참고문헌
- Dey, S. et al. Interactions between SIRT1 and AP-1 reveal a mechanistic insight into the growth promoting properties of alumina (Al2O3) nanoparticles in mouse skin epithelial cells. Carcinogenesis 29:1920-1929 (2008) https://doi.org/10.1093/carcin/bgn175
- Balasubramanyam, A. et al. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis 24:245-251 (2009) https://doi.org/10.1093/mutage/gep003
- Colvin, V. L. The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166-1170 (2003) https://doi.org/10.1038/nbt875
-
Oberd
$\ddot{o}$ rster, G., Oberd$\ddot{o}$ rster, E. & Oberd$\ddot{o}$ rster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823-839 (2005) https://doi.org/10.1289/ehp.7339 - Rittner, M. N. Market analysis of nanostructured materials. Am Ceram Soc Bull 81:33-36 (2002)
- Miziolek, A. W. Nanoenergetics: an emerging technology area of national importance. AMPTIAC Q 6:43-48 (2002)
- Tyner, K. M. et al. Nanobiohybrids as delivery vehicles for camptothecin. J Control Release 95:501-514 (2004) https://doi.org/10.1016/j.jconrel.2003.12.027
- Wedrychowski, A. et al. The in-vivo cross-linking of proteins and DNA by heavy metals. J Biol Chem 261:3370-3376 (1986)
- Manna, G. K. & Das, R. K. Chromosome aberrations in mice induced by aluminium chloride. Nucleus 15:180-186 (1972)
- Blair, H. C. et al. Micromolar aluminium levels reduce 3H-thymidine incorporation by cell line UMR 106-01. Kidney Int 35:1119-1125 (1989) https://doi.org/10.1038/ki.1989.99
- Lin, D. & Xing, B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollution 150:243-250 (2007) https://doi.org/10.1016/j.envpol.2007.01.016
- Singh, N. P., McCoy, M. T., Tice, R. R. & Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184-191 (1988) https://doi.org/10.1016/0014-4827(88)90265-0
- Tice, R. R. et al. The single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206-221 (2000) https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J
- Wagner, A. J. et al. Cellular interaction of different forms of aluminium nanoparticles in rat alveolar macrophages. J Phys Chem Biol 111:7353-7359 (2007) https://doi.org/10.1021/jp068938n
- Murdock, R. C. et al. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239-253 (2008) https://doi.org/10.1093/toxsci/kfm240
- Anderson, D. & Plewa, M. J. The international comet assay workshop. Mutagenesis 13:67-73 (1998) https://doi.org/10.1093/mutage/13.1.67
- Fairbairn, D. W., Walburger, D. K., Fairbairn, J. J. & O''Neill, K. L. Key morphologic changes and DNA strand breaks in human lymphoid cells: discriminating apoptosis from necrosis. Scanning 18:407-416 (1996) https://doi.org/10.1002/sca.1996.4950180603
- Speit, G. & Hartmann, A. The comet assay (single-cell gel test). A sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol Biol 113:203-212 (1999)
-
Simon, A. et al. In vitro investigation of
$TiO_2,\;Al_2O_3$ , Au nanoparticles and multi-walled carbon nanotubes cyto- and genotoxicity on lung, kidney cells and hepatocytes. Toxicol Lett 172:S36 (2007) - Lankoff, A. et al. A comet assay study reveals that aluminium induces DNA damage and inhibits the repair of radiation-induced lesions in human peripheral blood lymphocytes. Toxicol Lett 161:27-36 (2006) https://doi.org/10.1016/j.toxlet.2005.07.012
- Banasik, A. et al. Aluminium-induced micronuclei and apoptosis in human peripheral blood lymphocytes treated during different phases of the cell cycle. Envi-ron Toxicol 20:402-406 (2005) https://doi.org/10.1002/tox.20125
- Lima, P. D. L. et al. Genotoxic effects of aluminium chloride in cultured human lymphocytes treated in different phases of cell cycle. Food Chem Toxicol 45:1154-1159 (2007) https://doi.org/10.1016/j.fct.2006.12.022
- Roy, A. K., Sharma, A. & Talukder, G. Effects of aluminium salts on bone marrow chromosomes in rats in vivo. Cytobios 66:105-111 (1991)
- Lockman, P. R. et al. In vivo and in vitro assessment of baseline bloodbrain barrier parameters in the presence of novel nanoparticles. Pharm Res 20:705-713 (2003) https://doi.org/10.1023/A:1023492015851
- Braydich-Stolle, L., Hussain, S., Schlager, J. J. & Hofmann, M. C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412-419 (2005) https://doi.org/10.1093/toxsci/kfi256
- Yang, L. & Watts, D. J. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122-132 (2005) https://doi.org/10.1016/j.toxlet.2005.03.003
- Oesterling, E. et al. Alumina nanoparticles induce expression of endothelial cell adhesion molecules. Toxicol Lett 178:160-166 (2008) https://doi.org/10.1016/j.toxlet.2008.03.011
- Bharathi Jagannatha Rao, K. S. & Stein, R. First evidence on induced topological changes in supercoiled DNA by an aluminium Daspartate complex. J Biol Inorg Chem 8:823-830 (2003) https://doi.org/10.1007/s00775-003-0484-1
- Anane, R. & Creppy, E. E. Lipid peroxidation as pathway of aluminium cytotoxicity in human skin fibroblast cultures: prevention by superoxide dismutase catalase and vitamins E and C. Hum Exp Toxicol 20:477-481 (2001) https://doi.org/10.1191/096032701682693053
- Moumen, R. et al. Aluminium increases xanthine oxidase activity and disturbs antioxidant status in the rat. J Trace Elements Med Biol 15:89-93 (2001) https://doi.org/10.1016/S0946-672X(01)80049-3
- van der Voet, G. B., Brandsma, A. E., Heijink, E. & de Wolff, F. A. Accumulation of aluminium in rat liver: association with constituents of the cytosol. Pharmacol Toxicol 70:173-176 (1992) https://doi.org/10.1111/j.1600-0773.1992.tb00451.x
- Zatta, P. et al. Aluminium inhibits the lysosomal proton pump from rat liver. Life Sci 66:2261-2266 (2000) https://doi.org/10.1016/S0024-3205(00)00555-5
- Sayed Aly, M., Wojcik, A., Schunck, C. & Obe, G. Correlation of chromosomal aberrations and sister chromatid exchanges in individual CHO cells pre-labelled with BrdU and treated with DNaseI or X-rays. Int J Radiat Biol 78:1037-1044 (2002) https://doi.org/10.1080/09553000210166598
- Ames, B. N., Durston, W. E., Yamasaki, E. & Lee, F. D. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA 70:2281-2285 (1973) https://doi.org/10.1073/pnas.70.8.2281
- Clements, J. Gene mutation assay in mammalian cells, In O''Hare, S. & Atterwill, C. K. (Ed.), Methods in Molecular Biology, Vol. 43, In vitro Toxicity Testing Protocols. Humana Press Inc. Totowa, NJ. 43:277-286 (1990)
- Robinson, W. D. et al. Statistical evaluation of bacterial/mammalian fluctuation test, in Statistical Evaluation of Mutagenicity Test Data (Kirkland, D. J., ed.). Cambridge University Press. Cambridge, UK, pp. 102-140 (1990)