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EXISTENCE AND EXPONENTIAL STABILITY OF ALMOST
PERIODIC SOLUTION FOR SHUNTING INHIBITORY

CELLULAR NEURAL NETWORKS WITH
DISTRIBUTED DELAYS AND LARGE IMPULSES

Yi Zuo, Yaonan Wang, Lihong Huang, and Chunsheng Li

Abstract. This paper considers the problem of existence and exponen-
tial stability of almost periodic solution for shunting inhibitory cellular
neural networks with distributed delays and large impulses. Based on
the contraction principle and Gronwall-Bellman’s inequality, some suffi-
cient conditions are obtained. The results of this paper are new and they
complement previously known results.

1. Introduction

Cellular neural networks, introduced by Chua and Yang [9, 10], have been
extensively investigated due to their important applications in such fields as
image processing and pattern recognition [3, 4, 5, 6, 7, 26]. It is known that
time delays are inevitable in the interactions between neurons. Bouzerdout and
Pinter [2] have introduced a new class of CNNs, namely the shunting inhibitory
CNNs (SICNNs). SICNNs have been extensively applied in psychophysics,
speech, perception, robotic, adaptive pattern recognition, vision, and image
processing. Cosider a two-dimensional grid of processing cells, let Cij denote
the cell at the (i, j) position of the lattice, the r-neighborhood Nr(i, j) of Cij

is

Nr(i, j) = {Chl : max(|h− i|, |l − j|) ≤ r, 1 ≤ h ≤ m, 1 ≤ l ≤ n}.
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In SICNNs, neighboring cells exert mutual inhibitory interactions of the shunt-
ing type. The dynamics of a cell Cij is described by the following nonlinear
ordinary differential equation:

dxij(t)
dt

= −aij(t)xij(t)−
∑

Chl∈Nr(i,j)

Chl
ij (t)fij(xhl(t))xij(t) + Lij(t),

where xij is the activity of the cell Cij , Lij(t) is the external input to Cij ,
aij represents the passive delay rate of the cell activity, Chl

ij (t) is the connec-
tion of coupling strength of postsynaptic activity of the cell transmitted to
the cell Cij , and the function fij(·) is a continuous function representing the
output or firing rate of the cell Chl. It is well known that studies on neural
dynamic systems not only involve a discussion of stability property, but also
involve many dynamic behaviors such as periodic oscillatory behavior, almost
periodic oscillatory properties, chaos and bifurcation. In applications, if the
various constituent components of the temporally nonuniform environment are
with incommensurable (nonintegral multiples) periods, one has to consider the
effects of the environmental factors, and the assumption of almost periodicity
is more realistic, more important and more general. For significance of almost
periodicity, one also can refer to [8, 11, 23, 24, 27]. Li [13] obtained several
sufficient conditions to ensure the global exponential stability of almost peri-
odic solutions or periodic solutions for the delayed SICNNs. The criteria for
the stability of almost periodic solutions of the SICNNs with distributed delays
were given in [17, 18, 30]. Recently, uniform asymptotical stability of almost
periodic solutions of the SICNNs with both time-varying and distributed delays
was studied in [19].

On the other hand, the theory of impulsive differential equations is now being
recognized to be not only richer than the corresponding theory of differential
equations without impulse, but also represents a more natural framework for
mathematical modelling of many real-world phenomena, such as population
dynamics and the neural networks. In recent years, the impulsive differential
equations have been extensively studied (see the monographs [1, 12, 20] and
the works [14, 15, 16, 21, 22, 28, 29]). Xia [25] investigated the exponential
stability problem of almost periodic solutions for the SICNNs with impulses,
but he did not take time delays into account.

To the author’s best knowledge, there is no published paper considering
the almost periodic solutions for SICNNs neural networks with both impulses
and distributed delays. In this paper, we study the impulsive SICNNs neural
networks with almost periodic coefficients and distributed delays





dxij(t)
dt

= −aij(t)xij(t)−
∑

Chl∈Nr(i,j)

Chl
ij (t)

∫ ∞

0

kij(u)g(xhl(t− u))duxij(t) + Lij(t), t 6= tk,

∆xij(tk) = αk
ijxij(tk) + Ik

ij(xij(tk)) + Lk
ij , t = tk, i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

(1)
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where ∆xij(tk) = xij(t+k )− xij(t−k ) are impulses at moments tk and t1 < t2 <
· · · is a strictly increasing sequence such that limk→∞ tk = +∞.

