002) https://doi.org/10.1016/S1350-4177(02)00085-8
  13. Destaillats, H., Li, T. W. A., Hoffinan, M. R., "Applications of ultrasound in NAPL remediation: sonochemical degradation of TCE in aqueous surfactant solutions," Environ. Sci. Technol., 35, 3019-3024(2001) https://doi.org/10.1021/es0018926
  14. Lim, M. H., Kim, S. H., Kim, Y. U., Khim, J., "Sonolysis of chlorinated compounds in aqueous solution," Ultrason. Sonochern., 14, 93-98(2007) https://doi.org/10.1016/j.ultsonch.2006.03.003
  15. Manousaki, E., Psillakis, E., Kalogerakis, N., Mantzavinos, D., "Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation," Water Res., 38, 3751-3759(2004) https://doi.org/10.1016/j.watres.2004.06.002
  16. Sivakumar, M., Tatake, P. A., Pandit, A. B., "Kinetics of p-nitrophenol degradation: effect of reaction conditions and cavitational parameters for a multiple frequency system," Chem. Eng. J., 85, 327-338(2002) https://doi.org/10.1016/S1385-8947(01)00179-6
  17. Fischer, C. H., Hart, E. J., Henglein, A., "H/D isotope exchange in the $D_2$-$H_2O$ system under the influence of ultrasound," J. Phys. Chem., 90, 222-224(1986) https://doi.org/10.1021/j100274a003
  18. Petrier, C., Lamy, M. F., Francony, A., Benahcene, A., David, B., Renaudin, V., Gondrexon, N., "Sonochemical degradation of phenol in dilute aqueous solutions: comparison of the reaction rates at 20 and 487 kHz," J. Phys. Chem., 98, 10514-10520(1994) https://doi.org/10.1021/j100092a021
  19. Petrier, C., Francony, A., "Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation," Ultrason. Sonochern., 4, 295-300(1997) https://doi.org/10.1016/S1350-4177(97)00036-9
  20. Hua, I., Hoffmann, M. R., "Optimization of ultrasonic irradiation as an advanced oxidation technology," Environ. Sci. Technol., 31, 2237-2243(1997) https://doi.org/10.1021/es960717f
  21. Beckett, M. A., Hua, I., "Enhanced sonochemical decomposition of 1, 4-dioxane by ferrous iron," Water Res., 37, 2372-2376(2003) https://doi.org/10.1016/S0043-1354(03)00005-8
  22. Kang, J. W., Hung, H. M., Li~ A., Hoffmann, M. R., "Sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation: the role of $O_3$, $H_2O_2$, frequency, and power density," Environ. Sci. Technol., 33, 3199-3205 (1999) https://doi.org/10.1021/es9810383
  23. Nam, S. N., Han, S. K., Kang, J. W., Choi, H., "Kinetics and mechanisms of the sonolytic destruction of non-volatile organic compounds: investigation of the sonochemical reaction zone using several OH monitoring techniques," Ultrason. Sonochem., 10, 139-147(2003) https://doi.org/10.1016/S1350-4177(03)00085-3
  24. Drijvers, D., De Baets, R., De Visscher, A., Van Langenhove, H., "Sonolysis of trichloroethylene in aqueous solution: volatile organic intermediates," Ultrason. Sonochem., 3, 83-90(1996) https://doi.org/10.1016/1350-1477(96)00012-3
  25. Dewulf, J., Van Langenhove, H., De Visscher, A., Sabbe, S., "Ultrasonic degradation of trichloroethylene and chlorobenzene at micromolar concentrations: kinetics and modelling," Ultrason. Sonochem., 8, 143-150(2001) https://doi.org/10.1016/S1350-4177(00)00031-6
  26. Wang, K., Zhang, J., Lou, L., Yang, S., Chen, Y., "UV or visible light induced photodegradation of A07 on TiOz particles: the influence of inorganic anions," J. Photochem. Photobiol. A, 165, 201-207(2004) https://doi.org/10.1016/j.jphotochem.2004.03.025
  27. Hung, H. M., Kang, J. W., Hoffman, M. R., "The so-nolytic destruction of methyl tert-butyl ether present in contaminated groundwater," Water Environ. Res., 74(2002)
  28. Beckett, M. A., Hua I., "Impact of ultrasonic frequency on aqueous sonoluminescence and sonochemistry," J. Phys. Chem. A, 105, 3796-3802(2001) https://doi.org/10.1021/jp003226x
  29. 강준원, 이경혁, 고창일, "초음파 조사에 의한 수중 휘발성 유기물질 제거특성," 대한환경공학회지, 19(11), 1389-1396(1997)