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ANALYSIS AND COMPUTATIONS OF LEAST-SQUARES
METHOD FOR OPTIMAL CONTROL PROBLEMS FOR

THE STOKES EQUATIONS

Youngmi Choi, Sang Dong Kim, and Hyung-Chun Lee

Abstract. First-order least-squares method of a distributed optimal con-
trol problem for the incompressible Stokes equations is considered. An
optimality system for the optimal solution are reformulated to the equiv-
alent first-order system by introducing the vorticity and then the least-
squares functional corresponding to the system is defined in terms of the
sum of the squared H−1 and L2 norms of the residual equations of the
system. Finite element approximations are studied and optimal error es-
timates are obtained. Resulting linear system of the optimality system is
symmetric and positive definite. The V-cycle multigrid method is applied
to the system to test computational efficiency.

1. Introduction

Recently there has been an increased interest in mathematical analyses and
computations of optimal control problems for incompressible viscous flows.
Even though mathematical analysis and some computational methods were
studied, the efficient and feasible numerical methods are still needed to study.
To apply the fast and stable methods in numerical algorithm, we change the
unsymmetrical and indefinite system to a symmetric positive definite system
using FOSLS. One of the simple problem for simple flow is to minimize the
functional

(1.1) J (u, p, f) =
1
2
‖u− ud‖2 +

δ

2
‖f‖2,

subject to the stationary Stokes equations

−ν∆u +∇p = f in Ω,(1.2)

∇ · u = 0 in Ω,(1.3)

u = 0 on ∂Ω,(1.4)
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where ud is a given desired function. Here, Ω denotes a bounded convex polyg-
onal domain in R2 or has C1,1 boundary and u = (u1, u2)t a candidate velocity
field, p the pressure, f a prescribed forcing term and ν the viscous constant.
Assume that p satisfies the zero mean constraint,

∫
Ω
p dx = 0. The objective

of this optimal control problem is to seek a state variables u and p, and the
control f which minimize the L2-norm distances between u and ud and satisfy
(1.2)-(1.4). The second term in (1.1) is added as a limiting the cost of con-
trol and the positive penalty parameter δ can be used to change the relative
importance of the two terms appearing in the definition of the functional.

For this purpose, a Lagrange multiplier approach has been studied exten-
sively; for example, see [2, 15, 18, 20, 21, 23, 24, 27, 28]. As a result one
may have a coupled optimality system related to two Stokes type equations
associated with state variables and adjoint variables. This optimality system
can be dealt with mixed finite element approaches. On the other hand, with a
connection with least-squares concept which has been a considerable attention
in the methods of least-squares type for fluid flow problems (see for example,
see [3, 4, 5, 8, 9, 10, 11, 12, 13]), one may convert the second-order optimal-
ity system into the corresponding first-order system by introducing physically
meaningful new dependent variables.

In this paper, using the state vorticity ω = ∇×u of the state velocity u and
the adjoint vorticity z = ∇ × v of the adjoint velocity v we reformulate the
coupled second-order optimality system as the coupled first-order optimality
system. These process enables us to avoid using the finite elements satisfying
LBB conditions and to reduce the number of unknowns and variables of the
first-order system comparing to using new flux variables. The proposed least-
squares functional is consists of the L2 and H−1 norms of residual equations of
the coupled first-order system of optimality system. Then following the tech-
niques in [12] the coercivity and continuity of such a functional can be shown
with respect to a product norm of appropriate H1 and L2 norms. Because the
computations of H−1 norm is not feasible, we employ the computable inner
product using discrete solution operator corresponding to Dirichlet operator
(see [10, 11]). Further we will use the weighted L2 inner product to compute
the H−1 inner product (see [5]). For actual computations, we use the V -cycle
multigrid method with the Gauss-Seidel smooth iteration for a model problem.
By choosing a parameter, we will show several computation results.

The plan of the paper is as follows. We introduce the notation and prelim-
inary results that will be used throughout the paper in the remainder of this
section. In §2, we give a precise statement of the optimization problem and
prove that an optimal solution exists. Then we reformulate the optimality sys-
tems to the first-order system and define the L2 and H−1-norm least squares
functional. In §3, we obtain the optimal error estimates for least-squares finite
element method for the optimality system. Finally, In §4, some numerical tests
are performed.
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1.1. Notation and preliminary results

The standard Sobolev spaces Hm(Ω) and H1
0 (Ω) will be used with the as-

sociated standard inner products (·, ·)m and their respective norms ‖ · ‖m. In
particular, for m = 0 we replace Hm(Ω) by L2(Ω) with the norm ‖·‖ and inner
product (·, ·), and denote L2

0(Ω) as the subspace of square integrable functions
with zero mean. For positive values of m the space H−m(Ω) is defined as the
dual space of Hm

0 (Ω) equipped with the norm ‖φ‖−m = sup0 6=v∈Hm
0 (Ω)

〈φ,v〉
‖v‖m

where 〈·, ·〉 is the duality pairing between H−m(Ω) and Hm
0 (Ω). Define the

product spaces Hm
0 (Ω)d = Πd

i=1H
m
0 (Ω) and H−m(Ω)d = Πd

i=1H
−m(Ω) with

standard product norms. All subspaces are equipped with the norms inherited
from the corresponding underlying spaces.