We denote by x(t) = x(t, t0, z0), x = (x11, . . . , x1n, . . . , xi1, . . . , xin, . . . , xm1,
. . . , xmn)T, x0 = (x011, . . . , x01n, . . . , x0i1, . . . , x0in, . . . , x0m1, . . . , x0mn)T ∈ Ω,
where Ω is a domain in R(m,n), Ω 6= φ. The system (1) is supplemented with
initial values problem given by

x(t0 + 0, t0, x0) = x0.(2)

Denote by PC(J,Rm·n), J ∈ R, the space of all piecewise continuous functions
x : J → Rm·n with points of discontinuity of the first kind tk, k = ±1,±2, . . .
and which are continuous from the left, i.e., x(tk − 0) = x(tk).

The rest of this paper is organized as follows. In the next section, we shall
introduce some definitions and lemmas. Section 3 is devoted to establishing
some criteria for the existence, uniqueness and exponential stability of almost
periodic solution of system (1).

2. Definitions and lemmas

In this section, we shall introduce some known definitions and lemmas (to
see [1, 12, 20]).

Since the solution of problem (1), (2) is a piecewise continuous function with
points of discontinuity of the first kind t = tk, k ∈ Z and we adopt the following
definitions and Lemmas for almost periodicity.

Let B = {{tk}∞k=−∞ : tk ∈ R, tk < tk+1, k ∈ Z, limk→±∞ tk = ∞} be the set
of all sequence unbounded and strictly increasing. A matrix or vector D ≥ 0
means that all entries of D are greater than or equal to zero. For matrices or
vectors D and E, D ≥ E means D − E ≥ 0.

Definition 1 ([20]). The set of sequences {tjk}, tjk = tk+j − tk, k ∈ Z, j ∈ Z,
{tk} ∈ B is said to be uniformly almost periodic if for arbitrary ε > 0 there
exists relatively dense set of ε-almost periods common for any sequences.

Definition 2 ([20]). A piecewise continuous function ϕ : R → Rm·n with
discontinuity of first kind at the points tk is said to be almost periodic, if

(a): the set of sequence {tjk}, tjk = tk+j − tk, k ∈ Z, j ∈ Z, {tk} ∈ B is
uniformly almost periodic;

(b): for any ε > 0 there exists a real number δ > 0 such that if the point
t
′
and t

′′
belong to one and the same interval of continuity of ϕ(t) and

satisfy the inequality |t′ − t
′′ | < δ, then |ϕ(t

′
)− ϕ(t

′′
)| < ε;

(c): for any ε > 0 there exists a relatively dense set T such that if τ ∈ T ,
then |ϕ(t+τ)−ϕ(t)| < ε for all t ∈ R satisfying the condition |t−tk| > ε,
k ∈ Z.

Together with the system (1) we consider the linear system
{
Ż(t) = P (t)Z(t), t 6= tk,
∆Z(t) = PkZ(t), t = tk, k ∈ Z.(3)
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Introduce the following conditions:
(i): P (t) ∈ C(R,Rm·n) and it is almost periodic in the sense of Bohr.
(ii): det(E + Pk) 6= 0 and the sequence {Pk}, k ∈ Z is almost periodic,
E ∈ R(m·n)×(m·n).

(iii): The set of sequences {tjk}, tjk = tk+j − tk, k ∈ Z, j ∈ Z, {tk} ∈ B
is uniformly almost periodic and there exists θ > 0 such that infkt1k =
θ > 0.

Recall [1] that if Uk(t, s) is the Cauchy matrix for the system

Ż(t) = P (t)Z(t), tk−1 < t ≤ tk, {tk} ∈ B,
then the Cauchy matrix for the system (3) is in the form

W (t, s) =





Uk(t, s), tk−1 < t ≤ tk,
Uk+1(t, tk + 0)(E + Pk)Uk(t, s), tk−1 < s ≤ tk < t ≤ tk+1,
Uk+1(t, tk + 0)(E + Pk)Uk(tk, tk + 0) · · · (E + Pi)Ui(ti, s),
ti−1 < s ≤ ti ≤ tk < t ≤ tk+1.

