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SOLVABILITY FOR A CLASS OF THE SYSTEM OF
THE NONLINEAR SUSPENSION BRIDGE EQUATIONS

Tacksun Jung and Q-Heung Choi

Abstract. We show the existence of the nontrivial periodic so-
lution for a class of the system of the nonlinear suspension bridge
equations with Dirichlet boundary condition and periodic condition
by critical point theory and linking arguments. We investigate the
geometry of the sublevel sets of the corresponding functional of the
system, the topology of the sublevel sets and linking construction
between two sublevel sets. Since the functional is strongly indef-
inite, we use the linking theorem for the strongly indefinite func-
tional and the notion of the suitable version of the Palais-Smale
condition.

1. Introduction

In this paper we investigate the existence of the nontrivial periodic
solution for a class of the system of the nonlinear suspension bridge
equations with Dirichlet boundary condition and periodic condition

(u1)tt + (u1)xxxx − Fr1(x, t, u1, . . . , un) = 0 in (−π

2
,
π

2
)×R, (1.1)

(u2)tt + (u2)xxxx − Fr2(x, t, u1, . . . , un) = 0 in (−π

2
,
π

2
)×R,

...
...

...
...

(un)tt + (un)xxxx − Frn(x, t, u1, . . . , un) = 0 in (−π

2
,
π

2
)×R,

ui(±π

2
, t) = (ui)xx(±π

2
, t) = 0, i = 1, . . . , n,

ui(x, t) = ui(−x, t) = ui(x,−t) = ui(x, t + π), i = 1, . . . , n,
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where F : (−π
2 , π

2 ) × R × Rn → R is a differentiable function with
F (x, t, 0, . . . , 0) = 0, Fx(x, t, 0, . . . , 0) = 0 and Ft(x, t, 0, . . . , 0) = 0, and
Fri(x, t, r1, . . . , rn) = ∂F

∂ri
(x, t, r1, . . . , rn). Let u = (u1, . . . , un). We

assume that F satisfies the following conditions:
(F1) lim(u1,...,un)→(0,...,0)

Fri (x,t,u)

|u1|+...+|un| = 0.

(F2) lim|u1|+...+|un|→∞
Fri (x,t,u)

|u1|+...+|un| = ∞, i = 1, . . . , n.
(F3) u · Fu(x, t, u) ≥ µF (x, t, u) ∀x, t, µ > 2,
(F4) |Fr1(x, t, r1, . . . , rn)|+ . . . + |Frn(x, t, r1, . . . , rn)| ≤ γ(|r1|ν + . . . +
|rn|ν), ∀x, t, r1,. . . ,rn, γ > 0, ν > 1, i = 1, . . . , n.
As the physical model for these systems we can find crossing n beams
with travelling waves supported by cables with a load f as follows:

utt + uxxxx = bu2 + f(x, t) in (−π

2
,
π

2
)×R,

u(±π

2
, t) = uxx(±π

2
, t) = 0,

u(x, t) = u(−x, t) = u(x,−t) = u(x, t + π).

Choi and Jung ([3],[4],[5]) investigate the existence and multiplicity of
solutions for the single nonlinear suspension bridge equation with Dirich-
let boundary condition.

Let u = (u1, . . . , un) and

Fu(x, t, u) = (Fu1(x, t, u1, . . . , un), . . . , Fun(x, t, u1, . . . , un))

and | · | denote the Euclidean norm in Rn. The system (1.1) can be
rewritten by





utt + uxxxx = Fu(x, t, u), (1.2)
u(±π

2 , t) = uxx(±π
2 , t) = (0, . . . , 0),

u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t),

where utt + uxxxx = ((u1)tt + (u1)xxxx, . . . , (un)tt + (un)xxxx).
The main result of this paper is the following:

Theorem 1.1. Assume that the nonlinear term F satisfies the
conditions (F1) − (F4). Then system (1.1) has at least one nontrivial
periodic solution.

As well known the solutions of system (1.1) coincide with the critical
points of the functional I : H → R ∈ C1,1 defined by

I(u) =
1
2

∫

Ω
[−|ut|2 + |uxx|2]dxdt−

∫

Ω
F (x, t, u)dxdt, (1.3)
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where u = (u1, . . . , un), −|ut|2 + |uxx|2 =
∑n

i=1(−|(ui)t|2 + |(ui)xx|2),
n ≥ 1, and the space H is introduced in section 2. For the proof of
Theorem 1.1 we use the variational method and critical point theory
for strongly indefinite functional. In the proof we study the geometry
and topology of the sublevel sets of I. Since the functional is strongly
indefinite, we use the linking theorem for strongly indefinite functional
and the notion of the suitable version of the Palais-Smale condition.