For an introduction of vorticity of the velocity u, we define the curl of v for
a vector function v = (v1, v2)t as the scalar function ∇× v = ∂xv2 − ∂yv1 and
denote by ∇⊥ the formal adjoint of ∇× defined by ∇⊥p = (∂yp, −∂xp)t. Then
with these notations it follows that

(1.5) ∇⊥∇× v = −∆v + grad div v.

Because the constrained optimal control problem is the present topic of this
paper, we will make a lot use of the Stokes equations. First of all we recall the
H1 regularity of the weak solutions of the Stokes equations. The weak form of
the constraint equations (1.2)-(1.4) is then given as follows: seek u ∈ H1

0 (Ω)2

and p ∈ L2
0(Ω) such that

νa(u,v) + b(v, p) = 〈f ,v〉 ∀v ∈ H1
0 (Ω)2,(1.6)

b(u, q) = 0 ∀q ∈ L2
0(Ω),(1.7)

where 〈·, ·〉 is duality pairing and

a(u,v) =
∫

Ω

∇u : ∇v dx, ∀u,v ∈ H1(Ω)2,

b(u, q) = −
∫

Ω

q∇ · u dx ∀u ∈ H1(Ω)2, ∀q ∈ L2(Ω).

Then, the (weak form of the) boundary value problem (1.6)-(1.7) is well-posed
and has a unique solution (u, p) ∈ H1

0 (Ω)2 × L2
0(Ω) for any f ∈ H−1(Ω)2 (see

[17]). The following stability condition is well known:

(1.8) ‖u‖1 + ‖p‖ ≤ C‖f‖−1,

where C is a positive constant. From now on, a constant C will denote a
positive quantity whose meaning and values change with context.
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2. Formulation and analysis of the optimal control problem

2.1. The optimization problem

We look for a (u, p, f) ∈ H1
0 (Ω)2 × L2

0(Ω) × H−1(Ω)2 such that the cost
functional

J (u, p, f) =
1
2
‖u− ud‖2 +

δ

2
‖f‖2,

subject to the constraints which are the stationary Stokes equations (1.2)-(1.4).
The admissibility set Uad is defined by

Uad = {(u, p, f) ∈ H1
0 (Ω)2 × L2

0(Ω)×H−1(Ω)2 :
(2.9)

J(u, p, f) <∞ and (u, p, f) satisfies (1.6) and (1.7)}.
Then, (û, p̂, f̂) is called an optimal solution if there exists an ε > 0 such that
J (û, p̂, f̂) ≤ J (u, p, f) for all (u, p, f) ∈ Uad satisfying ‖u− û‖1 +‖p− p̂‖+‖f −
f̂‖−1 ≤ ε. The optimal control problem can now be formulated as a constrained
minimization problem in a Hilbert space :

(2.10) min
(u,p,f)∈Uad

J (u, p, f).

The existence and uniqueness of an optimal solution of (2.10) is easily proven
using standard arguments in the following theorem.

Theorem 2.1. Given ud, there exists a unique solution (u, p, f) ∈ Uad.
Proof. We first note that Uad is clearly not empty. Let

{
(u(n), p(n), f (n))

}
be a

minimizing sequence, i.e., (u(n), p(n), f (n)) ∈ Uad for all n and satisfies

lim
n→∞

J (u(n), p(n), f (n)) = inf
(u,p,f)∈Uad

J (u, p, f).

Using the fact ‖f (n)‖2 ≤ 2
δJ (u(0), p(0), f (0)) and (1.8), we deduce that the

sequence {‖u(n)‖1} and {‖p(n)‖} and {‖f (n)‖−1} are uniformly bounded. So,
we may then extract subsequences such that

f (ni) ⇀ f̃ in H−1(Ω)2,

p(ni) ⇀ p̃ in L2
0(Ω),

u(ni) ⇀ ũ in H1
0 (Ω)2,

u(ni) → ũ in L2(Ω)2

for some (ũ, p̃, f̃) ∈ H1
0 (Ω)2 × L2

0(Ω) ×H−1(Ω)2. The last convergence results
above follows from the compact imbedding H1

0 (Ω)2 ↪→↪→ L2(Ω)2. By process
of passing to the limit, we have that (ũ, p̃, f̃) satisfies (1.6)-(1.7). Now, by the
weak lower semi-continuity of J (·, ·, ·), we conclude that (ũ, p̃, f̃) is an optimal
solution, i.e.,

inf
(u,p,f)∈Uad

J (u, p, f) = lim
i→∞

inf J (u(ni), p(ni), f (ni)) = J (ũ, p̃, f̃).
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Thus, we have shown that an optimal solution belonging to Uad exists. Fi-
nally, the uniqueness of the optimal solution follows from the convexity of the
functional and the linearity of the constraint equations. ¤

2.2. The optimality system

From the Lagrangian

L(u, p, f ,v, q : ud) = J (u, p, f)− (ν∆u−∇p+ f ,v)− (∇ · u, q),
where J (·, ·, ·) is defined by (1.1), one may derive an optimality system of
equations for the solution of (2.10). The constrained problem (2.10) can now
be recast as the unconstrained problem of finding stationary points of L(·). We
now apply the necessary conditions for the latter problem. Clearly, setting to
zero the first variations with respect to u, p, f ,v and q yields the optimality
system

(2.11)





−ν∆u +∇p = f inΩ,
∇ · u = 0 in Ω,

u = 0 on ∂Ω,
−ν∆v +∇q + u = ud in Ω,

∇ · v = 0 in Ω,
v = 0 on ∂Ω,
δf = v inΩ.

