Antibacterial Activity of Artemisa Capillaris THUNB on Oral Bacteria

인진쑥의 구강세균에 대한 항균작용

  • Chae, Gyu-Chang (Department of Oral Medicine, School of Dentistry, Kyung Hee University) ;
  • Auh, Q-Schick (Department of Oral Medicine, School of Dentistry, Kyung Hee University) ;
  • Chun, Yang-Hyun (Department of Oral Medicine, School of Dentistry, Kyung Hee University) ;
  • Hong, Jung-Pyo (Department of Oral Medicine, School of Dentistry, Kyung Hee University)
  • 채규창 (경희대학교 치의학전문대학원 구강내과학교실) ;
  • 어규식 (경희대학교 치의학전문대학원 구강내과학교실) ;
  • 전양현 (경희대학교 치의학전문대학원 구강내과학교실) ;
  • 홍정표 (경희대학교 치의학전문대학원 구강내과학교실)
  • Published : 2009.06.30

Abstract

Recently it is very interesting that the plant extracts use to prevent or treat the oral diseases. The present study was performed to observe the antibacterial effect on S. gordonii Challis, S. gordoii G9B, S. mutans GS5, S. sobriuns 6715, E. faecalis ATCC 4083, A. actinomycetem Y4, P. gingivalis A7A1-28, P. gingivalis W83, Pr. intermedia ATCC 25611, F. nucleatum KTCT 2488, C. albicans ATCC 18804 of Artemisa capillaris THUNB employing the viable cell counts. The results were as follows: 1. Minimum inhibitory concentration(MIC) and Minimum bactericidal concentration(MBC) of extracts of Artemisa capillaris THUNB for P. gingivalis A7A1-28, P. gingivalis W83, and Pr. intermedia ATCC 25611, which are the pathologic bacteria of periodontal diseases, was observed under 2%. 2. MIC of extracts of Artemisa capillaris THUNB for P. gingivalis A7A1-28 was determined to be 1.2% and MBC was determined to be 2.0% respectively. 3. MIC of extracts of Artemisa capillaris THUNB for P. gingivalis W83 was determined to be 1.4% and MBC was determined to be 2.0% respectively. 4. MIC of extracts of Artemisa capillaris THUNB for Pr. intermedia ATCC 25611 was determined to be 1.2% and MBC was determined to be 2.0% respectively. The overall results indicate that Artemisa capillaris THUNB used for this study has a strong antibacterial activity against P. gingivalis A7A1-28, P. gingivalis W83, and Pr. intermedia ATCC 25611, which are the periodontopathic bacteria. Therefore, the extracts of Artemisa capillaris THUNB can be used as a candidate for prevention and therapeutic agent against periodontal diseases.

천연 식물 추출물을 구강 질환에 활용하는 방안을 모색하기 위하여, 본 연구는 인진쑥에서 추출한 쑥추출액을 치의학분야에 활용하고자 S. gordonii Challis, S. gordoii G9B, S. mutans GS5, S. sobriuns 6715, E. faecalis ATCC 4083, A. actinomycetem Y4, P. gingivalis A7A1-28, P. gingivalis W83, Pr. intermedia ATCC 25611, F. nucleatum KTCT 2488, C. albicans ATCC 18804에 대한 항균효과를 미생물학적으로 실험하여, 생균수 검사를 통해 다음과 같은 결과를 얻을 수 있었다. 1. 인진쑥추출액에 의한 최소억제농도(minimum inhibitory concentration; MIC)와 최소살균농도(minimum bactericidal concentration; MBC)가 모두 쑥추출액 농도 2.0%이하에서 관찰된 세균은 치주질환 원인균인 P. gingivalis A7A1-28와 P. gingivalis W83, Pr. intermedia ATCC 25611로 나타났다. 2. P. gingivalis A7A1-28의 MIC는 쑥추출액 농도 1.2%, MBC는 2.0%로 관찰되었다. 3. P. gingivalis W83의 MIC는 쑥추출액 농도 1.4%, MBC는 2.0%로 관찰되었다. 4. Pr. intermedia ATCC 25611의 MIC는 쑥추출액 농도 1.2%, MBC는 2.0%로 관찰되었다. 천연 자연물질인 인진쑥이 구강질환을 일으키는 대표적인 균주에 대한 효과를 연구한 본 실험의 결과, 인진쑥은 구강 세균, 특히 P. gingivalis A7A1-28와 P. gingivalis W83, Pr. intermedia ATCC 25611에 대한 항균효과가 있음이 증명되었다. 따라서 이 천연물질이 부작용이 없는 한계 내에서 사용된다면, 구강질환자의 구강 환경 개선을 위한 치약, 구강세척제 등의 구강용품들을 통해 임상에 적극적으로 사용될 수 있을 것으로 생각된다.