The proof of Theorem 1.1 is organized as follows: In section 2, we
approach the variational method, obtain some results on the nonlinear
term F and recall the linking theorem for strongly indefinite functional.
In section 3, we prove Theorem 1.1.

2. Critical Point Theory for the Strongly Indefinite Func-
tional

The eigenvalue problem

vtt + vxxxx = λv in (−π

2
,
π

2
)×R. (2.1)

v(±π

2
, t) = v(±π

2
, t) = 0,

v(x, t) = v(−x, t) = v(x,−t) = v(x, t + π)
has infinitely many eigenvalues

λmn = (2n + 1)4 − 4m2 (m,n = 0, 1, 2, . . .)

and corresponding normalized eigenfunctions φmn, m, n > 0, given by

φ0n =
√

2
π

cos(2n + 1)x for n ≥ 0,

φmn =
2
π

cos 2mt cos(2n + 1)x for m > 0, n ≥ 0.

Let Ω be the square [−π
2 , π

2 ]× [−π
2 , π

2 ] and E′ the Hilbert space defined
by

E′ = {v ∈ L2(Ω)| v is even in x and t,

∫

Q
v = 0 }.

The set of functions {φmn} is an orthonormal basis in E′. Let us denote
an element v, in E′, as

v =
∑

hmnφmn

and we define a subspace E of E′ as

E = {v ∈ E′|
∑

|λmn|h2
mn < ∞}.
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This is a complete normed space with a norm ‖v‖ = [
∑ |λmn|h2

mn]
1
2 .

Let H be the n cartesian product space of E, i.e.,

H = E × E × . . .×E.

The norm in H is given by

‖u‖2 = ‖P+u‖2 + ‖P−u‖2, u = (u1, . . . , un)

where ‖P+u‖2 =
∑n

i=1 ‖P+ui‖2, ‖P−u‖2 =
∑n

i=1 ‖P−ui‖2.
Let H+ and H− be the subspaces of H on which the functional

u 7→ Q(u) =
∫

Ω
[−|ut|2 + |uxx|2]dxdt, u = (u1, . . . , un)

is positive definite and negative definite, respectively. Then

H = H+ ⊕H−.

Let P+ be the projection from H onto H+ and P− the projection from
H onto H−. The functional I(u) can be rewritten by

I(u) =
1
2
‖P+u‖2−1

2
‖P−u‖2−

∫

Ω
F (x, t, u)dxdt =

1
2
Q(u)−

∫

Ω
F (x, t, u)dxdt.

(2.2)
Let (Hn)n be a sequence of closed finite dimensional subspace of H with
the following assumptions: Hn = H−

n ⊕H+
n where H+

n ⊂ H+, H−
n ⊂ H−

for all n (H+
n and H−

n are subspaces of H), dimHn < +∞, Hn ⊂ Hn+1,
∪n∈NHn is dense in H.

Since each eigenvalue has a finite multiplicity and |λmn| ≥ 1 for all
m, n, we have some properties for a single equation:

Lemma 2.1. (i) ‖u‖ ≥ ‖u‖L2(Ω), where ‖u‖L2(Ω) denotes the L2

norm of u.
(ii) ‖u‖ = 0 if and only if ‖u‖L2(Ω) = 0.
(iii) utt + uxxxx ∈ E implies u ∈ E.

Lemma 2.2. Suppose that c is not an eigenvalue of L, Lu =
utt + uxxxx, and let f ∈ E′. Then we have (L− c)−1f ∈ E.

Proof. When n is fixed, we define

λ+
n = inf

m
{λmn : λmn > 0} = 8n2 + 8n + 1,

λ−n = sup
m
{λmn : λmn < 0} = −8n2 − 8n− 3.
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We see that λ+
n → +∞ and λ−n → −∞ as n → ∞. Hence the number

of elements in the set {λmn : |λmn| < |c|} is finite, where λmn is an
eigenvalue of L. Let

f =
∑

hmnφmn.

Then

(L− c)−1f =
∑ 1

λmn − c
hmnφmn.

Hence we have the inequality

‖(L− c)−1f‖ =
∑

|λmn| 1
(λmn − c)2

h2
mn ≤ C

∑
h2

mn

for some C, which means that

‖(L− c)−1f‖ ≤ C1‖f‖L2(Ω), C1 =
√

C.

Now we return to the case of system. By the following Proposition
2.1, the weak solutions of system (1.1) coincide with the critical points
of the associated functional I.