Lemma 1 ([20]). In addition to conditions (i)-(iii) are fulfilled.
(iv): For the Cauchy matrix W (t, s) of the system (3) there exist positive

constants K and λ such that

|W (t, s)| ≤ Ke−λ(t−s), t ≥ s, t, s ∈ R.
Then for any ε > 0, t ∈ R, s ∈ R, t ≥ s, |t − tk| > ε, |s − tk| > ε, k ∈ Z
there exists a relatively dense set T of ε-almost periods of the matrix P (t) and
a positive constant Γ such that for τ ∈ T it follow:

|W (t+ τ, s+ τ)−W (t, s)| ≤ εΓe
λ
2 (t−s).

Lemma 2 ([20]). Let the condition (iii) be fulfilled. Then for any p > 0 there
exists a positive integer N such that on each interval of length p no more than
N elements of the sequence {tk}, i.e.,

i(t, s) ≤ N(t− s) +N,

where i(t, s) is the number of the points tk lying in the interval (s, t).

Lemma 3 ([20]). In addition to condition (iii), let the following conditions be
fulfilled.

(v): The function ϕ ∈ PC(R,Ω), Ω ⊂ Rm·n and it is almost periodic.
Then the sequence {ϕ(tk)} is almost periodic.

Lemma 4 ([20]). In addition to condition (iii) and (v), let the following con-
ditions be fulfilled.

(vi): F (y) is uniformly continuous defined in Ω.
Then F (ϕ(t)) is an almost periodic function.
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Lemma 5 ([20]). Let g(t), g ∈ PC(R,Ω) and the sequence {gk}, k ∈ Z is
almost periodic. Then there exists a positive constant C1 such that

max

(
sup
t∈R

‖g(t)‖, sup
k=±1,±2,...

‖gk‖
)
≤ C1.

Remark 1. Throughout this paper, we always assume i = 1, . . . ,m; j =
1, . . . , n, unless otherwise stated.

In this paper, we introduce the following conditions:
(H1): aij(t), Chl

ij (t) and Lij(t) are almost periodic functions in the sense
of Bohr, and denote

0 < inf
t∈R

{aij(t)} = a−ij <∞, C̃hl
ij = sup

t∈R
{|Chl

ij (t)|}, L̃ij = sup
t∈R

{|Lij(t)|}.

(H2): The condition (iii) holds.
(H3): There exists a nonnegative constant Lg, such that for ∀x, y ∈ R,
|g(x)− g(y)| ≤ Lg|x− y|.

(H4): {αk
ij}k∈Z, and {Lk

ij}k∈Z are almost periodic sequences and from
Lemma 5, there exist strictly positive constants L̃ij such that
supt∈R{|Lij(t)|, maxk |Lk

ij |} ≤ L̃ij .
(H5): The sequence of functions Ik

ij(xij(tk)) is almost periodic uniformly
with respect to x ∈ Ω and there exists vij > 0 such that |Ik

ij(x) −
Ik
ij(x̄)| ≤ vij |x− x̄| for k ∈ Z, x, x̄ ∈ Ω.

(H6): λij := a−ij −N ln(1 + maxk |αk
ij |) > 0.

(H7): For i, j = 1, 2, . . . , n,
∫∞
0
|kij(s)|ds is existent, and there exist non-

negative constants k+
ij such that
∫ ∞

0

|kij(s)|ds ≤ k+
ij .

Now from [20], we have:

Lemma 6. Assume the conditions (H1), (H2), (H4) hold. Then for each ε > 0
there exist ε1, 0 < ε1 < ε and relatively dense set T of real numbers and Q of
whole numbers, such that the following relations are fulfilled.

(a): |P (t+ τ)− P (t)| < ε, t ∈ R, τ ∈ T , |t− tk| > ε;
(b): |Pk+q − Pk| < ε, k ∈ Z, q ∈ Q;
(c): |Lij(t+ τ)− Lij(t)| < ε, t ∈ R, τ ∈ T , |t− tk| > ε, k ∈ Z;
(d): |Lk+q

ij − Lk
ij | < ε, k ∈ Z, q ∈ Q;

(e): |Chl
ij (t+ τ)− Chl

ij (t)| < ε, t ∈ R, τ ∈ T , |t− tk| > ε, k ∈ Z;
(f): |Chl,k+q

ij − Chl,k
ij | < ε, k ∈ Z, q ∈ Q;

(g): |t̄qk − τ | < ε, q ∈ Q, τ ∈ T , k ∈ Z.

