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INTERVAL-VALUED FUZZY m-SEMIOPEN SETS AND
INTERVAL-VALUED FUZZY m-PREOPEN SETS ON

INTERVAL-VALUED FUZZY MINIMAL SPACES

Won Keun Min, Myeong Hwan Kim, And Jung Il Kim

Abstract. We introduce the concepts of IVF m-semiopen sets,
IVF m-preopen sets, IVF m-semicontinuous mappings and IVF m-
precontinuous mappings on interval-valued fuzzy minimal spaces.
We investigate characterizations of IVF m-semicontinuous map-
pings and IVF m-precontinuous mappings and study properties of
IVF m-semiopen sets and IVF m-preopen sets.

1. Introduction and preliminaries

Zadeh [9] introduced the concept of fuzzy set and several researchers
were concerned about the generalizations of the concept of fuzzy sets,
intuitionistic fuzzy sets [1] and interval-valued fuzzy sets [3]. Alimo-
hammady and Roohi [2] introduced fuzzy minimal structures and fuzzy
minimal spaces and some results are given. In [6], Min introduced the
concepts of IVF minimal structures and IVF m-continuous mappings
which are a generalization of IVF topologies and IVF continuous map-
pings [8], respectively. Min and Yoo [7] introduced the concepts of IVF
mα-open sets and IVF mα-continuous mappings defined on interval-
valued fuzzy minimal spaces. In this paper, we introduce the concepts
of IVF m-semiopen sets, IVF m-preopen sets, IVF m-semicontinuous
mappings and IVF m-precontinuous mappings on interval-valued fuzzy
minimal spaces. We investigate basic properties of IVF m-semiopen sets
and IVF m-preopen sets. The concepts of IVF m-semicontinuous map-
pings and IVF m-precontinuous mappings are generalizations of IVF
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m-continuous mappings and IVF mα-continuous mappings in interval-
valued fuzzy minimal spaces. We investigate characterizations and rela-
tionships among IVF m-open sets, IVF mα-open sets, IVF m-semiopen
sets and IVF m-preopen sets.

Let D[0, 1] be the set of all closed subintervals of the interval [0, 1].
The elements of D[0, 1] are generally denoted by capital letters M, N, · · ·
and note that M = [ML,MU ], where ML and MU are the lower and the
upper end points respectively. Especially, we denote 0 = [0, 0],1 = [1, 1],
and a = [a, a] for a ∈ (0, 1). We also note that

(1) (∀M,N ∈ D[0, 1])(M = N ⇔ ML = NL,MU = NU ).
(2) (∀M,N ∈ D[0, 1])(M ≤ N ⇔ ML ≤ NL,MU ≤ NU ).
For every M ∈ D[0, 1], the complement of M , denoted by M c, is

defined by M c = 1−M = [1−MU , 1−ML].
Let X be a nonempty set. A mapping A : X → D[0, 1] is called

an interval-valued fuzzy set (simply, IVF set) in X. For each x ∈ X,
A(x) is a closed interval whose lower and upper end points are denoted
by A(x)L and A(x)U , respectively. For any [a, b] ∈ D[0, 1], the IVF set
whose value is the interval [a, b] for all x ∈ X is denoted by ˜[a, b]. In
particular, for any a ∈ [a, b], the IVF set whose value is a = [a, a] for all
x X is denoted by simply ã. For a point p ∈ X and for [a, b] ∈ D[0, 1]
with b > 0, the IVF set which takes the value [a, b] at p and 0 elsewhere
in X is called an interval-valued fuzzy point (simply, IVF point) and is
denoted by [a, b]p. In particular, if b = a, then it is also denoted by ap.
Denoted by IVF(X) the set of all IVF sets in X. An IVF point Mx,
where M ∈ D[0, 1], is said to belong to an IVF set A in X, denoted by
Mx∈̃A, if A(x)L ≥ ML and A(x)U ≥ MU . In [8], it has been shown
that A = ∪{Mx : Mx∈̃A}.