Keywords

References

  1. Buchbauer G. Aromatherapy: evidence for sedative effects of the essential oil of lavender after inhalation. Z Naturfosch C 1991;46:1067-1072
  2. Deans SG, PG Waterman. Biological activity of volatile oils In Volatile Oil Corps Edt. Hay and waterman. 1993; pp.97-111
  3. Lawless J. The illustrated encyclopedia of essential oils. Element books Itd. Shafesbury. UK. 1995
  4. Lis-Balchin M. Essential oils and aromatherapy: their modern role in healing. J R Soc Health 1977;117:324-329 https://doi.org/10.1177/146642409711700511
  5. Muller CH. Allelopathy as a factor in ecological process. Vegetation 1969;18:348-357 https://doi.org/10.1007/BF00332847
  6. Gocho S. Antibacterial action of aroma compounds in vapor state. Int J Antimicrob Agents 1991;19:329-334
  7. Gocho S. The factors affecting antibacterial action of FDA vapor. Int J Antimicrob Agents 1991;19:389-393 https://doi.org/10.1016/S0924-8579(02)00012-2
  8. 谷田員光克, 大平辰朗. 바이오아스 變換計劃硏究報告. 農林水産技術會義 1990;24:36
  9. Rice EL. Allelopathy. 2nd ed., USA, 1984, Acamedic Press Inc., pp. 79-110
  10. Pisseri F, Bertoli A, Pistelli L. Essential oils in medicine: principles of therapy. Parassitologia 2008;50:89-91
  11. Eldeen IM, Elgorashi EE, van Staden J. Antibacterial, anti-inflammatory, anti-cholinesterase and mutagenic effects of extracts obtained from some trees used in South African traditional medicine. J Ethnopharmacol 2005;102(3):457-464 https://doi.org/10.1016/j.jep.2005.08.049
  12. Valsaraj R, Pushpangadan P, Smitt UW, Adsersen A, Nyman U. Antimicrobial screening of selected medicinal plants from India. J Ethnopharmacol 1997;58(2):75-83 https://doi.org/10.1016/S0378-8741(97)00085-8
  13. Rabe T, van Staden J. Antibacterial activity of South African plants used for medicinal purposes. J Ethnopharmacol 1997;56(1):81-87 https://doi.org/10.1016/S0378-8741(96)01515-2
  14. Matu EN, van Staden J. Antibacterial and antiinflammatory activities of some plants used for medicinal purposes in Kenya. J Ethnopharmacol 2003;87(1):35-41 https://doi.org/10.1016/S0378-8741(03)00107-7
  15. Sherif A, Hall RG, el-Amamy M. Drugs, insecticides and other agents from Artemisia. Med Hypotheses 1987;23(2):187-193 https://doi.org/10.1016/0306-9877(87)90154-X
  16. Lopes-Lutz D, Alviano DS, Alviano CS, Kolodziejczyk PP. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 2008;69(8):1732-1738 https://doi.org/10.1016/j.phytochem.2008.02.014
  17. Cha JD, Jeong MR, Jeong SI et al. Chemical composition and antimicrobial activity of the essential oils of Artemisia scoparia and A. capillaris. Planta Med 2005;71(2):186-190 https://doi.org/10.1055/s-2005-837790
  18. Takarada K, Kimizuka R, Takahashi N, Honma K, Okuda K, Kato T. A comparison of the antibacterial efficacies of essential oils against oral pathogens. Oral Microbiol Immunol 2004;19:61-64 https://doi.org/10.1046/j.0902-0055.2003.00111.x
  19. Schoenknecht FD, Sabath LD, Thornsberry C. Susceptibility tests: special tests. In Lennette EH, Balows A, Hausler WJ Jr, Shadomy HJ (Eds). Manual of Clinical Microbiology. 4th, Washington DC, 1985, American Society for Microbiolgy pp.1000-1008
  20. Rosan B, Lamont RJ. Dental plaque formation. Microbes Infect 2000;2:1599-1607 https://doi.org/10.1016/S1286-4579(00)01316-2
  21. Minah GE, Loesche WJ. Sucrose metabolism by prominent members of the flora isolated from cariogenic and non-cariogenic dental plaques. Infect Immun 1977;17:55-61
  22. C. Y. Loo, D. A. Corliss, N. Ganeshkumar. Streptococcus gordonii Biofilm Formation: Identification of Genes that Code for Biofilm Phenotypes J Bacteriol. 2000;182(5),1374-1382 https://doi.org/10.1128/JB.182.5.1374-1382.2000
  23. Tanzer JM, Baranowski LK, Rogers JD, Haase EM, Scannapieco FA. Oral colonization and cariogenicity of Streptococcus gordonii in specific pathogen-free TAN:SPFOM(OM)BR rats consuming starch or sucrose diets. Arch Oral Biol 2001;46(4):323-333 https://doi.org/10.1016/S0003-9969(00)00126-6
  24. Scannapieco FA, Haraszthy GG, Cho MI, Levine MJ. Characterization of an amylase-binding component of Streptococcus gordonii G9B. Infect Immun 1992;60 (11):4726-4733
  25. Murray PA, Prakobphol A, Lee T, Hoover CI, Fisher SJ. Adherence of oral streptococci to salivary glycoproteins. Infect Immun 1992;60(1):31-38
