DOI QR코드

DOI QR Code

Embedding a Mesh of Size 2n ×2m Into a Twisted Cube

크기 2n ×2m인 메쉬의 꼬인 큐브에 대한 임베딩

  • 김숙연 (한경대학교 컴퓨터공학과)
  • Published : 2009.08.31

Abstract

The twisted cube has received great attention as an interconnection network of parallel systems because it has several superior properties, especially in diameter, to the hypercube. It was recently known that, for even m, a mesh of size $2{\times}2^m$ can be embedded into a twisted cube with dilation 1 and expansion 1 and a mesh of size $4{\times}2^m$ with dilation 1 and expansion 2 [Lai and Tsai, 2008]. However, as we know, it has been a conjecture that a mesh with more than eight rows and columns can be embedded into a twisted cube with dilation 1. In this paper, we show that a mesh of size $2^n{\times}2^m$ can be embedded into a twisted cube with dilation 1 and expansion $2^{n-1}$ for even m and with dilation 1 and expansion $2^n$ for odd m where $1{\leq}n{\leq}m$.

하이퍼큐브와 많은 면에서 비슷하면서도 절반 정도의 지름을 가지는 등 개선된 망 성질들을 가지는 꼬인 큐브는 병렬처리 시스템의 상호연결망으로 각광 받아 왔다. 짝수인 m 에 대하여 크기가 $2{\times}2^m$인 메쉬가 연장률 1과 확장율 1로, 혹은 크기가 $4{\times}2^m$인 메쉬가 연장율 1과 확장율 2로 꼬인 큐브에 임베딩됨은 최근에 알려졌다 [Lai and Tsai, 2008]. 그러나 양변의 길이가 모두 8 이상인 메쉬가 꼬인 큐브에 연장율 1로 임베딩되는지는 알려진 바가 없다. 본 논문에서는 m 이 짝수일 경우엔 크기 $2^n{\times}2^m$인 메쉬가 꼬인 큐브에 연장율 1, 확장율 $2^{n-1}$ 로 임베딩됨을 보이고 m이 홀수일 경우엔 연장율 1, 확장율 $2^n$로 임베딩됨을 보인다 ($1{\leq}n{\leq}m$).

Keywords

References

  1. S. Abraham, K. Padmanabhan, 'The twisted cube topology for multiprocessors: a study in network asymmetry,' J. Parallel Distrib. Comput. Vol.13, Issue 1, pp.104-110, 1991 https://doi.org/10.1016/0743-7315(91)90113-N
  2. E. Abuelrub, S. Bettayeb, 'Embedding complete binary trees into twisted hypercubes,' Proc. of the Int. Conf. on Computer Applications in Design, Simulation and Analysis, Washington, D.C. March, 10-12, pp.1-4, 1992
  3. F. Berman, L. Snyder, 'On mapping parallel algorithms into parallel architectures,' J. Parallel Distrib. Comput. Vol.4, No.5, pp.439.458, 1987 https://doi.org/10.1016/0743-7315(87)90018-9
  4. S.L. Bezrukov, J.D. Chavez, L.H. Harper M. Rottger, U.-P. Schroeder, 'The congestion of n-cube layout on a rectangular grid,' Discrete Math., Vol.213, No.1-3, pp.13-19, Feb., 2000 https://doi.org/10.1016/S0012-365X(99)00162-4
  5. C.-P. Chang,J.-N. Wang,L.-H. Hsu, 'Topological properties of twisted cube,' Information Sciences, Vol.113, pp.147-167, 1999 https://doi.org/10.1016/S0020-0255(98)10045-2
  6. V. Chaudhary, J.K. Aggarwal, 'Generalized mapping of parallel algorithms onto parallel architectures,' Proc. Int'l Conf. Parallel Processing, pp. 137-141, Aug., 1990
  7. J. Fan, X. Lin, 'The t/k-diagnosability of the BC Graphs,' IEEE Trans. Computers, Vol.54, No.2, pp.176-184, 2005 https://doi.org/10.1109/TC.2005.33
  8. J. Fan, X. Lin, X. Jia, R. W. H. Lau, 'Edge-pancyclicity of twisted cubes,' ISAAC 2005, Lecture Notes in Comput. Sci. Vol.3827, pp.1090-1099, 2005 https://doi.org/10.1007/11602613_108
  9. J. Fan, X. Lin, Y. Pan, X. Jia, 'Optimal fault-tolerant embedding of paths in twisted cubes,' J. Parallel Distrib. Comput. Vol.67, No.2, pp.205-214, 2007 https://doi.org/10.1016/j.jpdc.2006.04.004
  10. J.-S. Fu, 'Fault-free Hamiltonian cycles in twisted cubes with conditional link faults,' Theoretical Computer Science,. 407, No.1-3, pp.318-329, Nov., 2008 https://doi.org/10.1016/j.tcs.2008.06.024
  11. P. A. J. Hilbers, M. R. J.Koopman, J. L. A. van de Snepscheut, 'The twisted cube,' in PARLE:Parallel Architectures and Languages Europe, Parallel Architectures, Vol.1, Springer, Berlin, pp.152-158, 1987
  12. W.-T. Huang, J. J. M. Tan, C.-N. Hung, L.-H. Hsu, 'Fault-tolerant hamiltonicity of twisted cubes'. J. Parallel Distrib. Comput. Vol.62, No.4, pp.591-604, 2002 https://doi.org/10.1006/jpdc.2001.1813
  13. C.-J. Lai, C.-H. Tsai, 'Embedding a family of meshes into twisted cubes,' Information Processing Letters,. 108, Issue 5, pp.326-330, Nov., 2008 https://doi.org/10.1016/j.ipl.2008.06.005
  14. A. Matsubayashi, 'VLSI layout of trees into grids of minimum width,' IEICE Trans. Fundamentals, Vol.E87-A, No.5, pp.1059-1069, May, 2004
  15. B. Monien, H. Sudborough. 'Embedding one interconnection network in another,' pp.257-282, Springer-Verlag/Wien, 1990. Computing Supplementum 7: Computational Graph Theory
  16. A. Patel, A. Kusalik, C. McCrosky, 'Area-efficient VLSI layouts for binary hypercubes,' IEEE Trans. Computers, Vol.49, No.2, pp.160-169, Feb., 2000 https://doi.org/10.1109/12.833112
  17. A. Rosenberg, 'Issues in the study of graph embeddings,' Lecture Notes in Computer Science, Springer-Verlag, New York, Vol.100, pp.150-176, 1981 https://doi.org/10.1007/3-540-10291-4_12
  18. M.-C. Yang, T.-K. Li, J. J. M. Tan, L.-H. Hsu, 'On embedding cycles into faulty twisted cubes,' Information Sciences, Vol.176, No.6, pp.676-690, 2006 https://doi.org/10.1016/j.ins.2005.04.004

Cited by

  1. Twisted Cube Torus(TT): A New Class of Torus Interconnection Networks Based on 3-Dimensional Twisted Cube vol.18A, pp.5, 2011, https://doi.org/10.3745/KIPSTA.2011.18A.5.205