DOI QR코드

DOI QR Code

Electromagnetic Wave Absorption Properties of Fe73Si16B7Nb3Cu1-Based Nanocrystalline Soft Magnetic Powder Composite Mixed with Charcoal Powder

나노결정 Fe73Si16B7Nb3Cu1 연자성분말과 숯분말 혼합 복합성형체의 전자파흡수 특성

  • Kim, Sun-I (Department of Nano System Engineering, Inje University) ;
  • Kim, Mi-Rae (Department of Nano System Engineering, Inje University) ;
  • Sohn, Keun-Yong (Department of Nano System Engineering, Inje University) ;
  • Park, Won-Wook (Department of Nano System Engineering, Inje University)
  • 김선이 (인제대학교 나노시스템공학과) ;
  • 김미래 (인제대학교 나노시스템공학과) ;
  • 손근용 (인제대학교 나노시스템공학과) ;
  • 박원욱 (인제대학교 나노시스템공학과)
  • Published : 2009.08.28

Abstract

The electromagnetic wave absorption sheets were fabricated by mixing of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline soft magnetic powder, charcoal powder and polymer based binder. The complex permittivity, complex permeability, and scattering parameter have been measured using a network analyzer in the frequency range of 10 MHz$\sim$10 GHz. The results showed that complex permittivity of sheets was largely dependent on the frequency and the amount of charcoal powder : The permittivity was improved up to 100 MHz, however the value was decreased above 1 GHz. The power loss of electromagnetic wave absorption data showed almost the same tendency as the results of complex permittivity. However, the complex permeability was not largely affected by the frequency, and the values were decreased with the addition of charcoal powder. Based on the results, it can be summarized that the addition of charcoal powder was very effective to improve the EM wave absorption in the frequency range of 10 MHz$\sim$1 GHz.

Keywords

References

  1. Taflove, A. and Brodwin, M. E.: IEEE Trans. Microwave Theory Tech., 23 (1975) 888 https://doi.org/10.1109/TMTT.1975.1128708
  2. Jarupat, S., Kawabata, A., Tokura, H., Borkiewicz, A.: J. Physiol Anthropol, 22 (2003) 61 https://doi.org/10.2114/jpa.22.61
  3. Abbas, S. M., Chandra, M., Verma, A., Chatterjee, R., Goel, T. C.: Composites: Part A, 37 (2006) 2148 https://doi.org/10.1016/j.compositesa.2005.11.006
  4. Zhihua, P., Jingcui, P., Yanfeng, P., Yangyu, O., Yantao, N.: Phys. Lett. A, 372 (2008) 3714 https://doi.org/10.1016/j.physleta.2008.02.015
  5. Sangawar, V. S., Chikhalikar, P. S., Dhokne, R. J., Ubale, A. U. and Meshram, S. D.: Bulletin of Materials Science, 29 (2006) 413 https://doi.org/10.1007/BF02704144
  6. Moon, K. S., Choi, H. D., Lee, A. K., Cho, K. Y., Yoon, H. G. and Suh, W. S.: J. Appl. Poly. Sci., 77 (2000) 1294 https://doi.org/10.1002/1097-4628(20000808)77:6<1294::AID-APP14>3.0.CO;2-E
  7. Yoshisa, S., Sato, M., Sugawara, E. and Shimada, Y.: J. Appl. Phys., 85 (1999) 4636 https://doi.org/10.1063/1.370432
  8. Hong, S. H., Sohn, K. Y., Park, W. W., Nam, J. M., Moon, B. G., Song, Y. S.: J. Korean Powder Metallurgy Institute, 14 (2007) 261 https://doi.org/10.4150/KPMI.2007.14.4.261
  9. Min, E. H., Kim, M. S., Koh, J. G.: J. Korean Magnetics Society, 17 (2007) 238 https://doi.org/10.4283/JKMS.2007.17.6.238
  10. Esawi, A. and Morsi, K., Composites: Part A, 38 (2007) 646 https://doi.org/10.1016/j.compositesa.2006.04.006
  11. Yoshizawa, Y., Oguma, S. and Yamauchi, K.: J. Appl. Phys., 64 (1988) 6044 https://doi.org/10.1063/1.342149
  12. Petzold, J.: J. Magn. Magn. Mater., 242 (2002) 84 https://doi.org/10.1016/S0304-8853(01)01206-9
  13. Fenske, K. and Misra, D.: Appl. Microwaves Wireless, 12 (2000) 92
  14. Davis, L. C.: J. Appl. Phys., 72 (1992) 1334 https://doi.org/10.1063/1.351743
  15. Jung, J. C., Jang, Y. G. and Yoon, H. G.: The Korean Society of Industrial Application, 5 (2006) 27
  16. Barba, A. A., Lamberti, G., d'Amore, M. and Acierno, D.: Poly. Bull., 57 (2006) 587 https://doi.org/10.1007/s00289-006-0598-z
  17. Lee, K. S., Yoon, Y. C., Choi, G. B., Kim, S. S. and Lee, J. Y.: J. Korea Electromagnetic Engineering Society, 16 (2005) 228