DOI QR코드

DOI QR Code

ADJOINT SEMIGROUPS OF SUBTRACTION ALGEBRAS

  • Kim, Young-Hee (Department of Mathematics Chungbuk National University) ;
  • Oh, Kyong-Ah (Department of Mathematics Chungbuk National University) ;
  • Jeong, Tae-En (Department of Mathematics Chungbuk National University)
  • 투고 : 2008.12.01
  • 심사 : 2009.03.03
  • 발행 : 2009.03.25

초록

In this paper, we give adjoint semigroups of subtraction algebras, and investigate some properties of adjoint semigroups, and show that the adjoint semigroups of subtraction algebras are residualed semigroups.

키워드

참고문헌

  1. J. C. Abbott, Sets, lattices and Boolean algebras, Allyn and Bacon, Boston, 1969.
  2. G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., Vol. 25, second edition 1984; third edition, 1967, Providence.
  3. I. Fleischer, Every BCK-algebra is a set of residuables in an integral pomonoid, J. Algebra 119(1988), 360-365. https://doi.org/10.1016/0021-8693(88)90065-8
  4. W. P. Huang, On BCI-algeberas and semigroups, Math. Japon. 42(1995), 59-64.
  5. W. P. Huang, Residualed semigroups and BCI-algebras with condition(S), Math. Japon. 43(1996), 545-548.
  6. W. P. Huang and F. Liu, On the adjoint semigroups of p-separable BCI-algebras, Semigroup Forum 58(1999), 317-322. https://doi.org/10.1007/BF03325431
  7. W.P. Huang and D.J. Sun, Periodic BCI-algebras of adjoint monoids of BCI- algebras, Semigroup Forum 57(1998), 315-320. https://doi.org/10.1007/PL00005981
  8. Y. B. Jun, H. S. Kim and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Jpn. 61 (2005), no. 3, 459-464, :e-2004, 397-402.
  9. T. D. Lei and C. C. Xi, p-radical in BCI-algebras, Math. Japon. 30(1985), 511- 517.
  10. B. M. Schein, Difference semigroups, Comm. Algebra 20(1992), 2153-2169. https://doi.org/10.1080/00927879208824453
  11. S. Xu, On the adjoint monoids of implicative BCK-algebras, Southeast Asian Bulletin of Mathematics 26(2002), 535-540.
  12. B. Zelinka, Subtraction semigroups, Math. Bohemica 120 (1995), 445-447.