For every A,B ∈ IV F (X), we define

A = B ⇔ (∀x ∈ X)([A(x)]L = [B(x)]L and [A(x)]U = [B(x)]U ),

A ⊆ B ⇔ (∀x ∈ X)([A(x)]L ⊆ [B(x)]L and [A(x)]U ⊆ [B(x)]U ).
The complement Ac of A is defined by

[Ac(x)]L = 1− [A(x)]U and [Ac(x)]U = 1− [A(x)]L

for all x ∈ X.
For a family of IVF sets {Ai : i ∈ J} where J is an index set, the

union G = ∪i∈JAi and F = ∩i∈JAi are defined by

(∀x ∈ X)([G(x)]L = supi∈J [Ai(x)]L, [G(x)]U = supi∈J [Ai(x)]U ),

(∀x ∈ X)([F (x)]L = infi∈J [Ai(x)]L, [F (x)]U = infi∈J [Ai(x)]U ),
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respectively.
Let f : X → Y be a mapping and let A be an IVF set in X. Then

the image of A under f , denoted by f(A), is defined as follows

[f(A)(y)]L =





sup
f(x)=y

[A(x)]L, if f−1(y) 6= ∅, y ∈ Y

0, otherwise ,

[f(A)(y)]U =





sup
f(x)=y

[A(x)]U , if f−1(y) 6= ∅, y ∈ Y

0, otherwise ,

for all y ∈ Y .
Let B be an IVF set in Y . Then the inverse image of B under f ,

denoted by f−1(B), is defined as follows

(∀x ∈ X)([f−1(B)(x)]L = [B(f(x))]L, [f−1(B)(x)]U = [B(f(x))]U ).

Definition 1.1 ([7]). A family τ of IVF sets in X is called an
interval-valued fuzzy topology on X if it satisfies:

(1) 0,1 ∈ τ .
(2) A,B ∈ τ ⇒ A ∩B ∈ τ .
(3) For i ∈ J , Ai ∈ τ ⇒ ∪i∈JAi ∈ τ .

Every member of τ is called an IVF open set. An IVF set A is called
an IVF closed set if the complement of A is an IVF open set. And (X, τ)
is called an interval-valued fuzzy topological space.

Definition 1.2 ([4, 5]). An IVF set A in an IVF topological space
(X, τ) is called

(1) an IVF semiopen set in X if (∃B ∈ τ)(B ⊆ A ⊆ Cl(B));
(2) an IVF preopen set in X if A ⊆ Int(Cl(A));
(3) an IVF α-open set in X if A ⊆ Int(Cl(Int(A)))).
And an IVF set A is called an IVF semiclosed (resp., IVF preclosed,

IVF α-closed) set if the complement of A is an IVF semiopen (resp.,
IVF preopen, IVF α-open) set.

Definition 1.3 ([6]). A family M of interval-valued fuzzy sets in X
is called an interval-valued fuzzy minimal structure on X if

0,1 ∈ M.

In this case, (X, M) is called an interval-valued fuzzy minimal space
(simply, IVF minimal space). Every member of M is called an IVF m-
open set. An IVF set A is called an IVF m-closed set if the complement
of A (simply, Ac) is an IVF m-open set.
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Let (X, M) be an IVF minimal space and A in IVF(X). The IVF
minimal-closure and the IVF minimal-interior of A [6], denoted by mC(A)
and mI(A), respectively, are defined as

mC(A) = ∩{B ∈ IV F (X) : Bc ∈ M and A ⊆ B},
mI(A) = ∪{B ∈ IV F (X) : B ∈ M and B ⊆ A},

respectively.

Theorem 1.4 ([6]). Let (X, M) be an IVF minimal space and A,B
in IVF(X).

(1) mI(A) ⊆ A and if A is an IVF m-open set, then mI(A) = A.
(2) A ⊆ mC(A) and if A is an IVF m-closed set, then mC(A) = A.
(3) If A ⊆ B, then mI(A) ⊆ mI(B) and mC(A) ⊆ mC(B).
(4) mI(A)∩mI(B) ⊇ mI(A∩B) and mC(A)∪mC(B) ⊆ mC(A∪B).
(5) mI(mI(A)) = mI(A) and mC(mC(A)) = mC(A).
(6) 1−mC(A) = mI(1−A) and 1−mI(A) = mC(1−A).

An IVF set A in an IVF minimal space (X, M) is called an IVF
mα-open [7] set in X if A ⊆ mI(mC(mI(A)))).

And an IVF set A is called an IVF mα-closed set if the complement
of A is an IVF mα-open set.

Let (X,MX) and (Y,MY ) be two IVF minimal spaces. Then a
mapping f : X → Y is said to be

(1) IVF m-continuous [6] if for every A ∈MY , f−1(A) is in MX ;
(2) IVF mα-continuous [7] if for each IVF point Mx and each IVF

m-open set V containing f(Mx), there exists an IVF mα-open set U
containing Mx such that f(U) ⊆ V .