Proposition 2.1. Assume that F satisfies the conditions (F1)-
(F4). Then the functional I(u) is continuous, Frèchet differentiable in
H with Frèchet derivative

∇I(u)v =
∫

Q
[(utt + uxxxx) · v − Fu(u) · v]dxdt. (2.3)

Moreover DI ∈ C. That is I ∈ C1.

Proof. For u, v ∈ H,

|I(u + v)− I(u)−∇I(u)v|
= |1

2

∫

Ω
(utt + uxxxx + vtt + vxxxx) · (u + v)dxdt−

∫

Ω
F (u + v)dxdt

−1
2

∫

Ω
(utt + uxxxx) · udxdt +

∫

Ω
F (u)dxdt−

∫

Ω
(utt + uxxxx − Fu(u)) · vdxdt|

= |1
2

∫

Ω
[(utt + uxxxx) · v + (vtt + vxxxx) · u + (vtt + vxxxx) · v]dxdt

−
∫

Ω
[F (u + v)− F (u)]dxdt−

∫

Ω
[(utt + uxxxx − Fu(u)) · v]dxdt|.

We have

|
∫

Ω
[F (u+v)−F (u)]dxdt| ≤ |

∫

Ω
[Fu(u) ·v+o(|v|)]dxdt| = O(|v|). (2.4)
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Thus we have

|I(u + v)− I(u)−∇I(u)v| = O(|v|2). (2.5)

Next we prove that I(u) is continuous. For u, v ∈ H,

|I(u + v)− I(u)|
= |1

2

∫

Ω
(utt + uxxxx + vtt + vxxxx) · (u + v)dxdt−

∫

Ω
F (u + v)dxdt

−1
2

∫

Ω
(utt + uxxxx) · udxdt +

∫

Ω
F (u)dxdt|

= |1
2

∫

Ω
[(utt + uxxxx) · v + (vtt + vxxxx) · u + (vtt + vxxxx) · v]dxdt

−
∫

Ω
(F (u + v)− F (u))dxdt| = O(|v|).

Similarly, it is easily checked that I is C1.

Proposition 2.2. Assume that F satisfies the conditions (F1)-
(F4). Then there exist a0 > 0, b0 ∈ R and µ > 2 such that

F (x, t, u) ≥ a0|u|µ − b0, ∀x, t, u. (2.6)

Proof. Let u ∈ H be such that |u|2 ≥ R2. Let us set ϕ(ξ) = F (x, t, ξu)
for ξ ≥ 1. Then

ϕ(ξ)′ = u · Fu(x, t, ξu) ≥ µ

ξ
ϕ(ξ).

Multiplying by ξ−µ, we get

(ξ−µϕ(ξ))′ ≥ 0,

hence ϕ(ξ) ≥ ϕ(1)ξµ for ξ ≥ 1. Thus we have

F (x, t, u) ≥ F
(
x, t,

R|u|√
|u|2

)(√
|u|2
R

)µ

≥ c0

(√
|u|2
R

)µ ≥ a0|u|µ − b0,

for some a0, b0, where c0 = inf{F (x, t, u)| (x, t) ∈ Ω, |u|2 = R2}.

Proposition 2.3. Assume that F satisfies the conditions (F1)-
(F4). Then
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if ‖un‖ → +∞ and
∫
Ω un · Fu(x, t, un)dxdt− 2

∫
Ω F (x, t, un)dxdt

‖un‖ → 0,

then there exist (uhn)n and w ∈ H such that

grad(
∫
Ω F (x, t, uhn)dxdt)
‖uhn‖

→ w and
uhn

‖uhn‖
⇀ (0, . . . , 0).

Proof. By (F3) and Proposition 2.2, for u ∈ H,
∫

Ω
[u · Fu(x, t, u)]dxdt− 2

∫

Ω
F (x, t, u)dxdt ≥

(µ− 2)
∫

Ω
F (x, t, u)dxdt ≥ (µ− 2)(a0‖u‖µ

Lµ − b1).

By (F4),

‖grad(
∫

Ω
F (x, t, u)dxdt)‖ ≤ C ′‖|u|ν‖Lr

for r > 1 and suitable constants C ′. To get the conclusion it suffices to
estimate ‖ |u|ν‖u‖‖Lr in terms of ‖u‖µ

Lµ

‖u‖ . If µ ≥ rν, then this is an conse-
quence of Hölder inequality. If µ < rν, by the standard interpolation
arguments, it follows that ‖ |u|ν‖u‖‖Lr ≤ C

(‖u‖µ
Lµ

‖u‖
) ν

µ ‖u‖l, where l is such
that l = −1 + ν

µ . Thus we prove the proposition.

