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The Effect of the Number of Clusters on Speech Recognition
with Clustering by ART2/LBG

Lee, Chang-Young?

ABSTRACT

In an effort to improve speech recognition, we investigated the effect of the number of clusters. In usual LBG clustering,
the number of codebook clusters is doubled on each bifurcation and hence cannot be chosen arbitrarily in a natural way. To
have the number of clusters at our control, we combined adaptive resonance theory (ART2) with LBG and perform the
clustering in two stages. The codebook thus formed was used in subsequent processing of fuzzy vector quantization (FVQ) and
HMM for speech recognition tests. Compared to conventional LBG, our method was shown to reduce the best recognition
error rate by 0~0.9% depending on the vocabulary size. The result also showed that between 400 and 800 would be the
optimal number of clusters in the limit of small and large vocabulary speech recognitions of isolated words, respectively.
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1. Introduction

As a method of communication between man and machine, speech
recognition affords a very effective interface. It is known in practical
applications that the absolute level of performance is relatively
unimportant so long as the accuracy exceeds some level [1]. When
the accuracy of the recognizer is above a certain threshold (e.g. 92%),
the user tends to attribute the occasional error to an improper and/or
uncooperative speaking mode of his (or her) own part, rather than
to an inadequacy in the speech recognition system. If the
performance falls below a certain level, on the other hand, the
perception of the user is that the system makes too many errors and
is hence unreliable. There are so many factors affecting the
performance of the speech recognition system and lots of endeavors
for enhancement have been made for several decades.

One of the main elements governing the system accuracy

might be phrased in terms of the clustering procedure. As a
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method to expedite the processing and save the memory, vector
quantization (VQ) of the feature vectors extracted from the speech
signal is frequently used. In this procedure, we consider some
number of representative vectors (centroids or clusters) and use
their indices in the pattern classifier such as HMM or neural
networks. Here, the following question naturally arises: how many
exemplary feature vectors are optimal for the best performance of
a specific speech recognizer?

The number of clusters should somehow reflect the number of
the basic elements of speech, i.e., phonemes in a language. It is
usual to consider about 50 phonemes for speech processing [2],
even though there are minor differences from language to
language. Therefore, if we choose to use, for example, 256
clusters for vector quantization, it means that five variations for
each phoneme on average are being considered. By 'variations' we
mean not only the person-to-person differences but the
context-dependence in speech production.

it is not known a priori how many variations for each
phoneme would yield the best performance in speech recognition.
If the number of clusters is too small, then the mesh of
discrimination in the feature vector space becomes so coarse that

the resolving power becomes weak and distinct enough patterns



might be grouped together. If the number of clusters is too large,
on the other hand, then the mesh is so refined that similar
enough patterns might be classified as different. The best number
of clusters should be determined in such a way that
discrimination between and identification of similar patterns be
optimally reconciled.

For the clustering of the feature vectors, the Linde-Buzo-Gray
(LBG) algorithm has long and extensively been used. In this
method, the number of clusters are successively doubled on each
bifurcation (or binary split) starting from a single cluster.
Therefore, the number of clusters can not be chosen arbitrarily in
this scheme. Codebooks of orders 8 ~10 corresponding to 256~
1024 clusters are commonly used on empirical grounds.

To examine the effect of the number of clusters on speech
recognition in more detail than permitted by the LBG algorithm,
we need to employ another tool that permits us to choose the
number of clusters. A good candidate for this purpose might be
found from the field of neural networks, one of whose main
functions is the pattern classification. Among the numerous neural
networks, we adopt the network of adaptive resonance theory [3]
in this paper.

There are two kinds of this net and the one applicable to
continuous-valued inputs is abbreviated as ART2. This network has
long been used for unsupervised classification of patterns [4] but
applications to speech recognition are found only a little [5]. This
network does not fix the number of classes (output nodes) beforehand
but has the freedom of creating new classes according to a criterion
through the vigilance parameter. Among many revisions of ART2
derived from the original one introduced by Grossberg [3], we will
adopt a simple version as described by Kung [6].

The role of ART2 in our study is to choose the number of
clusters and the remaining job of clustering is passed to LBG.
The combined function is equivalent to K-means clustering with
the number of clusters determined by ART2.

2. Clustering by ART2/LBG

We briefly describe the procedure of clustering proposed in
this paper, i.e., the serial combination of ART2 with LBG. Let z
and w; denote the input vector and the weight of neuron j,
respectively. The criterion of selecting the winner is based on a
minimum distance measure (e.g. Euclidean distance). The steps
are as follows:

(1) Selection of the winner: Given a new input, a MINNET is

used to select the winner J = arg min, T-w; I, that
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yields the minimum distance.

(2) Vigilance test: The selected neuron passes the vigilance

test if

lz—w;ll <p
where the vigilance parameter p determines the radius of a
cluster.

(3) Creation of a new output unit: If the winner fails the
vigilance test, a new neuron unit k¥ is created with weight
w=z.

(4) Weight update: If the winner passes the vigilance test,
adjust the weight of the winner J by a learning rule.
These four steps complete the first stage of our clustering.

