DOI QR코드

DOI QR Code

Estimation of Bed Resistance in Gravel-bed Rivers Using the Equivalent Roughness Height

등가조고를 이용한 자갈하천의 하상저항 산정

  • Kim, Ji-Sung (River and Coast Research Division, Korea Institute of Construction Technology) ;
  • Kim, Yong-Jeon (River and Coast Research Division, Korea Institute of Construction Technology) ;
  • Lee, Chan-Joo (River and Coast Research Division, Korea Institute of Construction Technology) ;
  • Kim, Won (River and Coast Research Division, Korea Institute of Construction Technology)
  • 김지성 (한국건설기술연구원 수자원.환경연구본부 하천.해안항만연구실) ;
  • 김용전 (한국건설기술연구원 수자원.환경연구본부 하천.해안항만연구실) ;
  • 이찬주 (한국건설기술연구원 수자원.환경연구본부 하천.해안항만연구실) ;
  • 김원 (한국건설기술연구원 수자원.환경연구본부 하천.해안항만연구실)
  • Published : 2009.08.31

Abstract

The objective of this study is to estimate bed-resistance in gravel-bed rivers using the equivalent roughness height($k_s$). We calculated the friction factor(f) with the measured data from 8 domestic gravel-bed rivers and investigated the size distributions of the bed materials. The averaged $k_s$ in each cross-section, which is determined under the hypothesis that the vertical velocity distribution follows the logarithmic law, is compared with the reach $k_s$ which is calculated with the cumulative grain diameter distribution curve of bed materials. Moreover, the applicability of existing formulae, such as Strickler type equations, is examined by comparing with Manning's n value converted from the $k_s$. According to the results, the reach $k_s$ proves to be a good indicator of representative characteristic of bed materials in a reach, and the Manning's n based on the reach $k_s$ is appropriate for practical estimation of the bed-resistance, for RMS errors between calculated and measured Manning's n is less than 0.003. The correlation between the $k_s$ and specified bed-material size($D_i$) is very low, so it is difficult to select a proper one among the existing empirical equations.

본 연구는 하상마찰의 척도인 등가조고를 이용하여 자갈하천의 하상저항을 산정하는 것이다. 이를 위하여 국내 8개 자갈하천에서 실측을 통하여 마찰계수 f를 산정하였고, 하상재료의 누가입경분포를 조사하였으며, 각 단면의 실측 마찰계수를 나타내기 위하여 대수 연직유속분포를 가정하여 계산된 평균 등가조고와 누가입경분포를 이용하여 계산된 구간 등가조고를 비교하였다. 더불어 등가조고를 사용하여 계산된 Manning 계수를 Strickler 유형의 기존 경험식에 의한 Manning 계수와 비교함으로써, 국내 자갈하천에서 기존 경험식을 이용한 하상저항 산정의 적용성을 검토하였다. 분석결과, 구간 등가조고가 대상구간의 하상특성을 대표할 수 있음을 확인하였고, 구간 등가조고로 계산된 Manning 계수가 실측 자료로부터 계산된 Manning 계수와 비교하여 RMS 오차가 0.003이하로 계산되어 실무 적용에 타당할 것으로 판된되었다. 또한 실제 하천에서 등가조고 $k_s$와 특정입경 $D_i$과의 비례계수 사이의 상관성이 적은 것으로 나타나, 하상 특정입경을 사용하여 Manning 계수를 산정하는 기존 경험식을 적용할 때 적절한 방정식의 선택에 어려움이 있을 것으로 판단된다.