Note that this system is coupled, i.e., the constraint equations for the state vari-
ables depend on the unknown controls, the adjoint equations for the Lagrange
multipliers depend on the state, and optimality conditions for the controls de-
pend on the Lagrange multipliers.

The strong form of the optimality system (2.11) may be written as first-order
systems of partial differential equations by introducing meaningful variables
ω = ∇ × u and z = ∇ × v. The formal normal for this first-order systems
is not differentially diagonally dominant because of the optimality condition.
So, using the optimality condition f = v

δ , we obtain the following optimality
system: find (ω,u, p, z,v, q) ∈ L2(Ω) ×H1

0 (Ω)2 × L2
0(Ω) × L2(Ω) ×H1

0 (Ω)2 ×
L2

0(Ω) such that

(2.12)





ν∇⊥ω +∇p− v
δ

= 0 in Ω,

∇ · u = 0 in Ω,
∇× u− ω = 0 in Ω,

u = 0 on ∂Ω,
ν∇⊥z +∇q + u = ud inΩ,

∇ · v = 0 in Ω,
∇× v − z = 0 in Ω,

v = 0 on ∂Ω.
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2.3. Least-squares functional

In this section, we discuss of the continuous H−1 and L2 least-squares func-
tional on the space V where

V := L2(Ω)×H1
0 (Ω)2 × L2

0(Ω)× L2(Ω)×H1
0 (Ω)2 × L2

0(Ω)

with a norm ‖| · ‖| as

‖|(ω,u, p, z,v, q)‖| = (‖ω‖2 + ‖u‖21 + ‖p‖2 + ‖z‖2 + ‖v‖21 + ‖q‖2)
1
2 .

The proposed least-squares functional is defined by the L2- and H−1-norms
of the residual equations of the system (2.12):

F(ω,u, p, z,v, q : ud) = ‖ν∇⊥ω +∇p− v
δ
‖2−1 + ‖∇ · u‖2 + ‖ω −∇× u‖2

+
1
δ2
‖ν∇⊥z +∇q + u− ud‖2−1

+
1
δ2
‖∇ · v‖2 +

1
δ2
‖z −∇× v‖2.(2.13)

Note that the weight 1
δ2 is used for the balance of state and adjoint equations.

The least-squares problem we consider is to minimize this quadratic func-
tional over V:

find (ω,u, p, z,v, q) ∈ V such that

(2.14) F(ω,u, p, z,v, q : ud) = inf
(τ,w,r,ψ,x,x)∈V

F(τ,w, r, ψ,x, x : ud).

In order to show the existence and uniqueness of the solutions of (2.14), the
ellipticity and continuity of the proposed least-squares functional should be
proven. One may note that the existence and uniqueness depends on δ and ν.

Theorem 2.2. For any (ω,u, p, z,v, q) ∈ V, there exist positive constant
C1(δ, ν) and C2(δ, ν) such that
(2.15)

C1‖|(ω,u, p, z,v, q)‖|2 ≤ F(ω,u, p, z,v, q : 0) ≤ C2‖|(ω,u, p, z,v, q)‖|2.
Proof. The upper bound in (2.15) is straightforward from the triangle, Schwarz’
inequalities and definitions of H−1-norm.

To prove the lower bound in (2.15), we modify the techniques in [12]. We
assume that the domain Ω is simply connected. Using Green’s formula (see
[17]), it follows that

1
δ
‖∇ × u‖2 +

1
δ2
‖∇ × v‖2

(2.16)

=
1
δ
(∇× u− ω,∇× u) +

1
δ
(ω,∇× u) +

1
δ2

(∇× v − z,∇× v)+
1
δ2

(z,∇× v)

=
1
δ
(∇× u− ω,∇× u) +

1
δ
(∇⊥ω,u) +

1
δ2

(∇× v − z,∇× v) +
1
δ2

(∇⊥z,v)
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=
1
δ
(∇× u− ω,∇× u) +

1
νδ

(ν∇⊥ω +∇p− v
δ
,u) +

1
νδ

(p,∇ · u)

+ (
1
δ
∇× v − 1

δ
z,

1
δ
∇× v) +

1
ν

(
ν

δ
∇⊥z +

1
δ
∇q +

1
δ
u,

1
δ
v) +

1
νδ

(q,
1
δ
∇ · v)

and

1
δ
‖ω‖2 +

1
δ2
‖z‖2

(2.17)

=
1
δ
(ω −∇× u, ω) +

1
δ
(∇× u, ω) +

1
δ2

(z −∇× v, z) +
1
δ2

(∇× v, z)

=
1
δ
(ω −∇× u, ω) +

1
δ
(∇⊥ω,u) +

1
δ2

(z −∇× v, z) +
1
δ2

(∇⊥z,v)

=
1
δ
(ω −∇× u, ω) +

1
νδ

(ν∇⊥ω +∇p− v
δ
,u) +

1
νδ

(p,∇ · u)

+ (
1
δ
z − 1

δ
∇× v,

1
δ
z) +

1
ν

(
ν

δ
∇⊥z +

1
δ
∇q +

1
δ
u,

1
δ
v) +

1
νδ

(q,
1
δ
∇ · v).