(5) Computation of the centroids for the created clusters

(6) Classification of the feature vectors: For each feature
vector  in the training set, find the nearest centroid and
reassign that cluster to z.

(7) Centroid update: The cluster centroids are recomputed
according to the newly assigned vectors.

(8) Convergence test: If the changes in centroids fall below a
specified level, then stop the clustering. Otherwise, go to

the step (6).

The architecture of the above-described procedures is shown in

Figure 1.
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Figure 1. The architecture of the clustering procedures proposed
in this paper. In the first stage, the number of clusters
is chosen by ART2. The cluster centroids are refined
in the second stage by the LBG algorithm.

In the first stage, some number of clusters are formed and
fixed hereafter. In this stage, however, cluster assignments to the
input vectors are somewhat unsatisfactory. The reason is that the
competition is not fair all through the processing since the

recently created output node did not have the chance of
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competition before. Another undesirable feature of the result in
this stage is that the vectors are too crowded in some clusters
while many clusters have only a single vector residing on them.

As a prescription to remedy these problems and refine the
cluster centroids, we employ the LBG algorithm as the second
stage of clustering. In this procedure, iterations are continued untit
no changes occur in centroids. The overall framework of the
proposed method is equivalent to the K-means clustering
algorithm with the number of clusters A determined by ART2.
The combined clustering method of ART2/LBG constitutes the
kernel of this paper.

Once the codebook is thus generated, the next procedures are
to apply fuzzy vector quantization (FVQ) and fed the resultant
vectors into the pattern recognizer. For that purpose, we employ
hidden markov model (HMM), one of the popular recognizers, the
details of which are expounded in the following.

3. Experiments

Our experiments were performed on a set of phone-balanced
350 Korean words. In order to include the effect of the
vocabulary size, the words were divided into four sets as follows.

The sets A, B, and C are disjoint each other and D is the union
of those three.

Table 1. Four sets of speech data divided for studying the effect
of the vocabulary size

Set ID Number of Words
A 50
B 100
C 200
D 350

Forty people including 20 males and 20 females participated in
speech production. In spite of insufficient training data, speech
utterances of 40 people were divided into three disjoint groups as

follows.

Table 2. Division of the 40 people of speech production into

three groups
Group ID Number of People
I 32
I 4
I 4

The group I consisting of 32 people's speech was used for
the codebook generation and training of HMM parameters
A= (m,A,B). These parameters are continually updated during
iterations. In order to choose which values of A to use in actual
test of speech recognition, some test speeches are necessary. The
parameters that yield the best performance on the group II were
stored and used for the group III to get the final performance of
the speaker-independent speech recognition system. This
prescription prevents the system from falling too deep into the
local minimum driven by the training samples of the group I and
hence becoming less robust against the speaker-independence
when applied to the group III.

Each speech utterance was sampled at 16 kHz and quantized
by 16 bits. 512 data points corresponding to 32 ms of time
duration were taken to be a frame. The next frame was obtained
by shifting 170 data points, thereby overlapping the adjacent
frames by =2/3 in order not to lose any information contents of
coarticulation. To each frame, the Hanning window was applied
after pre-emphasis for spectral flattening. MFCC feature vectors
of order 13 were then obtained.

Codebooks of variable sizes were generated by the procedures
described above on the MFCC feature vectors of the group I. The
distances between the feature vectors and the codebook centroids
were calculated and sorted. Appropriately normalized fuzzy
membership values [7] were assigned to the nearest two clusters
and fed to HMM for speech recognition test.

For the HMM, a non-ergodic left-right (or Bakis) model was
adopted. The number of states that is set separately for each class
(word) was made proportional to the average number of frames of
the training samples in that class [8]. Initial estimation of HMM
parameters was obtained by K-means segmental clustering after
the first training. By this procedure, convergence of the
parameters became so fast that enough convergence was reached
after several epochs of training iterations.

Backward state transitions were prohibited by suppressing the

state transition probabilities a;; with i>j to a very small value

but skipping of states was allowed. The last frame was restricted
to end up with the final state associated with the word being
scored within a tolerance of 3. Parameter reestimation was
performed by Baum-Welch reestimation formula with scaled
multiple observation sequences to avoid machine-errors caused by
repetitive multiplication of small numbers. After each iteration,
the event observation probabilities b; (j) were boosted above a
small value [9].

Three features were monitored while training the HMM



parameters: (1) the recognition error rate for the group II of
Table 2, (2) the total probability likelihood of events summed
over all the words of the training set according to the trained
model, and (3) the event observation probabilities for the first
state of the first word in the vocabulary list. Training was
terminated when the convergences for these three features were
thought to be enough. The parameter values of A = (7, 4,B) that
give the best result for the group I were stored and used in

speech recognition test on the group IIL.