Keywords

References

  1. 건설교통부 (2006). 홍수터 수목관리 기술개발, 기술보고서 ER-1-2-1-1, 자연과 함께하는 하천복원 기술개발 연구단
  2. 국토해양부 (2008). 홍수터 보전/복원 기술 2차년도연구보고서, R&D/06건설핵심 B01, ECORIVER21 제2세부과제, 자연과 함께하는 하천복원 기술개발연구단
  3. 김지성, 이찬주, 김 원 (2007). '실측 수위에 의한 자갈하천의 조도계수 산정.' 한국수자원학회 논문집, 한국수자원학회, 제40권, 제10호, pp. 755-768 https://doi.org/10.3741/JKWRA.2007.40.10.755
  4. 우효섭 (2001). 하천수리학, 청문각
  5. 이신재, 박상우 (2006). '수위-유량 자료가 부재한 자갈하천의 조도계수 산정에 관한 연구.' 한국수자원학회논문집, 한국수자원학회, 제39권 제12호, pp. 985-996 https://doi.org/10.3741/JKWRA.2006.39.12.985
  6. Chen, C. (1991). 'Unified Theory on Power Laws for Flow Resistance.' Journal of Hydraulic Engineering, Vol. 117, No. 3, pp. 371-389 https://doi.org/10.1061/(ASCE)0733-9429(1991)117:3(371)
  7. Barnes, H.H., Jr., (1967), Roughness characteristics of natural channels, U.S. Geological Survey Water-Supply Paper 1849
  8. Bray, D.I. (1979). Estimating Average Velocity in Gravel-Bed Rivers, Journal of the Hydraulics Division, Vol. 105, No. 9, pp. 1103-1122
  9. Bray, D.I. (1987). A review of flow resistance in gravel bed rivers, In proceedings of Workshop 'Leggi morfologiche a loro verifica di campo', BIOS, Cosenza, pp. 23-57
  10. Ferro, V. (2003). Flow resistance in gravel-bed channels with large-scale roughness, Earth Surface Processes and Landforms, Vol. 28, pp. 1325-1339 https://doi.org/10.1002/esp.589
  11. Henderson, F.M. (1966). Open Channel Flow, Macmillan Publishing Co., INC. New York
  12. Hey, R.D. (1979). 'Flow Resistance in Gravel-Bed Rivers.' Journal of the Hydraulic Division, Vol. 105, No. 4, pp. 365-379
  13. Hicks, D.M. and Mason, P.D. (1991). Roughness charateristics of New Zealand Rivers, DSIR Marine and freshwater, Wellington
  14. ISO. (1992). Liquid flow measurement in open channels-Sampling and analysis of gravel - Bed material, International Organization for Standardization
  15. ISO. (1997). Measurement of liquid flow in open channels - Bed material sampling, International Organization for Standardization
  16. Kellerhals, R. and Bray, D.I. (1971). 'Sampling Procedures for Coarse Fluvial Sediments.' Journal of the Hydraulic Division, Vol. 97, Vo. 8, pp. 1165-1180
  17. Keulegan, G.H. (1938). 'Laws of turbulent flows in open channels.' J. Res. Nat. Bureau Standards, 21(Research Paper 1151), pp. 707-741, Washington, D.C https://doi.org/10.6028/jres.021.039
  18. Lane, E.W. and Carlson, E.J. (1953). 'Some factors affecting the stability of canals constructed in course granular materials.' Proceedings of the Fifth Congress of the International Association for Hydraulic Research, Minneapolis, Minnesota, September 1-4. pp.37-48
  19. Lopez, R. and Barrangan, J. (2008). 'Equivalent Roughness of Gravel-Bed Rivers.' Journal of Hydraulic Engineering, Vol. 134, No. 6, pp. 847-851 https://doi.org/10.1061/(ASCE)0733-9429(2008)134:6(847)
  20. Martin, V. (2003). Hydraulic Roughness of Armoured Gravel Beds: the Role of Grain Protrusion. ph. D Dissertation, University of British, Columbia
  21. Meyer-Peter, E. and Muller, R. (1948). 'Formulas for bed-load transport.' Proc. 3rd Meeting of IAHR, Stockolm, Sweden, pp. 39-64
  22. Park, S.W., Lee, S.J. and Jang S. (2008) 'Determination of Equivalent Roughness for Estimating Flow Resistance in Stabled Gravel-Bed River: II. Review of Model Applicability.' Journal of the Environmental Sciences, Vol. 17, No. 11, pp. 1211-1220 https://doi.org/10.5322/JES.2008.17.11.1211
  23. Strickler, A. (1923). "Beitrage zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahlen fur Strome, Kanale und geschlossene Leitungen." Mitteilungen des Eidgenossischen Amtes fur Wasserwirtschaft 16, Bern, Switzerland (Translated as "Contributions to the question of a velocity formula and roughness data for streams, channels and closed pipelines." by T. Roesgan and W. R. Brownie, Translation T-10, W. M. Keck Lab of Hydraulics and Water Resources, Calif. Inst. Tech., Pasadena, Calif. January 1981)

Cited by

  1. An Estimation of Roughness Coefficient in a Channel with Roughness Correction Blocks vol.34, pp.1, 2014, https://doi.org/10.12652/Ksce.2014.34.1.0107
  2. Development of Subsection Division Method to Estimate a Composite Roughness Coefficient vol.43, pp.11, 2010, https://doi.org/10.3741/JKWRA.2010.43.11.945
  3. Roughness Coefficients Evaluation of the Korean Riparian Vegetation vol.32, pp.6B, 2012, https://doi.org/10.12652/Ksce.2012.32.6B.345