핵의학 영상을 이용한 생존심근 평가

Assessment of Viable Myocardium with Nuclear Imaging

  • 강원준 (연세대학교 의과대학 영상의학교실 핵의학과)
  • Kang, Won-Jun (Division or Nuclear Medicine, Department or Radiology, Yonsei University College or Medicine)
  • 발행 : 2009.06.30

초록

Nuclear cardiac imaging has been widely used to assess viable myocardium in patients with ischemic heart disease, The assessment of viable myocardium is important in selecting patients who will be benefit from revascularization. Although revascularization is indicated in patients with sufficient myocardium, patients with scar tissue should be treated medically. Nuclear imaging methods including myocardial perfusion SPECT and FDG PET have been shown to be effective modalities for identifying viable myocardium.

키워드

참고문헌

  1. Challapalli S, Bonow RO, Gheorghiade M. Medical management of heart failure secondary to coronary artery disease. Coron Artery Dis 1998;9:659-74 https://doi.org/10.1097/00019501-199809100-00006
  2. Schinkel AF, Poldermans D, Vanoverschelde JL, Elhendy A, Boersma E, Roelandt JR, et al. Incidence of recovery of contractile function following revascularization in patients with ischemic left ventricular dysfunction. Am J Cardiol 2004;93:14-7 https://doi.org/10.1016/j.amjcard.2003.09.005
  3. Maes A, Flameng W, Nuyts J, Borgers M, Shivalkar B, Ausma J, et al. Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation 1994;90:735-45 https://doi.org/10.1161/01.CIR.90.2.735
  4. RahimtoolaSH. The hibernating myocardium. Am Heart J 1989;117:211-21 https://doi.org/10.1016/0002-8703(89)90685-6
  5. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 1982;66:1146-9 https://doi.org/10.1161/01.CIR.66.6.1146
  6. Vanoverschelde JL, Melin JA. The pathophysiology of myocardial hibernation: current controversies and future directions. Prog Cardiovasc Dis 2001;43:387-98 https://doi.org/10.1053/pcad.2001.20655
  7. Bax JJ, van der Wall EE, Harbinson M. Radionuclide techniques for the assessment of myocardial viability and hibemation. Heart 2004;90(Suppl 5):26-33 https://doi.org/10.1136/hrt.2003.012930
  8. Bax JJ, Poldermans D, Elhendy A, Boersma E, Rahimtoola SH. Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr Probl Cardiol 2001;26:147-86 https://doi.org/10.1067/mcd.2001.109973
  9. Bax JJ, Maddahi J, Poldermans D, Elhendy A, Cornel JH, Boersma E, et al. Sequential ($^{201}$)Tl imaging and dobutamine echocardiography to enhance accuracy of predicting improved left ventricular ejection fraction after revascularization. J Nucl Med 2002;43:795-802
  10. Samady H, Elefteriades JA, Abbott BG, Mattera JA, McPherson CA, Wackers FJ. Failure to improve left ventricular function after coronary revascularization for ischemic cardiomyopathy is not associated with worse outcome. Circulation 1999;100:1298-304 https://doi.org/10.1161/01.CIR.100.12.1298
  11. Marwick TH, Zuchowski C, Lauer MS, Secknus MA, Williams J, Lytle BW. Functional status and quality of life in patients with heart failure undergoing coronary bypass surgery after assessment of myocardial viability. J Am Coll Cardiol 1999;33:750-8 https://doi.org/10.1016/S0735-1097(98)00642-1
  12. Dilsizian V, Bonow RO. Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium. Circulation 1993;87:1-20 https://doi.org/10.1161/01.CIR.87.1.1
  13. Bonow RO, Dilsizian V. Thallium-201 and technetium-99msestamibi for assessing viable myocardium. J Nucl Med 1992;33:815-8
  14. Sciagra R, Pellegri M, Pupi A, Bolognese L, Bisi G, Carnovale V, Santoro GM. Prognostic implications of Tc-99m sestamibi viability imaging and subsequent therapeutic strategy in patients with chronic coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol 2000;36:739-45 https://doi.org/10.1016/S0735-1097(00)00797-X
  15. King LM, Opie LH. Glucose delivery is a major determinant of glucose utilisation in the ischemic myocardium with a residual coronary flow. Cardiovasc Res 1998;39:381-92 https://doi.org/10.1016/S0008-6363(98)00100-X
  16. Gropler RJ. Methodology governing the assessment of myocardial glucose metabolism by positron emission tomography and fluorine 18-labeled fluorodeoxyglucose. J Nucl Cardiol 1994;1:S4-14 https://doi.org/10.1007/BF02940063
  17. Knuuti MJ, Yki-Jiirvinen H, Voipio-Pulkki LM, Maki M, Ruotsalainen U, Harkonen R, et al. Enhancement of myocardial [fluorine-18]fluorodeoxyglucose uptake by a nicotinic acid derivative. J Nucl Med 1994;35:989-98
  18. Bax JJ, Patton JA, Poldermans D, Elhendy A, Sandler MP. F-18 Fluorodeoxyglucose imaging with positron emission tomography and single photon emission computed tomography: cardiac applications. Semin Nucl Med 2000;30:281-98 https://doi.org/10.1053/snuc.2000.9543
  19. Di Carli MF, Davidson M, Little R, Khanna S, Mody FV, Brunken RC, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994;73:527-33 https://doi.org/10.1016/0002-9149(94)90327-1
  20. Maddahi J, Scheibert H, Brunken R, Di Carli M. Role of thallium-201 and PET imaging in evaluation of myocardial viability and management of patients with coronary artery disease and left ventricular dysfunction. J Nucl Med. 1994;35:707-15
  21. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coil Cardiol 2002;39:1151-8 https://doi.org/10.1016/S0735-1097(02)01726-6