4. Results and Discussion

Figure 2 shows the recognition error rate £ vs. the number of
clusters /V as determined by successive bifurcations of LBG
algorithm. The abscissa is in logarithmic scale. From this result,
we see that the recognition error rate is minimum in the vicinity
of N=512 clusters corresponding to the bifurcation order of 9.
This result implies that consideration of around 10 variations for

each phoneme is appropriate for speech recognition task.
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Figure 2. The recognition error rate vs. the number of clusters.
The abscissa is in logarithmic scale. It is seen that the
recognition error rate shows its minimum in the
vicinity of 512 clusters.

If the number of clusters is too small, then the resolution of
discrimination between distinct patterns becomes correspondingly
small. If it is too large, on the other hand, then the system might
discem similar enough patterns as distinct. The system
performance therefore shows its maximum somewhere in between
the two extremes of being too coarse and too fine clusters.

Though the difference might not be referred to be very notable
near the minimum of the error rate, it is desirable, if possible, to
find the optimal number of clusters that would yield the best
result. In order to investigate more details of the error rate vs.

the number of clusters, however, we have to employ another tool
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that allows adjustment of the number of clusters.

Figure 3 shows the number of clusters formed by ART2 as the
vigilance parameter is changed for the 4 sets of different
vocabulary sizes. For a fixed vigilance parameter, more clusters
are formed as the vocabulary size becomes larger. This is as
expected since the radius of the hypersphere encompassing the
whole feature vectors should increase as more words and thus

more feature vectors are involved.
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Figure 3. The number of clusters formed by ART2 vs. the
vigilance parameter for 4 sets of different vocabulary
sizes. For a given vigilance parameter, more clusters
are formed as the vocabulary size becomes larger.

In order to see more detailed feature than the one of Figure 2,
we use the codebook generated by ART2/LBG clustering
procedure proposed in this paper. The subsequent procedures of
FVQ/HMM are the same as before. Figure 4 shows the result for
the vocabulary size of 1W=350 words. The solid line represents
the curve-fitting result assuming that the data is parabolic. The
overall behavior for other vocabulary sizes was found to be

similar to Figure 4.
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Figure 4. The recognition error rate vs. the number of clusters
formed by ART2/LBG for the vocabulary size of
W=350 words. The solid line represents the
curve-fitting result assuming that the data is parabolic.
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Table 3 shows the minimum error rates for the two methods
of clustering and four vocabulary sizes. By the conventional LBG

N=512 for all the
vocabulary sizes. By ART2/LBG, meanwhile, the best number of

clustering, the minimum occurred at

clusters was found to increase as the vocabulary size. The overall

performance was enhanced by 0~0.9% by using ART2/LBG.

Table 3. The minimum recognition error rate and the best number
of clusters obtained from the two clustering methods.

Number of words 50 | 100 | 200 350

Minimum
20 | 2.0 | 33 5.7
error rate (%)

LBG
The best number
512
of clusters
ART Minimum
1.8 120 | 24 52
2 error rate (%)

/LB The best number

545 | 620 | 727 831
G of clusters

The best (or optimal) number of clusters in Table 3 was
obtained from curve-fitting of the data in Figure 4 by assuming a
parabola near the minimum of the error rate. Figure 5 shows the
number of clusters that yields the best performance for various

vocabulary sizes.
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Figure 5. The number of clusters that yields the best performance
for various vocabulary sizes obtained from curve-fitting
of the experimental data.

For numerical analysis of the data in Figure 5, we employ the

following model

NMW) = N,—(N,— N,) exp(—a W) m

where N, and N, denote the values of & in the limits of

small and large vocabulary words . The parameter « is also to

be determined from the data.
Once N, is known, it is not difficult to fit the data by

converting the above expression to
N,—NW) = (N, —N,) exp(—a W) 2

By taking the logarithm of both sides and applying the routine

of the least square method, /V, and o can be calculated. Since
N, is not known beforehand, however, we have to vary it,
obtain /N, and « from the least square method, calculate the sum

of squares of the difference between Eq. (1) and the actual data,
and select the values that minimizes the associated errors. The

result is given in Figure 6.

800 ———— —
700}
600 Vs ]

7
500| /

400 b

Best Number of Clusters
&

300t L s
1] 100 200 300 400

Number of Words

Figure 6. The curve-fitting result for the data in Figure 5
according to Eq. (1).

From the fit, we found that

N,=383 , N, =781
This result implies that it would be desirable to consider about
8 and 16 variations for each phoneme in the speech recognition

task in the limits of small and large vocabularies, respectively.

5. Conclusion

In order to find the optimal number of clusters for
speaker-independent speech recognition, we introduced the neural
network of adaptive resonance theory for continuous-valued
parameters (ART2), which enables us to control the number of
clusters via the vigilance parameter. By combining this network
with the conventional LBG algorithm without bifurcation, the
clustering was performed in two stages. From the speech

recognition test, the best recognition error rate was shown to be



improved by 0~0.9% depending on the vocabulary sizes. It was
also revealed that the best number of clusters was found to be
around 400 and 800 in the limits of small and large vocabularies,
respectively. This result suggests that about 8 and 16 variations
per phoneme might be desirable in the two liming cases of
speech recognition.
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