Combining (2.16) and (2.17), using the ε-inequality and Schwarz’ inequality,
we have

1
δ
‖∇ × u‖2 +

1
δ2
‖∇ × v‖2 +

1
δ
‖ω‖2 +

1
δ2
‖z‖2

(2.18)

=
1
δ
‖∇ × u− ω‖2 +

2
νδ

(ν∇⊥ω +∇p− v
δ
,u) +

2
νδ

(p,∇ · u)

+
1
δ2
‖∇ × v − z‖2 +

2
ν

(
ν

δ
∇⊥z +

1
δ
∇q +

1
δ
u,

1
δ
v) +

2
νδ

(q,
1
δ
∇ · v)

≤ 1
δ
‖∇ × u− ω‖2 +

1
ε1δ

‖ν∇⊥ω +∇p− v
δ
‖2−1 +

ε1
δν2

‖u‖21 +
2
νδ
‖p‖‖∇ · u‖

+
1
δ2
‖∇ × v − z‖2+

1
ε2
‖ν
δ
∇⊥z+ 1

δ
∇q+ 1

δ
u‖2−1+

ε2
ν2
‖1
δ
v‖21+

2
νδ
‖q‖‖1

δ
∇ · v‖.

For any φ ∈ H1
0 (Ω)2 we have

(∇p, φ) = (ν∇⊥ω +∇p− v
δ
, φ)− ν(ω,∇× φ) +

1
δ
(v, φ)

≤
(
‖ν∇⊥ω +∇p− v

δ
‖−1 + ν‖ω‖+

1
δ
‖v‖

)
‖φ‖1.

Hence, using the fact ‖p‖ ≤ C‖∇p‖−1, we have

‖p‖ ≤ C∗
(
‖ν∇⊥ω +∇p− v

δ
‖−1 + ν‖ω‖+

1
δ
‖∇ × v‖

)
,(2.19)

where C∗ is independent of δ and ν. In a similar way, we have

‖q‖ ≤ C∗
(‖ν∇⊥z +∇q + u‖−1 + ν‖z‖+ ‖∇ × u‖) ,(2.20)

where C∗ is independent of ν.
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Now from (2.18)-(2.20) and ε-inequality, we have

1
δ
‖∇ × u‖2 +

1
δ2
‖∇ × v‖2 +

1
δ
‖ω‖2 +

1
δ2
‖z‖2

≤ 1
δ
‖∇ × u− ω‖2 +

1
δε1

‖ν∇⊥ω +∇p− v
δ
‖2−1 +

ε1C

δν2
‖∇ × u‖2

+
ε1C

δν2
‖∇ · u‖2 +

C∗

δ
(ε3‖ν∇⊥ω +∇p− v

δ
‖2−1 +

1
ν2ε3

‖∇ · u‖2 + ε4‖ω‖2

+
1
ε4
‖∇ · u‖2 + ε5‖1

δ
∇× v‖2 +

1
ν2ε5

‖∇ · u‖2) +
1
δ2
‖∇ × v − z‖2

+
1
ε2
‖ν
δ
∇⊥z +

1
δ
∇q +

1
δ
u‖2−1 +

ε2C

ν2
‖1
δ
∇× v‖2 +

ε2C

ν2
‖1
δ
∇ · v‖2

+ C∗(ε6‖ν
δ
∇⊥z +

1
δ
∇q +

1
δ
u‖2−1 +

1
ν2ε6

‖1
δ
∇ · v‖2 + ε7‖1

δ
z‖2

+
1
ε7
‖1
δ
∇ · v‖2 +

ε8
δ2
‖∇ × u‖2 +

1
ν2ε8

‖1
δ
∇ · v‖2),

where C is independent of δ and ν. By collecting the same terms, it follows
that

(1
δ
− ε1C

δν2
− C∗ε8

δ2

)
‖∇ × u‖2 +

(
1− ε2C

ν2
− ε5C

∗

δ

) 1
δ2
‖∇ × v‖2

+
(1
δ
− C∗ε4

δ

)
‖ω‖2 +

(
1− C∗ε7

) 1
δ2
‖z‖2

≤ 1
δ
‖∇ × u− ω‖2 +

( 1
δε1

+
ε3C

∗

δ

)
‖ν∇⊥ω +∇p− v

δ
‖2−1

+
(ε1C
δν2

+
C∗

δν2ε3
+
C∗

δε4
+

C∗

δν2ε5

)
‖∇ · u‖2 + ‖1

δ
∇× v − 1

δ
z‖2

+
( 1
ε2

+ ε6C
∗
)
‖ν
δ
∇⊥z +

1
δ
∇q +

1
δ
u‖2−1

+
(Cε2
ν2

+
C∗

ν2ε6
+
C∗

ε7
+

C∗

ν2ε8

)
‖1
δ
∇ · v‖2.