2. IVF m-semiopen sets and IVF m-semicontinuous map-
pings

Definition 2.1. Let (X,M) be an IVF minimal space and A in
IVF(X). Then an IVF set A is called an IVF m-semiopen set in X if

A ⊆ mC(mI(A)).

An IVF set A is called an IVF m-semiclosed set if the complement of
A is IVF m-semiopen.
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Remark 2.2. Let (X, M) be an IVF minimal space and A in IVF(X).
If the IVF minimal structure M is an IVF topology, clearly an IVF m-
semiopen set is IVF m-semiopen by Definition 1.2.

Every IVF mα-open set is clearly IVF m-semiopen but the converse
is not always true as shown in the next example.

Example 2.3. Let X = {a, b}, let A and B be IVF sets defined as
follows

A(a) = [0.1, 0.6], A(b) = [0.3, 0.7]
and

B(a) = [0.2, 0.5], B(b) = [0.7, 0.3].
Consider M = {0, A,B,1} as an IVF minimal structure on X. Let us
consider an IVF set C defined as follows C(a) = [0.3, 0.6] and C(b) =
[0.7, 0.3]. Then C is an IVF m-semiopen set but it is not IVF mα-open.

Lemma 2.4. Let (X, M) be an IVF minimal space and A ∈ IV F (X).
Then

A is an IVF m-semiclosed set if and only if mI(mC(A)) ⊆ A.

Proof. It is obtained from Theorem 1.4 and Definition 2.1.

Theorem 2.5. Let (X, M) be an IVF minimal space. Any union of
IVF m-semiopen sets is IVF m-semiopen.

Proof. Let Ai be an IVF m-semiopen set for i ∈ J . Then from
Theorem 1.4,

Ai ⊆ mC(mI((Ai))) ⊆ mC(mI(∪Ai)).

This implies ∪Ai ⊆ mC(mI(∪Ai)). Hence ∪Ai is an IVF m-semiopen
set.

Remark 2.6. Let (X, M) be an IVF minimal space. The intersection
of any two IVF m-semiopen sets may not be an IVF m-semiopen set as
shown in the next example.

Example 2.7. Let X = {a, b}, let A and B be IVF sets defined as
follows

A(a) = [0.3, 0.7], A(b) = [0.4, 0.7]
and

B(a) = [0.2, 0.8], B(b) = [0.8, 0.4].
Consider M = {0, A,B,1} as an IVF minimal structure on X. Then
A,B are IVF m-semiopen sets but C = A ∩B is not IVF m-semiopen.
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Definition 2.8. Let (X, M) be an IVF minimal space. For A ∈
IV F (X), the semi-closure and the semi-interior of A, denoted by smC(A)
and smI(A), respectively, are defined as

smC(A) = ∩{F ∈ IV F (X) : A ⊆ F, F is IVF m-semiclosed in X}
smI(A) = ∪{U ∈ IV F (X) : U ⊆ A,U is IVF m-semiopen in X}.
Theorem 2.9. Let (X, M) be an IVF minimal space and A ∈ IV F (X).

Then
(1) smI(A) ⊆ A.
(2) If A ⊆ B, then smI(A) ⊆ smI(B).
(3) A is IVF m-semiopen iff smI(A) = A.
(4) smI(smI(A)) = smI(A).
(5) smC(1−A) = 1− smI(A) and smI(1−A) = 1− smC(A).

Proof. (1), (2) Obvious.
(3) It follows from Theorem 2.5.
(4) It follows from (3).
(5) For A ∈ IV F (X),

1− smI(A) = 1− ∪{U ∈ IV F (X) : U ⊆ A,U is IVF m-semiopen }
= ∩{1− U : U ⊆ A,U is IVF m-semiopen }
= ∩{1− U : 1−A ⊆ 1− U,U is IVF m-semiopen }
= smC(1−A).

Similarly, we have smI(1−A) = 1− smC(A).

Theorem 2.10. Let (X, M) be an IVF minimal space and A ∈
IV F (X). Then

(1) A ⊆ smC(A).
(2) If A ⊆ B, then smC(A) ⊆ smC(B).
(3) F is IVF m-semiclosed iff smC(F ) = F .
(4) smC(smC(A)) = smC(A).

Proof. It is similar to the proof of Theorem 2.9.

Theorem 2.11. Let (X, M) be an IVF minimal space and A ⊆ X.
Then

(1) Mx∈̃smC(A) if and only if A∩ V 6= 0 for every IVF m-semiopen
set V containing Mx.