Lemma 7. Assume (H1)-(H2), (H4) and (H6) hold. Then
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1. For Cauchy matrix W (t, s) of the system (3), there exist positive con-
stants K and λ such that W (t, s) < Ke−λ(t−s), t ≥ s, t, s ∈ R.

2. For any ε > 0, t ∈ R, s ∈ R, t ≥ s, |t − tk| > ε > 0, |s − tk| > 0,
k ∈ Z, there exist a relatively dense set T of ε-almost periods of matrix
P (t) and positive constant Γ such that for τ ∈ T it follows

|W (t+ τ, s+ τ)−W (t, s)| < εΓe
λ
2 (t−s).

Proof. Recall [12] the matrix W (t, s) for system (3) is in the form W (t, s) =
eP (t)(t−s)

∏
i(s,t)(E + Pk). By Lemma 2, one has

W (t, s) ≤ eP−(t−s)(E + P+
k )i(s,t) ≤ eP−(t−s)(E + P+

k )N(t−s)+N

= diag(ξ11e−λ11(t−s), . . . , ξije
−λij(t−s), . . . , ξmne

−λmn(t−s))(m·n)×(m·n),(4)

where

P (t) = diag(−a11(t), . . . ,−aij(t), . . . ,−amn(t))(m·n)×(m·n),

P− = diag(−a−11, . . . ,−a−ij , . . . ,−a−mn)(m·n)×(m·n),

P+
k = diag

(
max

k
|αk

11|, . . . ,max
k
|αk

ij |, . . . ,max
k
|αk

mn|
)

(m·n)×(m·n)

,

ξij = exp
{
N ln

(
1 + max

k
|αk

ij |
)}

, λij = a−ij −N ln
(

1 + max
k
|αk

ij |
)
,

i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Take

K = max
1≤i≤m,1≤j≤n

{ξij}, λ = min
1≤i≤m,1≤j≤n

{λij}.(5)

It follows from (4) and condition (H6) that

|W (t, s)| ≤ e−λ(t−s), t ≥ s, t, s ∈ R.
This completes the Proof of Assertion 1. From Lemma 1, the Assertion 2 is

immediately proved. ¤

3. Main results

Theorem 1. In addition to (H1)-(H7) hold, then the following hold:

1. If r < 1, δ = δ1 + δ2 ≤ 1 and K̄
1−δ ≤ 1, system (1) has a unique almost

periodic solution y(t). Here

δ1 = max
(i,j)



ξij

1
λij

∑

Chl∈Nr(i,j)

C̃hl
ij k

+
ijLg



 , δ2 = max

(i,j)

{
vijN

1− e−λij
ξij

}
,

K̄ = max
(i,j)

{(
1
λij

+
N

1− e−λij

)
ξijL̃ij

}
, r =

2δ1K̄
1− δ

+ δ2.
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2. If

λ−max
(i,j)



ξij

∑

Chl∈Nr(i,j)

C̃hl
ij k

+
ijLg

2K̄
1− δ



 + ln(1 + max

(i,j)
{ξijvij}) > 0,

then the unique solution y(t) is exponentially stable.

Proof of Assertion 1. LetD = {ϕ(t) | ϕ(t) = (ϕ11(t), . . . , ϕij(t), . . . , ϕmn(t))T}
∈ PC(R,Rm·n) be the almost periodic with ‖ϕ‖ < K̄, where ‖ϕ‖ = supt∈R

max(i,j) |ϕij(t)| and K̄ = max(i,j)

{(
1

λij
+ N

1−e−λij

)
ξijL̃ij

}
. Obviously D ⊃

PC(R,Rm·n). Set F(t, x(t))=(F11(t, x(t)), . . . , Fij(t, x(t)), . . . , Fmn(t, x(t)))T,
where

Fij(t, x(t)) =
∑

Chl∈Nr(i,j)

Chl
ij (t)

∫ ∞

0

kij(u)g(xhl(t− u))duxij(t),

Fk(x(tk)) = (Ik
11(x11(tk)), . . . , Ik

ij(xij(tk)), . . . , Ik
mn(xmn(tk)))T,

H(t) = (L11(t), . . . , Lij(t), . . . , Lmn(t))T,

Hk = (Lk
11, . . . , L

k
ij , . . . , L

k
mn)T.