If we take ε1 = ε2 = ν2

3C , ε3 = ε6 = 1
ν2 , ε4 = ε7 = 1

3C∗ , ε5 = δ
3C∗ and ε8 = δ

3C∗ ,
then

‖∇ × u‖2 + ‖∇ · u‖2 + ‖∇ × v‖2 + ‖∇ · v‖2 + ‖ω‖2 + ‖z‖2(2.21)

≤ C∗1 (δ, ν) F(ω,u, p, z,v, q : 0),

where

C∗1 (δ, ν) =





3max{1, 3C + C∗

ν2
,
2
3

+ C∗ + 3C∗2 +
3C∗2

δν2
} for δ ≤ 1,

3δ2 max{1, 3C + C∗

ν2
,
2
3

+ C∗ + 3C∗2 +
3C∗2

δν2
} for δ ≥ 1.
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Combining (2.19) and (2.20), we have

(2.22) ‖p‖2 + ‖q‖2 ≤ C∗∗1 (δ, ν)F(ω,u, p, z,v, q : 0),

where C∗∗1 (δ, ν) = Cδ3 max{ν2, 1} C∗1 (δ, ν) for δ ≥ 1 and C∗∗1 (δ, ν) = C
max{ν2, 1} C∗1 (δ, ν)/δ3 for δ ≤ 1.

Therefore, combining (2.21) and (2.22) yields the conclusion (2.15). The
proof for general Ω, that is, when we assume only that ∂Ω is C1,1, now follows
by an argument similar to the proof of Theorem 3.7 in [17]. ¤

3. Finite element approximations

Using standard techniques of the calculus of variations one can show that
a minimizer of (2.13) out of the space V necessarily satisfies the variational
problem(Euler-Lagrange equation):

find (ω,u, p, z,v, q) ∈ V such that
(3.23)
B(ω,u, p, z,v, q; ω̃, ũ, p̃, z̃, ṽ, q̃) = F (ω̃, ũ, p̃, z̃, ṽ, q̃), ∀(ω̃, ũ, p̃, z̃, ṽ, q̃) ∈ V,

where

B(ω,u, p, z,v, q; ω̃, ũ, p̃, z̃, ṽ, q̃)

= (ν∇⊥ω +∇p− v
δ
, ν∇⊥ω̃ +∇p̃− ṽ

δ
)−1 + (∇ · u,∇ · ũ)

+ (ω −∇× u, ω̃ −∇× ũ) +
1
δ2

(ν∇⊥z +∇q + u, ν∇⊥z̃ +∇q̃ + ũ)−1

+
1
δ2

(∇ · v,∇ · ṽ) +
1
δ2

(z −∇× v, z̃ −∇× ṽ)

and
F (ω̃, ũ, p̃, z̃, ṽ, q̃) =

1
δ2

(ud, ν∇⊥z̃ +∇q̃ + ũ)−1.

We can easily verify that the bilinear form B(·; ·) is elliptic and continuous with
respect to the norm ‖| · ‖| in V, i.e., there exist positive constants C1 and C2

such that

C1‖|(ω̃, ũ, p̃, z̃, ṽ, q̃)‖|2 ≤ B(ω̃, ũ, p̃, z̃, ṽ, q̃; ω̃, ũ, p̃, z̃, ṽ, q̃)(3.24)

and

B(ω̃, ũ, p̃, z̃, ṽ, q̃; ω̃, ũ, p̃, z̃, ṽ, q̃) ≤ C2‖|(ω̃, ũ, p̃, z̃, ṽ, q̃)‖|2, ∀(ω̃, ũ, p̃, z̃, ṽ, q̃) ∈ V,
(3.25)

where both C1 and C2 depend on δ and ν and the linear form F (·) is apparently
continuous. Thus, by the Lax-Milgram lemma, there exists a unique solution
(ω,u, p, z,v, q) ∈ V to the problem (3.23) and then may get the control f by
the optimality condition f = v

δ if it is needed.
For the finite element approximation, let Th be a partition of the Ω into

finite elements, i.e., Ω =
⋃
K∈Th

K with h = max{diam(K) : K ∈ Th}. Assume
that the triangulation Th is a quasi-uniform, i.e., it is regular and satisfies the
inverse assumption (see [16]). Let Vh := Wh × Uh × Ph × Wh × Uh × Ph
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be a finite element subspace of V with the following properties: there exist
a constant C and integer r ≥ 1, s ≥ 1 and k ≥ 1, for any (ω,u, p, z,v, q) ∈
(Hr(Ω) ×Hs+1(Ω)2 ×Hk(Ω) ×Hr(Ω) ×Hs+1(Ω)2 ×Hk(Ω))

⋂
V and a pair

(ωh, ph, zh, qh) ∈Wh × Ph ×Wh × Ph such that

(3.26) inf
ψh∈Sh

(‖ψ − ψh‖+ h‖ψ − ψh‖1) ≤ Chr‖ψ‖r,
where ψ is ω, p, z or q and the space Sh is either Wh or Ph corresponding to
ωh or ph, qh there exists a pair (uh,vh) ∈ Uh ×Uh such that

(3.27) inf
wh∈Uh

(‖w −wh‖+ h‖w −wh‖1) ≤ Chs+1‖w‖s+1,

where w is u or v.
Note that typical finite element spaces consisting of continuous piecewise

polynomials with respect to quasi-uniform triangulations satisfy (3.26), (3.27).
Then, the finite element approximation to (3.23) becomes:

find (ωh,uh, ph, zh,vh, qh) ∈ Vh such that
(3.28)

B(ωh,uh, ph, zh,vh, qh; ω̃h, ũh, p̃h, z̃h, ṽh, q̃h) = F (ω̃h, ũh, p̃h, z̃h, ṽh, q̃h),

∀(ω̃h, ũh, p̃h, z̃h, ṽh, q̃h) ∈ Vh.