(2) Mx∈̃smI(A) if and only if there exists an IVF m-semiopen set U
such that U ⊆ A.
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Proof. (1) Suppose there is an IVF m-semiopen set V containing Mx

such that A∩ V = 0. Then 1− V is an IVF m-semiclosed set such that
A ⊆ 1− V , Mx /̃∈1− V . This implies Mx /̃∈smC(A).

The other relation is obvious.

(2) Obvious.

Definition 2.12. Let (X,MX) and (Y,MY ) be IVF minimal spaces.
Then f : X → Y is said to be interval-valued fuzzy m-semicontinuous
(simply, IVF m-semicontinuous) if for each IVF point Mx and each
IVF m-open set V containing f(Mx), there exists an m-semiopen set U
containing Mx such that f(U) ⊆ V .

Every IVF mα-continuous mapping is IVF m-semicontinuous but the
converse is not always true as shown in the next example.

Example 2.13. Let X = {a, b}, let A and B be IVF sets defined
as in Example 2.3. Consider M = {0, A, B,1} and N = {0, A,B,C,1}
as IVF minimal structures on X. Consider the identity mapping f :
(X, M) → (X, N). Then f is IVF m-semicontinuous but it is not IVF
mα-continuous.

Remark 2.14. Let f : X → Y be an IVF m-semicontinuous map-
ping between IVF minimal spaces (X,MX) and (Y,MY ). If the IVF
minimal structures MX and MY are IVF topologies on X and Y , re-
spectively, then f is IVF semicontinuous [5].

Theorem 2.15. Let f : X → Y be a mapping on IVF minimal spaces
(X,MX) and (Y,MY ). Then the following statements are equivalent:

(1) f is IVF m-semicontinuous.
(2) f−1(V ) is an IVF m-semiopen set for each IVF m-open set V in

Y .
(3) f−1(B) is an IVF m-semiclosed set for each IVF m-closed set B

in Y .
(4) f(smC(A)) ⊆ mC(f(A)) for A ⊆ X.
(5) smC(f−1(B)) ⊆ f−1(mC(B)) for B ∈ IV F (Y ).
(6) f−1(mI(B)) ⊆ smI(f−1(B)) for B ∈ IV F (Y ).

Proof. (1) ⇒ (2) Let V be an IVF m-open set in Y and Mx∈̃f−1(V ).
By hypothesis, there exists an IVF m-semiopen set UMx containing Mx

such that f(UMx) ⊆ V . This implies f−1(V ) is IVF m-semiopen.

(2) ⇒ (3) Obvious.
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(3) ⇒ (4) For A ∈ IV F (X), we have

f−1(mC(f(A)))

= f−1(∩{F ∈ IV F (Y ) : f(A) ⊆ F and F is IVF m-closed})
= ∩{f−1(F ) ∈ IV F (X) : A ⊆ f−1(F ) and F is IVF m-semiclosed}
⊇ ∩{K ∈ IV F (X) : A ⊆ K and K is IVF m-semiclosed}
= smC(A)

Hence f(smC(A)) ⊆ mC(f(A)).

(4) ⇒ (5)Obvious.

(5) ⇒ (6) For B ∈ IV F (Y ), from Theorem 1.4, it follows

f−1(mI(B)) = f−1(1−mC(1−B))

= 1− (f−1(mC(1−B)))

⊆ 1− smC(f−1(1−B))

= smI(f−1(B)).

Hence (6) is obtained.

(6)⇒ (1) Let Mx be an IVF point in X and V an IVF m-open set con-
taining f(Mx). Then from (6), it follows Mx∈̃f−1(V ) = f−1(mI(V )) ⊆
smI(f−1(V )). So there exists an IVF m-semiopen set U containing Mx

such that Mx∈̃U ⊆ f−1(V ). Hence f is IVF m-semicontinuous.

3. IVF m-preopen sets and IVF m-precontinuous mappings

In this section, we introduce the concepts of interval-valued fuzzy m-
preopen sets and interval-valued fuzzy m-precontinuous mappings. And
we study properties of such concepts.

Definition 3.1. Let (X,M) be an IVF minimal space and A in
IVF(X). Then an IVF set A is called an IVF m-preopen set in X if

A ⊆ mI(mC(A)).

An IVF set A is called an IVF m-preclosed set if the complement of A
is IVF m-preopen.