For finding at least one nontrivial solution we shall use the following
linking theorem for strongly indefinite functional (cf. [8]).

Lemma 2.3. (Linking Theorem) Let H be a real Hilbert space
with H = H1 ⊕H2 and H2 = H⊥

1 . We suppose that
(I1) I ∈ C1(H, R) satisfies (P.S.)∗ condition;
(I2) I(u) = 1

2(Lu, u)+bu, where Lu = L1P1u+L2P2u and Li : Hi → Hi

is bounded and selfadjoint, i = 1, 2;
(I3) b′ is compact;

(I4) there exists a subspace H̃ ⊂ H and sets S ⊂ H, T ⊂ H̃ and
constants γ > w such that

(i) S ⊂ H1 and I|S ≥ γ,
(ii) T is bounded and I|∂T ≤ w,
(iii) S and ∂T link.

Then I possesses a critical value c ≥ γ.
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3. Proof of Theorem 1.1

From now on we shall show that I satisfies the linking conditions
(I1)-(I4) under the assumptions (F1)-(F4). Assume that the (F1)-(F4)
hold. Let us set

Br = {u ∈ H+| ‖u‖ ≤ r} ⊂ H+,

Sr = {u ∈ H+| ‖u‖ = r} ⊂ H+,

S(ρ̄) = {u ∈ H+| ‖u‖ = ρ̄} ⊂ H+,

∆R(S(ρ̄),H−) = {u1 + u2| u1 ∈ H−, u2 ∈ S(ρ̄) ⊂ H+, ρ̄ > 0, ‖u1 + u2‖ ≤ R},
ΣR(S(ρ̄),H−) = {u1 + u2| u1 ∈ H−, u2 ∈ S(ρ̄) ⊂ H+, ρ̄ > 0, ‖u1 + u2‖ = R}

∪{u1| ‖u1‖ ≤ R, u2 ∈ S(ρ̄)}.
We have the following variation linking inequality:

Lemma 3.1. Assume that F satisfies the conditions (F1) − (F4)
and let Y = H+

n be any closed subspace of H+. Then there exist ρ̄,
R > 0 and r with R > r such that

sup
u∈ΣR(S(ρ̄),H−)

I(u) < 0 < inf
u∈H+

u∈Sr

I(u) and

inf
u∈H+

u∈Br

I(u) > −∞, sup
u∈∆R(S(ρ̄),H−)

I(u) < ∞,

where S(ρ̄) = {u| ‖u‖ = ρ̄} ⊂ Y and Sr = {u| ‖u‖ = r} ⊂ H+.

Proof. First we will prove that there exists Br with radius r > 0 and
Br ∩ S(ρ̄) 6= ∅ such that inf u∈H+

u∈Sr=∂Br

I(u) > 0. Let u ∈ H+. Then we

have that ‖P−u‖ = 0 and

I(u) =
1
2
‖P+u‖2 −

∫

Ω
F (x, t, u)dxdt.

By (F1) and (F4), F (x, t, u1, . . . , un) ≤ a|u|β, a > 0 and β > 2. So we
have

I(u) ≥ 1
2
‖P+u‖2 − a‖u‖β

L2(Ω)
.

Since β > 2, there exists a small sphere Sr = ∂Br with radius r contained
in H+ such that for u ∈ Sr, inf u∈H+

u∈Sr

I(u) > 0 and inf u∈H+

u∈Br

I(u) >

−a‖u‖β
L2(Ω)

> −∞. Next, we will prove that there exist ρ̄, R > 0 and
r > 0, R > r such that Br ∩ S(ρ̄) 6= ∅ and supu∈ΣR(S(ρ̄),H−) I(u) < 0.
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Let u ∈ H− ⊕ H+, P+u ∈ S(ρ̄) ⊂ Y ⊂ H+ and ρ̄ is a small number.
Then we have

I(u) =
1
2
ρ̄2 − 1

2
‖P−u‖2 −

∫

Ω
F (x, t, u)dxdt.

By Proposition 2.2, there exist a0 > 0, b0 ∈ R and µ > 2 such that
F (x, t, u) ≥ a0|u|µ − b0, ∀x, t, u. Thus we have

I(u) ≤ 1
2
ρ̄2 − 1

2
‖P−u‖2 − a0‖u‖µ

L2(Ω)
+ b0π

2.