Define an operator S in D

Sϕ =
∫ t

−∞
W (t, s)[F(s, ϕ(s)) +H(s)]ds+

∑
tk<t

W (t, tk)[Fk(ϕ(tk)) +Hk].(6)

Obviously, it is easy to check that Sϕ is a solution of (1).
Take subset D∗ ⊂ D,

D∗ =
{
ϕ ∈ D

∣∣‖ϕ− ϕ0‖ ≤ δK̄

1− δ

}
,(7)

where

ϕ0 =
∫ t

−∞
W (t, s)H(s)ds+

∑
tk<t

W (t, tk)Hk.(8)

From (8), it follows Lemma 7 that

‖ϕ0‖ = sup
t∈R

{
max
(i,j)

∫ t

−∞
|W (t, s)||Lij(s)|ds+ max

(i,j)

∑
tk<t

|W (t, tk)| ·max
k
|Lk

ij |
}(9)

≤ sup
t∈R

{
max
(i,j)

∫ t

−∞
ξije

−λij(t−s)|Lij(s)|ds+ max
(i,j)

∑
tk<t

ξije
−λij(t−tk) ·max

k
|Lk

ij |
}

≤ max
(i,j)

{(
1
λij

+
N

1− e−λij

)
ξijL̃ij

}
:= K̄.
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Then for arbitrary ϕ ∈ D∗, it follows from (6), (7) and (9) that

‖ϕ‖ ≤ ‖ϕ− ϕ0‖+ ‖ϕ0‖ ≤ δ

1− δ
K̄ + K̄ =

1
1− δ

K̄.(10)

Now we prove that S is self-mapping from D∗ to D∗.
Firstly, we shall show that Sϕ ∈ D∗ for arbitrary ϕ ∈ D∗. In fact,

Sϕ− ϕ0 =
∫ t

−∞
W (t, s)F(s, ϕ(s))ds+

∑
tk<t

W (t, tk)Fk(ϕ(tk)).(11)

This, together with (4) and ‖ϕ‖ ≤ 1
1−δ K̄ ≤ 1, we have

‖Sϕ− ϕ0‖
(12)

= sup
t∈R



max

(i,j)

∫ t

−∞
|W (t, s)| ·

∣∣∣∣∣∣
∑

Chl∈Nr(i,j)

Chl
ij (s)

∫ ∞

0

kij(u)g(ϕhl(s− u))duϕij(s)

∣∣∣∣∣∣
ds

+max
(i,j)

∑
tk<t

|W (t, tk)| ·max
k
|Ik

ij(ϕij(tk))|
}

≤ sup
t∈R



max

(i,j)

∫ t

−∞
ξije

−λij(t−s)
∑

Chl∈Nr(i,j)

C̃hl
ij Lgk

+
ij‖ϕ‖2ds

+max
(i,j)

∑
tk<t

ξije
−λij(t−tk)vij |ϕij(tk)|

}

≤ max
(i,j)






 1
λij

∑

Chl∈Nr(i,j)

C̃hl
ij k

+
ijLg‖ϕ‖2 +

vijN

1− e−λij
‖ϕ‖


 ξij





= max
(i,j)






 1
λij

∑

Chl∈Nr(i,j)

C̃hl
ij k

+
ijLg‖ϕ‖+

vijN

1− e−λij


 ξij



 ‖ϕ‖

≤ max
(i,j)






 1
λij

∑

Chl∈Nr(i,j)

C̃hl
ij k

+
ijLg+

vijN

1− e−λij


 ξij



 ‖ϕ‖ := δ‖ϕ‖ ≤ δ

1− δ
K̄.