Remark 3.2. Let (X, M) be an IVF minimal space and A in IVF(X).
If the IVF minimal structure M is an IVF topology, obviously an IVF
m-preopen set is IVF preopen.
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Lemma 3.3. Let (X,M) be an IVF minimal space. Then A is an
IVF m-preclosed set if and only if mC(mI(A)) ⊆ A.

Proof. It follows from Theorem 1.4.

We have the following implications but the converses are not always
true as shown in the next example.

IVF m-semiopen
↗

IVF m-open −→ IVF mα-open
↘

IVF m-preopen

Example 3.4. Let X = {a, b}, let A and B be IVF sets defined as
follows

A(a) = [0.1, 0.6], A(b) = [0.3, 0.7]
and

B(a) = [0.2, 0.5], B(b) = [0.7, 0.3].
Consider M = {0, A, B,1} as an IVF minimal structure on X.

(1) Let us consider an IVF set E defined as follows: E(a) = [0.1, 0.4]
and E(b) = [0.3, 0.6]. Then E is IVF m-preopen but it is neither IVF
m-semiopen nor IVF mα-open.

(2) Let us consider an IVF set D defined as follows D(a) = [0.3, 0.6]
and D(b) = [0.7, 0.3]. Then mI(D) = B, mC(B) = Bc and mI(Bc) =
B. Therefore, D is IVF m-semiopen but it is not IVF m-preopen.

Theorem 3.5. Let (X, M) be an IVF minimal space. Any union of
IVF m-preopen sets is IVF m-preopen.

Proof. Let Ai be an IVF m-preopen set for i ∈ J . Then

Ai ⊆ mI(mC(Ai)) ⊆ mI(mC(∪Ai)).

This implies ∪Ai ⊆ mI(mC(∪Ai)). Hence ∪Ai is an IVF m-preopen
set.

Remark 3.6. Let (X, M) be an IVF minimal space. The intersection
of any two IVF m-preopen sets may not be IVF m-preopen as shown in
the next example.

Example 3.7. Let X = {a, b}, let A and B be IVF sets defined as
follows

A(a) = [0.2, 0.5], A(b) = [0.6, 0.7]
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and
B(a) = [0.3, 0.8], B(b) = [0.7, 0.6].

Consider M = {0, A,B,1} as an IVF minimal structure on X. Then
A,B are IVF m-peropen sets but C = A ∩B is not IVF m-preopen.

Definition 3.8. Let (X, M) be an IVF minimal space. For A ∈
IV F (X), the pre-closure and the pre-interior of A, denoted by pmC(A)
and pmI(A), respectively, are defined as follows

pmC(A) = ∩{F ∈ IV F (X) : A ⊆ F, F is IVF m-preclosed in X}
pmI(A) = ∪{U ∈ IV F (X) : U ⊆ A,U is IVF m-preopen in X}.
Theorem 3.9. Let (X, M) be an IVF minimal space and A ∈ IV F (X).

Then
(1) pmI(A) ⊆ A ⊆ pmC(A).
(2) If A ⊆ B, then pmI(A) ⊆ pmI(B) and pmC(A) ⊆ pmC(B).
(3) A is IVF m-preopen iff pmI(A) = A.
(4) F is IVF m-preclosed iff pmC(F ) = F .
(6) pmI(pmI(A)) = pmI(A) and pmC(pmC(A)) = pmC(A).
(6) pmC(1−A) = 1− pmI(A) and pmI(1−A) = 1− pmC(A).

Proof. It is similar to the proof of Theorem 2.9.

Theorem 3.10. Let (X, M) be an IVF minimal space and A ⊆ X.
Then

(1) Mx∈̃pmC(A) if and only if A ∩ V 6= 0 for every IVF m-preopen
set V containing Mx.

(2) Mx∈̃pmI(A) if and only if there exists an IVF m-preopen set U
such that U ⊆ A.

Proof. (1) Suppose there is an IVF m-preopen set V containing Mx

such that A ∩ V = 0. Then X − V is an IVF m-preclosed set such that
A ⊆ 1− V , Mx /̃∈1− V . This implies Mx /̃∈pmC(A).

The reverse relation is obvious.

(2) Obvious.

Definition 3.11. Let (X,MX) and (Y,MY ) be two IVF minimal
spaces. Then f : X → Y is said to be interval-valued fuzzy m-precontinuous
(simply, IVF m-precontinuous) if for each IVF point Mx and each IVF
m-open set V containing f(Mx), there exists an IVF m-preopen set U
containing Mx such that f(U) ⊆ V .
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We have the following implications but the converses are not always
true as shown in the next example.

