Cation and Nitrogen Contents, and Growth of Soybean against Underground Water Level at Reproductive Stage

생식생장기에 지하수위 처리가 콩의 생육과 질소 및 몇가지 양이온 함량에 미치는 영향

  • Park, Gwan-Soo (Collage of Agriculture and life science, Chungnam National University) ;
  • Ahn, Tae-Hwan (Collage of Agriculture and life science, Chungnam National University) ;
  • Cho, Jin-Woong (Collage of Agriculture and life science, Chungnam National University)
  • 박관수 (충남대학교 농업생명과학대학) ;
  • 안태환 (충남대학교 농업생명과학대학) ;
  • 조진웅 (충남대학교 농업생명과학대학)
  • Published : 2009.06.30

Abstract

This study was conducted to response the growth, seed yield, nitrogen content and different cation content of two soybean, flooding-tolerant cv. Pungsannamulkong (PNSK) and flooding-sensitive cv. Tawonkong (TWK) when these were subjected to flooding stress at R1 stage for cultivation in paddy field. Flooding, underground water levels (UWL) of 0 cm, 10 cm and 40 cm, was experimented from flowering time to harvest time. The dry matter and seed yield of soybean with UWL of 0 or 10 cm declined in comparison with UWL of 40 cm and these were more reduction in TWK than in PNSK. The amount of nitrogen uptake decreased in higher UWL and there was a high significant relationship $(R^2=0.872)$ between nitrogen content and seed yield at flooding stress. K content of leaf and stem in soybean plants had a small change with UWL but Ca content had a decrease (leaf and stem) or increase (root). Mn and Fe content were increased at higher UWL and were more in TWK than in PNSK.

본 연구는 생식생장기의 습해에 의한 콩 수량과 질소 및 여러 가지 양분흡수에 미치는 영향을 알고자 지하수위를 0 cm, 10 cm 및 40 cm로 달리하여 조사하였다. 지하수위가 높음에 따라 생육과 수량은 감소되었으며 다원콩의 감소정도가 풍산나물콩보다 더 크게 나타났다. 질소흡수량은 지하수위가 높을수록 감소되었으며 수량과의 상관관계는 $R^2=0.872$로 고도로 유의한 정의상관을 보였다. K함량은 지하수위 높이에 큰 차이를 보이지 않았으며(뿌리 제외), Ca함량은 감소(잎, 줄기) 또는 증가(뿌리)하였지만 Mn과 Fe 함량은 지하수위가 높을수록 급격히 증가하였으며 다원콩이 풍산나물콩보다 높은 함량을 보였다.

Keywords

References

  1. 농림부. 2008. 농림통계연보
  2. 이충열, 조진웅. 2007. 영양생장기 습해처리에 따른 콩 품종의 해부형태학적 특성 비교. 한국작물학회지. 52 : 320-324
  3. Atwell, B. J. and B. T. Steer. 1990. The effect of oxygen deficiency on uptake and distribution of nutrients in maize plants. Plant Soil. 122 : 1-8
  4. Bacanamwo, M. and L. C. Purcell. 1999. Soybean root morphological and anatomical traits associated with acclimation to flooding. Crop Sci. 39 : 143-149 https://doi.org/10.2135/cropsci1999.0011183X003900010023x
  5. Boyer, E. M. 1979. Effect of silver ion, carbon dioxide, and oxygen on ethylene action and metabolism. Plant Physiol. 63 : 169-173 https://doi.org/10.1104/pp.63.1.169
  6. Cho, J. W. and T. Yamakawa. 2006. Effects on growth and seed yield of small seed soybean cultivars of flooding conditions in paddy field. J. Fac. Agr. Kyushu Univ. 51 : 189-193
  7. Cho, J. W., H. C. Ji and T. Yamakawa. 2006. Comparison of photosynthetic response of two soybean cultivars to soil flooding. J. Fac. Agr. Kyushu Univ. 51 : 227-232
  8. Cho, J. W., J. J. Lee, Y J. Oh, J. D. So, J. Y Won, and C. H. Kim. 2006. Soybean growth and yield as affected by spacing of drainage furrows in paddy field. Korean J. Crop Sci. 51 : 26-31
  9. Drew, M. C. and E. J. Sisworo. 1979. The development of waterlogging damage in young barley plants in realation to plant nutrient status and changes in soil properties. New Physiol. 82 : 301-314 https://doi.org/10.1111/j.1469-8137.1979.tb02656.x
  10. Grable, A and R E. Danielson. 1965. Effect of carbon dioside, oxygen, and soil moisture suction on germination of com and soybeans. Soil Sci. Soc. Am. Proc. 29 : 12-18 https://doi.org/10.2136/sssaj1965.03615995002900010007x
  11. Griffin, J. L. and A M. Saxton. 1988. Response of solidseeded soybean to flood irrigation. II Flood duration. Agron. J. 80 : 885-888 https://doi.org/10.2134/agronj1988.00021962008000060009x
  12. Jackson, M. B. and W. Armstrong. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1 : 274-287 https://doi.org/10.1111/j.1438-8677.1999.tb00253.x
  13. Linkemer, G., J. E. Board and Mary E. Musgrave. 1998. Waterlogging effects on growth and yield components in late-planted soybean. Crop Sci. 38 : 1579-1584
  14. Marschner, H. 1995. Mineral nutriention of higher plants. Second edition. Academic press. pp. 626-641
  15. Russell, D. A, D. M. L. Wong, and M. M. Sachs. 1990. The anaerobic response of soybean. Plant Physiol. 92 : 401-494 https://doi.org/10.1104/pp.92.2.401
  16. Sallam, A, and H. D. Scott. 1987. Effects of prolonged flooding on soybeans during early vegetative growth. Soil Sci. 144 : 61-66 https://doi.org/10.1097/00010694-198707000-00010
  17. Sinclair, T. R, J. R. Farias, N. Neumaier, and A L. Nepomuceno. 2003. Modeling nitrogen accumulation and use by soybean. Field Crops Res. 81 : 149-158 https://doi.org/10.1016/S0378-4290(02)00221-6
  18. Trought, M. C. T. and M. C. Drew. 1980. The development of waterlogging damage in wheat seedlings (Triticum aestivum L.). II. Accumulation and redistribution of nutrients by shoot. Plant Soil. 56 : 187-199 https://doi.org/10.1007/BF02205847
  19. Won, J. Y, H. C. Ji, and J. W. Cho. 2006. Nitrogen uptake and growth of soybean seedlings under flooding stress. Korean J. Crop Sci. 51 : 118-122
  20. Yamauchi, M. 1989. Rice bronzing in Nigeria caused by nutrient imbalances and its control by potassium sulfate application. Plant Soil. 117 : 275-286 https://doi.org/10.1007/BF02220722