Secondly, we shall prove that Sϕ is almost periodic. In fact, let τ ∈ T , q ∈ Q,
where the sets T and Q are determined in Lemma 6. By Lemmas 6 and 7, we
have

‖Sϕ(t+ τ)− Sϕ(t)‖
(13)

≤ sup
t∈R

{ ∫ t

−∞
|W (t+ τ, s+ τ)−W (t, s)|
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×max
(i,j)




∣∣∣∣∣∣
∑

Chl∈Nr(i,j)

Chl
ij (s+ τ)

∫ ∞

0

kij(u)g(ϕhl(s+ τ − u))duϕij(s+ τ) + Lij(s+ τ)

∣∣∣∣∣∣


ds

+
∫ t

−∞
|W (t, s)|max

(i,j)




∣∣∣∣∣∣
∑

Chl∈Nr(i,j)

Chl
ij (s+ τ)

∫ ∞

0

kij(u)g(ϕhl(s+ τ − u))duϕij(s+ τ)

−
∑

Chl∈Nr(i,j)

Chl
ij (s)

∫ ∞

0

kij(u)g(ϕhl(s− u))duϕij(s)

∣∣∣∣∣∣
+ |Lij(s+ τ)− Lij(s)|


ds

+
∑
tk<t

|W (t+ τ, tk+q)−W (t, tk)|max
(i,j)

[
|Ik+q

ij (ϕij(tk+q)) + Lk+q
ij |

]

+
∑
tk<t

|W (t, tk)|max
(i,j)

[
|Ik+q

ij (ϕij(tk+q))− Ik
ij(ϕij(tk))|+ |Lk+q

ij − Lk
ij |

]}

≤ εM̄,

where

M̄ =
1
λ


max

(i,j)





∑

Chl∈Nr(i,j)

(Γ +K)C̃hl
ij k

+
ijLg

2K̄
1− δ

+ L̃ij +K








+
ΓN

1− e−λ

[
max

ij
vij + 1

]
+

ΓN

1− e−
λ
2

[
max

ij
vij

K̄

1− δ
+ L̃ij

]
.

It follows from (12) and (13) that Sϕ ∈ D∗. For arbitrary ϕ, ψ ∈ D∗,

Sϕ− Sψ =
∫ t

−∞
W (t, s)[F(s, ϕ(s))−F(s, ψ(s))]ds(14)

+
∑
tk<t

W (t, tk)[Fk(ϕ(tk))−Fk(ψ(tk))].

It follows from (4) and (14) that

‖Sϕ− Sψ‖

(15)

≤ sup
i∈R

{
max
(i,j)

∫ t

−∞
|W (t, s)

∣∣∣∣∣∣
∑

Chl∈Nr(i,j)

Chl
ij (s)

∫ ∞

0

kij(u)g(ϕhl(s− u))duϕij(s)

−
∑

Chl∈Nr(i,j)

Chl
ij (s)

∫ ∞

0

kij(u)g(ψhl(s− u))duψij(s)

∣∣∣∣∣∣
ds

+
∑
tk<t

|W (t, tk)|[ max
(i,j)

|Ik+q
ij (ϕij(tk))− Ik

ij(ψij(tk))|]
}
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≤ sup
i∈R

max
(i,j)

{∫ t

−∞
ξije

−λij(t−s)
[ ∑

Chl∈Nr(i,j)

C̃hl
ij

∣∣∣
∫ ∞

0

kij(u)g(ψhl(s− u))du
∣∣∣|ϕij(s)− ψij(s)|

+
∑

Chl∈Nr(i,j)

C̃hl
ij

∣∣∣
∫ ∞

0

kij(u)g(ϕhl(s− u))du−
∫ ∞

0

kij(u)g(ψhl(s− u))du
∣∣∣|ϕij(s)|

]

+
∑
tk<t

ξije
−λij(t−tk)|Ik

ij(ϕij(tk)− Ik
ij(ψij(tk))|}

}

≤ sup
i∈R

max
(i,j)





∫ t

−∞
ξije

−λij(t−s)
[ ∑

Chl∈Nr(i,j)

C̃hl
ij Lgk

+
ij‖ψ‖

∣∣ϕij(s)− ψij(s)
∣∣

+
∑

Chl∈Nr(i,j)

C̃hl
ij Lgk

+
ij‖ϕ− ψ‖

∣∣ϕij(s)
∣∣
]

+
∑
tk<t

ξije
−λij(t−tk)vij |ϕij(tk)− ψij(tk)|

}

≤ sup
i∈R

max
(i,j)





∫ t

−∞
ξije

−λij(t−s)
∑

Chl∈Nr(i,j)

C̃hl
ij Lgk

+
ij

(‖ϕ‖+ ‖ψ‖)‖ϕ− ψ‖ds

+
∑
tk<t

ξije
−λij(t−tk)vij‖ϕ− ψ‖

}

≤ max
(i,j)






 1
λij

∑

Chl∈Nr(i,j)

C̃hl
ij Lgk

+
ij

2K̄
1− δ

+
vijN

1− e−λij


 ξij



 ‖ϕ− ψ‖

:=
2δ1K̄
1− δ

+ δ2 = r‖ϕ− ψ‖.

