Preparation and Characterization of Grafted Maleic Anhydride onto Polypropylene by Reactive Extrusion

반응 압출을 통한 PP-g-MA 제조 및 특성평가

  • Kang, Dong-Jin (School of Nano and Advanced Materials Engineering, Gyeongsang National University) ;
  • Lee, Sung-Hyo (School of Nano and Advanced Materials Engineering, Gyeongsang National University) ;
  • Pal, Kaushik (School of Nano and Advanced Materials Engineering, Gyeongsang National University) ;
  • Park, Chan-Young (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Zhang, Zhen Xiu (School of Nano and Advanced Materials Engineering, Gyeongsang National University) ;
  • Bang, Dae-Suk (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kim, Jin-Kuk (School of Nano and Advanced Materials Engineering, Gyeongsang National University)
  • 강동진 (경상대학교 고분자공학과) ;
  • 이성효 (경상대학교 고분자공학과) ;
  • ;
  • 박찬영 (부경대학교 응용화학공학부) ;
  • 장진수 (경상대학교 고분자공학과) ;
  • 방대석 (금오공과대학교 고분자공학과) ;
  • 김진국 (경상대학교 고분자공학과)
  • Published : 2009.07.25

Abstract

Maleic anhydride-grafted polypropylene has been widely used to improve the interfacial interaction between the components in PP/polar polymer blends and PP/filler composites and to maximize the physical properties and thermal properties. In this paper. the maleic anhydride (MAH)-grafted polypropylene (co-PP) was fabricated through reactive extrusion process with di-cumyl peroxide (DCP) as an initiator. The grafting degree of MAH depending on the contents of DCP and MAH was investigated by FT-IR spectra and chemical titration. The grafting degree increased with increasing MAH concentration and also showed maximum value at 0.06 wt% of DCP concentration. Melt flow index (MFI) of the grafted copolymer was increased with increasing the contents of MAH. The DSC and TGA analysis data indicate the melting temperature and thermal degradation of PP depending on the grafting degree of MAH.

반응성기를 가지는 산무수물(maleic anhydride, MAH)을 폴리프로필렌(PP)에 도입함으로써 PP/극성 고분자의 블렌드 및 PP/filler의 복합소재 제조에서 계면과 계면 사이에 물리적 결합 이외의 화학적 결합을 향상시키고 기계적 특성 및 열적 특성을 극대화할 수 있다. 본 실험에서는 개시제(di-cumyl periofide, DCP)와 MAH 함량에 따른 그래프트율을 FT-IR과 화학적 적정법(chemical titration)을 이용하여 측정하였다. 그 결과 MAH의 함량이 증가할수록 그래프트율이 증가하였고 DCP의 함량이 0.06 wt% 일때에 가장 높은 그래프트율을 나타내었다. 또한, MAH의 함량에 따라 용융 흐름지수(melt index)가 증가하는 것을 볼 수 있었으며, 용융온도 및 열 분해 등의 열적 거동은 시차주사열량계(DSC) 및 열중량 분석기(TGA)를 이용하여 MAH 그래프트율에 따른 변화를 분석하였다.

Keywords

References

  1. G. C. Eastmond and G. Mucciariello, Polymer, 23, 164 (1982) https://doi.org/10.1016/0032-3861(82)90291-9
  2. T. Yamamoto, K. Aoshima, H. Ohmura, Y. Moriya, N. Suzuki, and Y. Oshibe, Polymer, 32, 19 (1991) https://doi.org/10.1016/0032-3861(91)90556-X
  3. N. Dharmarajan, S. Datta, G. Ver Strate, and L. Ban, Polymer, 36, 3849 (1995) https://doi.org/10.1016/0032-3861(95)99779-T
  4. G. Moad, Prog. Polym. Sci., 24, 81 (1999) https://doi.org/10.1016/S0079-6700(98)00017-3
  5. A. V. Machadoa, J. A. Covasa, and M. van Duinb, Polymer, 42, 3649 (2001) https://doi.org/10.1016/S0032-3861(00)00692-3
  6. K. Y. Kim and S. C. Kim, Int. Polym. Process, 19, 356 (2004) https://doi.org/10.3139/217.1838
  7. K. Se and K. Aoyama, Polymer, 45, 79 (2004) https://doi.org/10.1016/j.polymer.2003.11.015
  8. C. Nakason, S. Saiwaree, S. Tatun, and A. Kaesaman, Polym. Test., 25, 656 (2006) https://doi.org/10.1016/j.polymertesting.2006.03.011
  9. R. Rengarajan, V. R. Parameswaran, S. Lee, M. Vicic, and P. L. Rinaldi, Polymer, 31, 1703 (1990) https://doi.org/10.1016/0032-3861(90)90188-5
  10. H. S. Kim, B. H. Lee, S. W. Choi, S. Kim, and H. J. Kim, Composites Part A, 38, 1473 (2007) https://doi.org/10.1016/j.compositesa.2007.01.004
  11. L. B. de Paiva, A. R. Morales, and T. R. Guimaraes, Mater. Sci. Eng. A, 447, 261 (2007) https://doi.org/10.1016/j.msea.2006.10.066
  12. S. H. Lee, M. Balasubramanian, and J. K. Kim, J. Appl. Polym. Sci., 106, 3209 (2007) https://doi.org/10.1002/app.26490
  13. S. B. Dickson, C. Tzoganakis, and H. Budman, Ind. Eng. Chem. Res., 36, 1067 (1997) https://doi.org/10.1021/ie960288u
  14. W. Qiu and T. Hirotsu, Macromol. Chem. Phys., 206, 2470 (2005) https://doi.org/10.1002/macp.200500375
  15. Y. Li, X. M. Xie, and B. H. Guo, Polymer, 42, 3419 (2001) https://doi.org/10.1016/S0032-3861(00)00767-9
  16. J. M. Keum and J. L. White, J. Vinyl. Addit. Techn., 143 (2005)
  17. L. Zhu, G. Tang, Q. Shi, C. Cai, and J. Yin, React. Funct. Polym., 66, 984 (2006) https://doi.org/10.1016/j.reactfunctpolym.2006.01.007