Since µ > 2, there exist R > ρ̄ such that if u ∈ ΣR(S(ρ̄),H−), I(u) < 0.
Thus we have supu∈ΣR(S(ρ̄),H−) I(u) < 0. Moreover if u ∈ ∆R(S(ρ̄), H−),
then I(u) < 1

2 ρ̄2 + b0π
2 < ∞. Thus we have supu∈∆R(S(ρ̄),H−) I(u) < ∞.

Let Y = H+
n for some n, and denote by PY the orthogonal projection

from H onto Y .

Lemma 3.2. Assume that F satisfies the condition (F1) − (F4).
Then I satisfies the (P.S.)∗c condition with respect to (Hn)n for every
real number c ∈ R.

Proof. Let c ∈ R and (hn) be a sequence in N such that hn → +∞,
(un)n be a sequence such that

un = (u1, . . . , un) ∈ Hhn ,∀n, I(un) → c, PHhn
∇I(un) → 0.

We claim that (un)n is bounded. By contradiction we suppose that
‖un‖ → +∞ and set ûn = un

‖un‖ . Then

〈PHhn
∇I(un), ûn〉 = 〈∇I(un), ûn〉 = 2

I(un)
‖un‖ −∫

Ω Fu(x, t, un) · undxdt− 2
∫
Ω F (x, t, un)dxdt

‖un‖ −→ 0.

Hence ∫
Ω Fu(x, t, un) · undxdt− 2

∫
Ω F (x, t, un)dxdt

‖un‖ −→ 0.

By Proposition 2.3,
grad

∫
Ω F (x, t, un)dxdt

‖un‖
converges and ûn ⇀ 0. We get
PHhn

∇I(un)
‖un‖ = PHhn

((ûn)tt+(ûn)xxxx)−PHhn
grad(

∫
Ω F (x, t, un)dxdt)
‖un‖ −→ 0,
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so (PHhn
((ûn)tt +(ûn)xxxx)) converges. Since the inverse of the operator

(·)tt+(·)xxxx is a compact mapping, up to subsequence, (ûn)n has a limit.
Since ûn ⇀ (0, . . . , 0), we get ûn → (0, . . . , 0), which is a contradiction
to the fact that ‖ûn‖ = 1. Thus (un)n is bounded. We can now suppose
that un ⇀ u for some u ∈ H.

We claim that un converges to u strongly. We have

〈PHhn
∇I(un), un〉

= PHhn

∫

Ω
[((un)tt + (un)xxxx) · un

−Fu(x, t, un) · un]dxdt −→ 0.

Since un converges to u weakly,
∫
Ω Fu(x, t, un) ·undxdt → ∫

Ω Fu(x, t, u) ·
udxdt and

PHhn

∫

Ω
[((un)tt + (un)xxxx) · un]dxdt

= ‖PH+PHhn
un‖2 − ‖PH−PHhn

un‖2

−→
∫

Ω
(utt + uxxxx) · udxdt = ‖PH+u‖2 − ‖PH−u‖2.

Thus we have ‖PH+PHhn
un‖2 → ‖PH+u‖2 and ‖PH−PHhn

un‖2 → ‖PH−u‖2,
so we have ‖PH+PHhn

un‖2 + ‖PH−PHhn
un‖2 → ‖PH+u‖2 + ‖PH−u‖2.

Thus ‖PHhn
un‖2 → ‖u‖2. Thus we have that un converges to u strongly

with ∇I(u) = lim∇I(un) = 0. Thus we prove the lemma.

PROOF OF THEOREM 1.1
The space H can be composed of H = H+⊕H−. By Proposition 2.1, I is
C1(H, R1), and by Lemma 3.2, I(u) satisfies the (P.S.)∗c condition with
respect to (Hn)n, for any c ∈ R, so the condition (I1) of Lemma 2.3 is sat-
isfied. By Proposition 2.3, the mapping u 7→ grad(

∫
Ω F (x, t, u)dxdt) is a

compact mapping. If we set Lu = utt+uxxxx and bu = − ∫
Ω F (x, t, u)dxdt,

H1 = H− and H2 = H+, then I(u) is of the form I(u) = 1
2(Lu, u) + bu,

where Lu = L1P1u + L2P2u and Li : Hi → Hi is bounded and self-
adjoint, i = 1, 2, and b′ is compact, so the condition (I2) and condition
(I3) of Lemma 2.3 is satisfied.
Let S = Sr ⊂ H+ and T = ∆R(S(ρ̄),H−) ⊂ H− ⊕H+. Then Sr and
ΣR(S(ρ̄),H−) link and by Lemma 3.1, the condition (I4) of Lemma 2.3
is satisfied. Thus by Lemma 2.3, I has at least one nontrivial critical
value c > 0. Thus we prove the theorem.
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