Theorem 3.1. Let (ω,u, p, z,v, q) ∈ V be the solution of the problem (3.23)
and let (ωh,uh, ph, zh,vh, qh) ∈ Vh be the solution of the problem (3.28). Then
we have

‖|(ω,u, p, z,v, q)− (ωh,uh, ph, zh,vh, qh)‖|(3.29)

≤ C inf
(ω̃h,ũh,p̃h,z̃h,ṽh,q̃h)∈Vh

‖|(ω,u, p, z,v, q)− (ω̃h, ũh, p̃h, z̃h, ṽh, q̃h)‖|

and, if (ω,u, p, z,v, q) ∈ Hr(Ω) ×Hs+1(Ω)2 ×Hk(Ω) ×Hr(Ω) ×Hs+1(Ω)2 ×
Hk(Ω) for some r ≥ 1, s ≥ 1 and k ≥ 1, then also
(3.30)

‖|(ω,u, p, z,v, q)− (ωh,uh, ph, zh,vh, qh)‖|
≤ C(h2r‖ω‖2r + h2s‖u‖2s+1 + h2k‖p‖2k + h2r‖z‖2r + h2s‖v‖2s+1 + h2k‖q‖2k)

1
2 ,

where C depends on δ, ν and the domain Ω and the ratio of the constants C2

and C1 in Theorem 2.2.

Proof. It is easy to show that the error (ω−ωh,u−uh, p−ph, z−zh,v−vh, q−
qh) is orthogonal to Vh with respect to the bilinear form B(·; ·). Standard
finite element analyses and (3.24)-(3.25) yield the error estimate (3.29) and the
approximation properties (3.26), (3.27) leads to (3.30). ¤
Corollary 3.1. Let the hypotheses of Theorem 3.1 hold. Let the approximate
control be defined by fh =

vh
δ

. Then

‖f−fh‖−1≤ C̃(h2r‖ω‖2r+h2s‖u‖2s+1+h
2k‖p‖2k+h2r‖z‖2r+h2s‖v‖2s+1+h

2k‖q‖2k)
1
2 .

Proof. The result follows from (2.11) and (3.30). ¤
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If we use continuous piecewise quadratic polynomials for the approximation
of the velocity and continuous piecewise linear polynomials for the approxima-
tions of the vorticity and pressure, i.e., r, s, k = 2, the we get the following
error estimate

‖|(ω,u, p, z,v, q)− (ωh,uh, ph, zh,vh, qh)‖|
≤ Ch2(‖ω‖22 + ‖u‖23 + ‖p‖22 + ‖z‖22 + ‖v‖23 + ‖q‖22)

1
2 ,

which is optimal with respect to the finite element functions used. (3.30) shows
that error bounds for the velocity obtained here is the best approximation in
the subspace Uh, but one may see that the error estimates for the vorticity
and pressure are one order less than the best approximation in the subspaces
Wh and Ph. However, the use of a single approximating space for all variables
simplifies the programming of the finite element methods.

Although the bilinear formB(·; ·) appears attractive from the point of view of
stability and accuracy, its computation is not feasible because of the evaluation
of the H−1(Ω)2 inner product. Following [10], we can employ the H−1(Ω)2

inner product using a computable operator Th. Let Ãh : H−1(Ω)2 → Uh

be the discrete solution operator w = Ãhg ∈ Uh for the Dirichlet problem.
Assume that there is a symmetric positive definite preconditioner operator
Ah : H−1(Ω)2 → Uh for Ãh which is spectrally equivalent to Ãh. Then for a
fixed positive constants γ, define

Th = h2Ih + γAh,

where Ih denotes the identity operator on Uh. It is also known that the
H−1(Ω)2 inner product (·, ·)−1 can be replaced by the equivalent discrete inner
product such that (Th ·, ·) (see [10]). Now, let us define the discrete counter-
parts of the bilinear form B(·; ·) and the linear functional F (·) such that

Bγ(ω,u, p, z,v, q; ω̃, ũ, p̃, z̃, ṽ, q̃)

= (Th(ν∇⊥ω +∇p− v
δ

), ν∇⊥ω̃ +∇p̃− ṽ
δ

) + (∇ · u,∇ · ũ)

+ (ω −∇× u, ω̃ −∇× ũ) +
1
δ2

(Th(ν∇⊥z +∇q + u), ν∇⊥z̃ +∇q̃ + ũ)

+
1
δ2

(∇ · v,∇ · ṽ) +
1
δ2

(z −∇× v, z̃ −∇× ṽ)

and

Fγ(ω̃, ũ, p̃, z̃, ṽ, q̃) =
1
δ2

(Th(ud), ν∇⊥z̃ +∇q̃ + ũ).