From (15) and condition (H6), it follows that S is contraction mapping in D∗.
Therefore, there exists a unique y ∈ D∗ such that Sy = y, and then there exists
a unique almost periodic solution y(t) of (1). ¤

Proof of Assertion 2. Let x(t) be arbitrary solution of (1) with the initial con-
dition (2), and y(t) = (y11(t), . . . , yij(t), . . . , ymn(t))T be the unique almost
periodic solution of (1) with the initial condition y(t0 + 0, t0, y0) = y0. From
(6), we have

x(t)− y(t) = W (t, t0)(x0 − y0) +
∫ t

t0

W (t, s)[F(s, x(s))−F(s, y(s))](16)

+
∑

t0<tk<t

W (t, tk)[Fk(x(tk))−Fk(y(tk))].

It follows from Lemma 7, (4), (16) and the derivation of (15) that

‖x(t)− y(t)‖
≤ Ke−λ(t−t0)‖x0 − y0‖
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+ sup
i∈R

max
(i,j)





∫ t

t0

|W (t, s)|
∣∣∣∣

∑

Chl∈Nr(i,j)

Chl
ij (s)

∫ ∞

0

kij(u)g(xhl(s− u))duxij(s)

−
∑

Chl∈Nr(i,j)

Chl
ij (s)

∫ ∞

0

kij(u)g(yhl(s− u))duyij(s)
∣∣∣∣ds

+
∑

t0≤tk<t

|W (t, tk)|
[
|Ik+q

ij (xij(tk))− Ik
ij(yij(tk))|

]




≤ Ke−λ(t−t0)‖x0 − y0‖

+ sup
i∈R

max
(i,j)





∫ t

t0

ξije
−λij(t−s)

[ ∑

Chl∈Nr(i,j)

C̃hl
ij Lgk

+
ij‖y(t)‖

∣∣xij(s)− yij(s)
∣∣

+
∑

Chl∈Nr(i,j)

C̃hl
ij Lgk

+
ij‖x(t)− y(t)‖

∣∣xij(s)
∣∣
]
ds

+
∑
tk<t

ξije
−λij(t−tk)vij |xij(tk)− yij(tk)|

}

≤ Ke−λ(t−t0)‖x0 − y0‖

+ max
(i,j)



ξij

∑

Chl∈Nr(i,j)

C̃hl
ij Lgk

+
ij

2K̄
1− δ





∫ t

t0

e−λ(t−s)‖x(t)− y(t)‖ds

+ max
(i,j)

{ξijvij}
∑
tk<t

e−λ(t−tk)‖x(tk)− y(tk)‖.

Set z(t) = ‖x(t)− y(t)‖e−λt. From Gronwall-Bellman’s Lemma [20], we have

‖x(t)− y(t)‖ ≤ K‖x0 − y0‖
(

1 + max
(i,j)

{ξijvij}
)i(t0,t)

× exp






−λ+ max

(i,j)



ξij

∑

Chl∈Nr(i,j)

C̃hl
ij Lgk

+
ij

2K̄
1− δ






 (t− t0)



 .

By Lemma 2, one has

‖x(t)− y(t)‖

≤ K exp
{
N ln

(
1 + max

(i,j)
{ξijvij}

)}
‖x0 − y0‖

× exp
{
−

[
λ−max

(i,j)

{
ξij

∑

Chl∈Nr(i,j)

C̃hl
ij Lgk

+
ij

2K̄
1− δ

}
+ ln

(
1 + max

(i,j)
{ξijvij}

)]
(t− t0)

}
.
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From the assumption of Assertion 2, the solution y(t) is exponentially
stable. ¤

Remark 2. When system (1) is without impulse, the conditions in Theorem 1
reduces to r < 1, δ1 ≤ 1 and K0

1−δ ≤ 1, where K0 = max(i,j){ 1
λij
ξijL̃ij}.

