References
- S. Abraham, K. Padmanabhan, 'The twisted cube topology for multiprocessors: a study in network asymmetry,' J. Parallel Distrib. Comput. Vol.13, Issue 1, pp.104-110, 1991 https://doi.org/10.1016/0743-7315(91)90113-N
- E. Abuelrub, S. Bettayeb, 'Embedding complete binary trees into twisted hypercubes,' Proc. of the Int. Conf. on Computer Applications in Design, Simulation and Analysis, Washington, D.C. March, 10-12, pp.1-4, 1992
- F. Berman, L. Snyder, 'On mapping parallel algorithms into parallel architectures,' J. Parallel Distrib. Comput. Vol.4, No.5, pp.439.458, 1987 https://doi.org/10.1016/0743-7315(87)90018-9
- S.L. Bezrukov, J.D. Chavez, L.H. Harper M. Rottger, U.-P. Schroeder, 'The congestion of n-cube layout on a rectangular grid,' Discrete Math., Vol.213, No.1-3, pp.13-19, Feb., 2000 https://doi.org/10.1016/S0012-365X(99)00162-4
- C.-P. Chang,J.-N. Wang,L.-H. Hsu, 'Topological properties of twisted cube,' Information Sciences, Vol.113, pp.147-167, 1999 https://doi.org/10.1016/S0020-0255(98)10045-2
- V. Chaudhary, J.K. Aggarwal, 'Generalized mapping of parallel algorithms onto parallel architectures,' Proc. Int'l Conf. Parallel Processing, pp. 137-141, Aug., 1990
- J. Fan, X. Lin, 'The t/k-diagnosability of the BC Graphs,' IEEE Trans. Computers, Vol.54, No.2, pp.176-184, 2005 https://doi.org/10.1109/TC.2005.33
- J. Fan, X. Lin, X. Jia, R. W. H. Lau, 'Edge-pancyclicity of twisted cubes,' ISAAC 2005, Lecture Notes in Comput. Sci. Vol.3827, pp.1090-1099, 2005 https://doi.org/10.1007/11602613_108
- J. Fan, X. Lin, Y. Pan, X. Jia, 'Optimal fault-tolerant embedding of paths in twisted cubes,' J. Parallel Distrib. Comput. Vol.67, No.2, pp.205-214, 2007 https://doi.org/10.1016/j.jpdc.2006.04.004
- J.-S. Fu, 'Fault-free Hamiltonian cycles in twisted cubes with conditional link faults,' Theoretical Computer Science,. 407, No.1-3, pp.318-329, Nov., 2008 https://doi.org/10.1016/j.tcs.2008.06.024
- P. A. J. Hilbers, M. R. J.Koopman, J. L. A. van de Snepscheut, 'The twisted cube,' in PARLE:Parallel Architectures and Languages Europe, Parallel Architectures, Vol.1, Springer, Berlin, pp.152-158, 1987
- W.-T. Huang, J. J. M. Tan, C.-N. Hung, L.-H. Hsu, 'Fault-tolerant hamiltonicity of twisted cubes'. J. Parallel Distrib. Comput. Vol.62, No.4, pp.591-604, 2002 https://doi.org/10.1006/jpdc.2001.1813
- C.-J. Lai, C.-H. Tsai, 'Embedding a family of meshes into twisted cubes,' Information Processing Letters,. 108, Issue 5, pp.326-330, Nov., 2008 https://doi.org/10.1016/j.ipl.2008.06.005
- A. Matsubayashi, 'VLSI layout of trees into grids of minimum width,' IEICE Trans. Fundamentals, Vol.E87-A, No.5, pp.1059-1069, May, 2004
- B. Monien, H. Sudborough. 'Embedding one interconnection network in another,' pp.257-282, Springer-Verlag/Wien, 1990. Computing Supplementum 7: Computational Graph Theory
- A. Patel, A. Kusalik, C. McCrosky, 'Area-efficient VLSI layouts for binary hypercubes,' IEEE Trans. Computers, Vol.49, No.2, pp.160-169, Feb., 2000 https://doi.org/10.1109/12.833112
- A. Rosenberg, 'Issues in the study of graph embeddings,' Lecture Notes in Computer Science, Springer-Verlag, New York, Vol.100, pp.150-176, 1981 https://doi.org/10.1007/3-540-10291-4_12
- M.-C. Yang, T.-K. Li, J. J. M. Tan, L.-H. Hsu, 'On embedding cycles into faulty twisted cubes,' Information Sciences, Vol.176, No.6, pp.676-690, 2006 https://doi.org/10.1016/j.ins.2005.04.004
Cited by
- Twisted Cube Torus(TT): A New Class of Torus Interconnection Networks Based on 3-Dimensional Twisted Cube vol.18A, pp.5, 2011, https://doi.org/10.3745/KIPSTA.2011.18A.5.205