Then, the discrete variational problem corresponding to (3.23) becomes:
find (ωh,uh, ph, zh,vh, qh) ∈ Vh such that

(3.31)
Bγ(ωh,uh, ph, zh,vh, qh; ω̃, ũ, p̃, z̃, ṽ, q̃) =Fγ(ω̃, ũ, p̃, z̃, ṽ, q̃),

∀(ω̃, ũ, p̃, z̃, ṽ, q̃) ∈ Vh.
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A simpler approach to compute the H−1(Ω)2 inner product is to use a
scale argument (see [5]) which replaces ‖ν∇⊥ω +∇p − v

δ ‖2−1 by the weighted
L2(Ω)2-norm h2 ‖ν∇⊥ω + ∇p − v

δ ‖2 instead of the discrete negative norm(
Th(ν∇⊥ω +∇p− v

δ ), ν∇⊥ω̃ +∇p̃− ṽ
δ

)
. This is nothing but to take γ = 0 in

the problem (3.31), i.e., we take Th = h2 Ih. Then, we have

B0(ω,u, p, z,v, q; ω̃, ũ, p̃, z̃, ṽ, q̃)

= h2(ν∇⊥ω +∇p− v
δ
, ν∇⊥ω̃ +∇p̃− ṽ

δ
) + (∇ · u,∇ · ũ)

+ (ω −∇× u, ω̃ −∇× ũ) +
h2

δ2
(ν∇⊥z +∇q + u, ν∇⊥z̃ +∇q̃ + ũ)

+
1
δ2

(∇ · v,∇ · ṽ) +
1
δ2

(z −∇× v, z̃ −∇× ṽ)

and

F0(ω̃, ũ, p̃, z̃, ṽ, q̃) =
h2

δ2
(ud, ν∇⊥z̃ +∇q̃ + ũ).

The discrete problemB0(ωh,uh, ph, zh,vh, qh; ω̃,ũ, p̃, z̃, ṽ, q̃)=F0(ω̃, ũ, p̃, z̃, ṽ, q̃)
is equivalent to a linear algebraic system:

(3.32)




K1 CT1 CT2 0 CT4 0
C1 K2 0 CT3 0 CT6
C2 0 K3 0 CT5 0
0 C3 0 K∗1 C∗1

T C∗2
T

C4 0 C5 C∗1 K4 0
0 C6 0 C∗2 0 K∗3







~ω
~u
~p
~z
~v
~q




=




0
~f
0
~g
0
~h



.

Indeed, we chooses bases {Wi}mi=1, {Ui}ni=1 and {Pi}ri=1 for Wh, Uh, and Ph,
respectively, and we then have ωh =

∑m
i=1 ωiWi, uh =

∑n
i=1 uiUi, ph =∑r

i=1 piPi, zh =
∑m
i=1 ziWi, vh =

∑n
i=1 viUi and qh =

∑r
i=1 qiPi for some

sets of coefficients {ωi}mi=1, {ui}ni=1, {pi}ri=1, {zi}mi=1, {vi}ni=1 and {qi}ri=1 that
are determined by solving (3.32). In (3.32), we have that ~ω = (ω1, . . . , ωm)T ,
~u = (u1, . . . , un)T , ~p = (p1, . . . , pr)T , ~z = (z1, . . . , zm)T , ~v = (v1, . . . , vn)T and
~q = (q1, . . . , qr)T ,

(K1)ij = h2ν2(∇⊥Wj ,∇⊥Wi) + (Wj ,Wi) for i, j = 1, . . . ,m

(K∗1)ij =
h2ν2

δ2
(∇⊥Wj ,∇⊥Wi) +

1
δ2

(Wj ,Wi) for i, j = 1, . . . ,m

(K2)ij = (∇ · Uj ,∇ · Ui) + (∇× Uj ,∇× Ui) +
h2

δ2
(Uj , Ui) for i, j = 1, . . . , n

(K3)ij = h2(∇Pj ,∇Pi) for i, j = 1, . . . , r

(K∗3)ij =
h2

δ2
(∇Pj ,∇Pi) for i, j = 1, . . . , r

(K4)ij =
1
δ2

(∇ · Uj ,∇ · Ui)+ 1
δ2

(∇× Uj ,∇× Ui)+
h2

δ2
(Uj , Ui) for i, j = 1, . . . , n
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(C1)ij = −(Wj ,∇× Ui) for i = 1, . . . , n, j = 1, . . . ,m

(C∗1)ij = − 1
δ2

(Wj ,∇× Ui) for i = 1, . . . , n, j = 1, . . . ,m

(C2)ij = h2ν(∇⊥Wj ,∇Pi) for i = 1, . . . , r, j = 1, . . . ,m

(C∗2)ij =
h2ν

δ2
(∇⊥Wj ,∇Pi) for i = 1, . . . , r, j = 1, . . . ,m

(C3)ij =
h2ν

δ2
(Uj ,∇⊥Wi) for i = 1, . . . ,m, j = 1, . . . , n

(C4)ij = −h
2ν

δ
(∇⊥Wj , Ui) for i = 1, . . . , n, j = 1, . . . ,m

(C5)ij = −h
2

δ
(∇Pj , Ui) for i = 1, . . . , n, j = 1, . . . , r

(C6)ij =
h2

δ2
(Uj ,∇Pi) for i = 1, . . . , r, j = 1, . . . , n

(~f)i =
h2

δ2
(ud, Ui) for i = 1, . . . , n

(~g)i =
h2ν

δ2
(ud,∇⊥Wi) for i = 1, . . . ,m

(~h)i =
h2

δ2
(ud,∇Pi) for i = 1, . . . , r.

Remark 3.1. It easily follows from Theorem 2.2 that the coefficient matrix in
(3.32) is symmetric and positive definite. Moreover, all four coefficient matri-
ces K1,K∗1,K2,K3,K∗3, and K4 of the linear systems in (3.32) are themselves
symmetric and positive definite.