Remark 3. References [18, 17, 19, 30] studied the stability of almost periodic
solutions for the SICNNs with distributed delays. However, they did not con-
sider the impulse influence. Xia [25] obtained several sufficient conditions to
guarantee the exponential stability of almost periodic solutions for the SICNNs
with impulses, but he did not take time delays into account. To our best knowl-
edge, there is no published paper considering the almost periodic solutions for
SICNNs with both distributed delays and impulses. Therefore, our results are
essentially new and complement previously known results.

Remark 4. It should be pointed out that the precision of Theorem 1 is very
high due to the high precision computation of each ξij and λij in the proof of
Lemma 7.

4. An example

In this section, we present a numerical example to verify the Theorem 1 we
have given in the previous section.

Example 1. Consider the shunting inhibitory cellular neural networks with
distributed delays and large impulses (1) with

(aij)3×3 =




1.4103 + sin(t) 1.3529 + cos(t) 1.1389− sin(t)
1.8936 + sin(2t) 1.8132− sin(t) 1.2028 + sin(t)
1.0579 + cos(t) 1.0099− cos(t) 1.1987 + sin(t)


 ,

(Cij)3×3 =




0.6038 sin(3t) 0.0153 cos(t) 0.9318 sin(t)
0.2722 sin(2t) 0.7468 sin(t) 0.4660 sin(t)
0.1988 cos(t) 0.4451 cos(2t) 0.4186 sin(t)


 ,

(Lij)3×3 =




0.8462 sin(t) 0.6721 cos(t) 0.6813 sin(2t)
0.5252 sin(2t) 0.8381 sin(t) 0.3795 sin(t)
0.2026 cos(t) 0.0196 cos(3t) 0.8318 sin(t)


 .

Let the r-neighborhood Nr(i, j) (i, j = 1, 2, 3) of Cij be

Nr(1, 1) = {C11, C12, C21, C22}, Nr(2, 1) = {C21, C11, C22, C31},
Nr(3, 1) = {C31, C21, C22, C32}, Nr(1, 2) = {C12, C11, C22, C13},
Nr(2, 2) = {C22, C21, C12, C23, C32}, Nr(3, 2) = {C32, C22, C31, C33},
Nr(1, 3) = {C13, C12, C23}, Nr(2, 3) = {C23, C13, C22, C33},
Nr(3, 3) = {C33, C32, C23, C22}.
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Set αk
ij = 0.05 + sin kπ, Lk

ij = 0.15 + cos kπ, Ik
ij(xij(tk)) = 0.4xij(tk), k ∈ Z+,

g(·) = 1
10 (|x + 1| − |x − 1|), kij(t) = exp(−t), so k+

ij = 1, C̃hl
ij = 1, Lg = 1

10 .
Then conditions H1 −H7 hold, and we have

δ1 = max
(i,j)

{
ξij

1
λij

∑

Chl∈Nr(i,j)

C̃hl
ij k

+
ijLg

}
≤ 0.2, δ2 = max

(i,j)

{
vijN

1− e−λij
ξij

}
≤ 0.45,

K̄ = max
(i,j)

{(
1
λij

+
N

1− e−λij

)
ξijL̃ij

}
≤ 0.116, r =

2δ1K̄
1− δ

+ δ2 ≤ 1,

λ−max
(i,j)



ξij

∑

Chl∈Nr(i,j)

C̃hl
ij k

+
ijLg

2K̄
1− δ



 + ln(1 + max

(i,j)
{ξijvij}) > 0.

This implies that all of the conditions of Theorem 1 satisfied, Thus, by Theorem
1, the system (1) exist a unique almost periodic solution, and all solutions of
the system (1) converge exponentially to its a unique almost periodic solution.

5. Conclusions

In this paper, the shunting inhibitory cellular neural networks with continu-
ously distributed delays and large impulses have been studied. Some sufficient
conditions insuring the existence and exponential stability of the almost peri-
odic solutions have been proposed using the contraction principle and Gronwall-
Bellman’s inequality techniques. These obtained results are new and they com-
plement previously known results. Moreover, an example is given to illustrate
the effectiveness of our method.
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