IVF m-semicontinuous
↗

IVF m-continuous −→ IVF mα-continuous
↘

IVF m-precontinuous

Example 3.12. Let X = {a, b}, let A and B be IVF sets defined as
follows

A(a) = [0.1, 0.6], A(b) = [0.2, 0.5],

B(a) = [0.2, 0.5], B(b) = [0.3, 0.4],

G(a) = [0.2, 0.7], G(b) = [0.3, 0.4].

(1) Consider M = {0, A, B,1} and N = {0, A, B,G,1} as IVF minimal
structures on X. Let f : (X, M) → (X, N) be the identity mapping.
Then f is IVF m-semicontinuous. Note that:

mC(G) as follows mC(G)(a) = [0.4, 0.8],mC(G)(b) = [0.5, 0.7].
mI(G) as follows mI(G)(a) = [0.2, 0.6],mI(G)(b) = [0.3, 0.5].
Then G is IVF m-semiopen but it is not IVF m-preopen in (X, M).

Thus f is not IVF m-precontinuous.

(2) Consider M = {0, A, B,1} and N = {0, A, B, A ∩ B,1} as IVF
minimal structures on X. Let f : (X, M) → (X, N) be the identity
mapping. Then f is IVF m-precontinuous. Note that A ∩ B is IVF
m-pereopen but it is not IVF m-semiopen in (X, M). Thus f can not
be IVF m-semicontinuous.

Recall that: Let (X, τ1) and (Y, τ2) be two IVFTS’s. Then a mapping
f : X → Y is said to be IVF pre-continuous [5] if for every IVF open
set B in Y , f−1(B) is IVF preopen in X.

Remark 3.13. Let f : X → Y be an IVF m-precontinuous mapping
between IVF minimal spaces (X,MX) and (Y,MY ). If the IVF minimal
structures MX and MY are IVF topologies on X and Y , respectively,
then f is IVF precontinuous.

Theorem 3.14. Let f : X → Y be a mapping on IVF minimal spaces
(X,MX) and (Y,MY ). Then the following statements are equivalent:

(1) f is IVF m-precontinuous.
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(2) f−1(V ) is an IVF m-preopen set for each IVF m-open set V in
Y .

(3) f−1(F ) is an IVF m-preclosed set for each IVF m-closed set F in
Y .

(4) f(pmC(A)) ⊆ mC(f(A)) for A ∈ IV F (X).
(5) pmC(f−1(B)) ⊆ f−1(mC(B)) for B ∈ IV F (Y ).
(6) f−1(mI(B)) ⊆ pmI(f−1(B)) for B ∈ IV F (Y ).

Proof. (1) ⇒ (2) Let V be an IVF m-open set in Y and Mx∈̃f−1(V ).
By (1), there exists an IVF m-preopen set UMx containing Mx such that
f(UMx) ⊆ V . This implies Mx∈̃UMx ⊆ f−1(V ) for all Mx∈̃f−1(V ).
Hence f−1(V ) is IVF m-preopen.

(2) ⇒ (3) It is obvious.

(3) ⇒ (4) For A ∈ IV F (X), we have the following:

f−1(mC(f(A)))

= f−1(∩{F ∈ IV F (Y ) : f(A) ⊆ F and F is IVF m-closed})
= ∩{f−1(F ) ∈ IV F (X) : A ⊆ f−1(F ) and F is IVF m-preclosed}
⊇ ∩{K ∈ IV F (X) : A ⊆ K and K is IVF m-preclosed}
= pmC(A)

Hence f(pmC(A)) ⊆ mC(f(A)).

(4) ⇒ (5) For B ∈ IV F (Y ), from (4), it follows

f(pmC(f−1(B))) ⊆ mC(f(f−1(B))) ⊆ mC(B).

(5) ⇒ (6) For B ∈ IV F (Y ), from Theorem 1.4, it follows

f−1(mI(B)) = f−1(1−mC(1−B))

= 1− (f−1(mC(1−B)))

⊆ 1− pmC(f−1(1−B))

= pmI(f−1(B)).

Hence (6) is obtained.

(6) ⇒ (1) Let Mx be an IVF point in X and V an IVF m-open set
containing f(Mx). Then Mx∈̃f−1(V ) = f−1(mI(V )) ⊆ pmI(f−1(V )).
So from Theorem 3.10, there exists an IVF m-preopen set U containing
Mx such that Mx∈̃U ⊆ f−1(V ). Hence from definition of the IVF m-
precontinuous mapping, f is IVF m-precontinuous.
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