4. Numerical experiments

In this section, we present computational study of the problem (3.32) in a
unit square domain Ω = (0, 1)× (0, 1) ⊂ R2. The domain Ω is triangulized uni-
formly with the grid interval h ranging from 2−2 to 2−5 for each direction. We
use the single approximating space of continuous piecewise linear polynomials
for the approximations of all unknowns. Although our analysis does not in-
clude the error estimate in that case, we expect to observe rates of convergence
O(h2) for the L2 error ‖u− ud‖.

The norms are all discrete norms measured by the five-point Gaussian quad-
rature rule in each triangle based on the triangulation Th. We use the multigrid
V-cycle method with the Gauss-Seidel smoothing iteration. We set the toler-
ance of the errors to be 10−4 and the maximum number of iterations to be 300.
We tested the problem with the following simple desired state (target velocity)
ud(x, y) = (u(x, y), v(x, y)) is chosen where

u =
d

dy
φ(x)φ(y) and v = − d

dx
φ(x)φ(y)
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Table 1. The norms ‖uh−ud‖, ‖fh‖ and J(uh, ph, fh) when
h = 1/16.

δ ‖uh − ud‖ ‖fh‖ J (uh, ph, fh)
1 1.2745e-01 2.0007e-03 8.1239e-03

10−1 1.2682e-01 1.9950e-02 8.0610e-03
10−2 8.5708e-02 1.3286e-01 3.7612e-03
10−3 6.6866e-03 4.9484e-02 2.3580e-05
10−4 2.2184e-03 4.4086e-02 2.5578e-06
10−5 2.2016e-03 3.9161e-01 3.1903e-06

Table 2. The norms ‖uh−ud‖, ‖fh‖ and J(uh, ph, fh) when
h = 1/32.

δ ‖uh − ud‖ ‖fh‖ J (uh, ph, fh)
1 1.2745e-01 2.0546e-03 8.1241e-03

10−1 1.2694e-01 2.0650e-02 8.0786e-03
10−2 8.3699e-02 1.2757e-01 3.5841e-03
10−3 4.6848e-03 3.8286e-02 1.1707e-05
10−4 4.4948e-04 3.2202e-03 1.0154e-07
10−5 4.0933e-04 3.6678e-02 9.0500e-08

and
φ(z) = (1− z)2(1− cos(πz)).

The initial velocity and adjoint variable are set to zeros. We examine the effects
of changes in the penalty parameter δ. To show the effects of the δ, we report
the discrete L2-norm distances between the desired states ud and controlled
state uh, the norm of control fh and the value of the cost functional J . All
computations were carried out with ν = 1.

In Table 1, we present numerical results for the cases δ = 1, 10−1, 10−2, and
so on. For the case h = 1/16, we see that the L2 error ‖uh − ud‖ goes to
zero as δ goes to zero. Table 2 shows the numerical results when h = 1/32
is fixed. We have a phenomenon similar to those of Table 1. Figures 1 and
2 illustrate that the numerical solution uh converging to target velocity ud.
In Figure 1, we display the target velocity and approximate velocities for δ =
10−1, 10−2, 10−3, 10−4 when h = 1/16 is fixed. In Figure 2, the approximate
velocity uh is similar to the target velocity ud for δ = 10−4 when h = 1/32 is
fixed. Figure 3 show the graph of control f for δ = 10−4, 10−5 when h = 1/16
is fixed.
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Figure 1. Target velocity ud(top), controlled velocities for
different values of δ; δ = 10−1, 10−2, 10−3, 10−4 (from top to
bottom and left to right) when h = 1/16.
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Figure 2. Target velocity v.s. controlled velocity for δ =
10−4 when h = 1/32

.

Figure 3. control f for δ = 10−4, δ = 10−5, when h = 1/16

Table 3. The norms ‖uh − ud‖, ‖fh‖ and J(uh, ph, fh) with
convergence rate for δ = 10−4.

h ‖uh − ud‖ ‖fh‖ J (uh, ph, fh)
1/4 3.6726e-02 1.5375e-00 7.9258e-04
1/8 8.9823e-03 2.03 3.3640e-01 4.5999e-05 4.11
1/16 2.2184e-03 2.02 4.4086e-02 2.5578e-06 4.17
1/32 4.4948e-04 2.30 3.2202e-03 1.0154e-07 4.65

For the cases δ = 10−4, 10−5, Tables 3 and 4 show the numerical results
with convergence rates. Table 3 shows the discretization approximate error
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Table 4. The norms ‖uh − ud‖, ‖fh‖ and J(uh, ph, fh) with
convergence rate for δ = 10−5.

h ‖uh − ud‖ ‖fh‖ J (uh, ph, fh)
1/4 3.6725e-02 1.5737e+01 1.8560e-03
1/8 8.9950e-03 2.03 3.3424e-00 9.6315e-05 4.27
1/16 2.2016e-03 2.03 3.9161e-01 3.1903e-06 4.91
1/32 4.0933e-04 2.43 3.6678e-02 9.0500e-08 5.14

bound of ‖uh − ud‖ and J(uh, ph, fh) are like O(h2) and O(h4), respectively.
In Table 4, we have the numerical results similar to those of Table 3. But the
norm of control f of Table 4 is a little larger than that of Table 3. In the case
of δ = 1, 10−1, . . . , 10−3, we don’t have the predicted error bound. In this point
of view, the choice of δ = 10−4 seems to be the best choice among the present
result for fixed ν = 1.
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