  26. Tsumori H, Kuramitsu H. The role of the Streptococcus mutans glucosyltransferases in the sucrose-dependent attachment to smooth surfaces:essential role of the GtfC enzyme. Oral Microbiol Immunol. 1997;12(5):274-280 https://doi.org/10.1111/j.1399-302X.1997.tb00391.x
  27. Sano H, Shibasaki K, Matsukubo T, Takaesu Y. Effect of molecular mass and degree of deacetylation of chitosan on adsorption of Streptococcus sobrinus 6715 to saliva treated hydroxyapatite. Bull Tokyo Dent Coll 2002;43(2):75-82 https://doi.org/10.2209/tdcpublication.43.75
  28. Sum C, Mohanty S, Gupta PK, Kishen A. Influence of endodontic chemical treatment on Enterococcus faecalis adherence to collagen studied with laser scanning confocal microscopy and optical tweezers: a preliminary study. J Biomed Opt 2008;13(4):044017 https://doi.org/10.1117/1.2957972
  29. Johnson JD, Chen R, Lenton PA, Zhang G, Hinrichs JE, Rudney JD. Persistence of extracrevicular bacterial reservoirs after treatment of aggressive periodontitis. J Periodontol 2008;79(12):2305-2312 https://doi.org/10.1902/jop.2008.080254
  30. Katz J, Ward DC, Michalek SM. Effect of host responses on the pathogenicity of strains of Porphyromonas gingivalis. Oral Microbiol Immunol 1996;11(5): 309-318 https://doi.org/10.1111/j.1399-302X.1996.tb00187.x
  31. Swoboda JR, Kiyak HA, Darveau R, Persson GR. Correlates of periodontal decline and biologic markers in older adults. J Periodontol 2008;79(10):1920-1926 https://doi.org/10.1902/jop.2008.080005
  32. Metzger Z, Blasbalg J, Dotan M, Weiss EI. Enhanced attachment of porphyromonas gingivalis to human fibroblasts mediated by Fusobacterium nucleatum. J Endod 2009;35(1):82-85 https://doi.org/10.1016/j.joen.2008.10.011
  33. Saito A, Inagaki S, Kimizuka R et al. Fusobacterium nucleatum enhances invasion of human gingival epithelial and aortic endothelial cells by Porphyromonas gingivalis. FEMS Immunol Med Microbiol 2008;54(3):349-355 https://doi.org/10.1111/j.1574-695X.2008.00481.x
  34. Fukuizumi T, Nagamatsu H, Kojo T, Inoue H. Induction of salivary antibodies to inhibit Candida albicans adherence to human epithelial cells by tonsillar immunization in rabbits. FEMS Immunol Med Microbiol 2006;47(3):398-404 https://doi.org/10.1111/j.1574-695X.2006.00102.x
  35. Pisseri F, Bertoli A, Pistelli L. Essential oils in medicine: principles of therapy. Parassitologia 2008;50 (1-2):89-91
  36. Kordali S, Cakir A, Mavi A, Kilic H, Yildirim A. Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish artemisia species. J Agric Food Chem 2005;53(5):1408-1416 https://doi.org/10.1021/jf048429n
  37. Kordali S, Kotan R, Mavi A, Cakir A, Ala A, Yildirim A. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils. J Agric Food Chem 2005;53(24):9452-9458 https://doi.org/10.1021/jf0516538
  38. Juteau F, Masotti V, Bessière JM, Dherbomez M, Viano J. Antibacterial and antioxidant activities of Artemisia annua essential oil. J Fitoterapia 2002;73(6):532-535 https://doi.org/10.1016/S0367-326X(02)00175-2
  39. Kalemba D, Kusewicz D, Swiader K. Antimicrobial properties of the essential oil of Artemisia asiatica Nakai. Phytother Res 2002;16(3):288-291 https://doi.org/10.1002/ptr.856
  40. Yu HH, Kim YH, Kil BS, Kim KJ, Jeong SI, You YO. Chemical composition and antibacterial activity of essential oil of Artemisia iwayomogi. Planta Med 2003;69(12):1159-1162 https://doi.org/10.1055/s-2003-818011
  41. Shin TY, Park JS, Kim SH. Artemisia iwayomogi inhibits immediate-type allergic reaction and inflammatory cytokine secretion. Immunopharmacol Immunotoxicol 2006;28(3):421-430 https://doi.org/10.1080/08923970600927975
  42. Kim SH, Choi CH, Kim SY, Eun JS, Shin TY. Anti-allergic effects of Artemisia iwayomogi on mast cell-mediated allergy model. Exp Biol Med 2005;230(1):82-88 https://doi.org/10.1177/153537020523000111
  43. Cha JD, Jung EK, Kil BS, Lee KY. Chemical composition and antibacterial activity of essential oil from Artemisia feddei. J Microbiol Biotechnol 2007;17(12):2061-2065
  44. Cha JD, Jeong MR, Choi HJ et al. Chemical composition and antimicrobial activity of the essential oil of Artemisia lavandulaefolia. Planta Med 2005;71(6):575-577 https://doi.org/10.1055/s-2005-864164