Genotoxicity of Aluminum Oxide ($Al_2O_3$) Nanoparticle in Mammalian Cell Lines

  • Kim, Youn-Jung (Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology) ;
  • Choi, Han-Saem (Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology) ;
  • Song, Mi-Kyung (Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology) ;
  • Youk, Da-Young (Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology) ;
  • Kim, Ji-Hee (Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology) ;
  • Ryu, Jae-Chun (Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology)
  • Published : 2009.06.30

Abstract

Nanoparticles are small-scale substances (<100 nm) with unique properties, complex exposure and health risk implications. Aluminum oxide ($Al_2O_3$) nanoparticles (NP) have been widely used as abrasives, wear-resistant coatings on propeller shafts of ships, to increase the specific impulse per weight of composite propellants used in solid rocket fuel and as drug delivery systems to increase solubility. However, recent studies have shown that nano-sized aluminum (10 nm in diameter) can generate adverse effects, such as pulmonary response. The cytotoxicity and genotoxicity of $Al_2O_3$ NP were investigated using the dye exclusion assay, the comet assay, and the mouse lymphoma thymidine kinase (tk$^{+/-}$) gene mutation assay (MLA). IC$_{20}$ values of $Al_2O_3$ NP in BEAS-2B cells were determined the concentration of 273.44 $\mu$g/mL and 390.63 $\mu$g/mL with and without S-9. However IC$_{20}$ values of $Al_2O_3$ NP were found nontoxic in L5178Y cells both of with and without S-9 fraction. In the comet assay, L5178Y cells and BEAS-2B cells were treated with $Al_2O_3$ NP which significantly increased 2-fold tail moment with and without S-9. Also, the mutant frequencies in the $Al_2O_3$ NP treated L5178Y cells were increased compared to the vehicle controls with S-9. The results of this study indicate that $Al_2O_3$ NP can cause primary DNA damage and cytotoxicity but not mutagenicity in cultured mammalian cells.

Keywords

References

  1. Dey, S. et al. Interactions between SIRT1 and AP-1 reveal a mechanistic insight into the growth promoting properties of alumina (Al2O3) nanoparticles in mouse skin epithelial cells. Carcinogenesis 29:1920-1929 (2008) https://doi.org/10.1093/carcin/bgn175
  2. Balasubramanyam, A. et al. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis 24:245-251 (2009) https://doi.org/10.1093/mutage/gep003
  3. Colvin, V. L. The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166-1170 (2003) https://doi.org/10.1038/nbt875
  4. Oberd$\ddot{o}$rster, G., Oberd$\ddot{o}$rster, E. & Oberd$\ddot{o}$rster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823-839 (2005) https://doi.org/10.1289/ehp.7339
  5. Rittner, M. N. Market analysis of nanostructured materials. Am Ceram Soc Bull 81:33-36 (2002)
  6. Miziolek, A. W. Nanoenergetics: an emerging technology area of national importance. AMPTIAC Q 6:43-48 (2002)
  7. Tyner, K. M. et al. Nanobiohybrids as delivery vehicles for camptothecin. J Control Release 95:501-514 (2004) https://doi.org/10.1016/j.jconrel.2003.12.027
  8. Wedrychowski, A. et al. The in-vivo cross-linking of proteins and DNA by heavy metals. J Biol Chem 261:3370-3376 (1986)
  9. Manna, G. K. & Das, R. K. Chromosome aberrations in mice induced by aluminium chloride. Nucleus 15:180-186 (1972)
  10. Blair, H. C. et al. Micromolar aluminium levels reduce 3H-thymidine incorporation by cell line UMR 106-01. Kidney Int 35:1119-1125 (1989) https://doi.org/10.1038/ki.1989.99
  11. Lin, D. & Xing, B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollution 150:243-250 (2007) https://doi.org/10.1016/j.envpol.2007.01.016
  12. Singh, N. P., McCoy, M. T., Tice, R. R. & Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184-191 (1988) https://doi.org/10.1016/0014-4827(88)90265-0
  13. Tice, R. R. et al. The single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206-221 (2000) https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J
  14. Wagner, A. J. et al. Cellular interaction of different forms of aluminium nanoparticles in rat alveolar macrophages. J Phys Chem Biol 111:7353-7359 (2007) https://doi.org/10.1021/jp068938n
  15. Murdock, R. C. et al. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239-253 (2008) https://doi.org/10.1093/toxsci/kfm240
  16. Anderson, D. & Plewa, M. J. The international comet assay workshop. Mutagenesis 13:67-73 (1998) https://doi.org/10.1093/mutage/13.1.67
  17. Fairbairn, D. W., Walburger, D. K., Fairbairn, J. J. & O''Neill, K. L. Key morphologic changes and DNA strand breaks in human lymphoid cells: discriminating apoptosis from necrosis. Scanning 18:407-416 (1996) https://doi.org/10.1002/sca.1996.4950180603
  18. Speit, G. & Hartmann, A. The comet assay (single-cell gel test). A sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol Biol 113:203-212 (1999)
  19. Simon, A. et al. In vitro investigation of $TiO_2,\;Al_2O_3$, Au nanoparticles and multi-walled carbon nanotubes cyto- and genotoxicity on lung, kidney cells and hepatocytes. Toxicol Lett 172:S36 (2007)
  20. Lankoff, A. et al. A comet assay study reveals that aluminium induces DNA damage and inhibits the repair of radiation-induced lesions in human peripheral blood lymphocytes. Toxicol Lett 161:27-36 (2006) https://doi.org/10.1016/j.toxlet.2005.07.012
  21. Banasik, A. et al. Aluminium-induced micronuclei and apoptosis in human peripheral blood lymphocytes treated during different phases of the cell cycle. Envi-ron Toxicol 20:402-406 (2005) https://doi.org/10.1002/tox.20125
  22. Lima, P. D. L. et al. Genotoxic effects of aluminium chloride in cultured human lymphocytes treated in different phases of cell cycle. Food Chem Toxicol 45:1154-1159 (2007) https://doi.org/10.1016/j.fct.2006.12.022
  23. Roy, A. K., Sharma, A. & Talukder, G. Effects of aluminium salts on bone marrow chromosomes in rats in vivo. Cytobios 66:105-111 (1991)
  24. Lockman, P. R. et al. In vivo and in vitro assessment of baseline bloodbrain barrier parameters in the presence of novel nanoparticles. Pharm Res 20:705-713 (2003) https://doi.org/10.1023/A:1023492015851
  25. Braydich-Stolle, L., Hussain, S., Schlager, J. J. & Hofmann, M. C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412-419 (2005) https://doi.org/10.1093/toxsci/kfi256
  26. Yang, L. & Watts, D. J. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122-132 (2005) https://doi.org/10.1016/j.toxlet.2005.03.003
  27. Oesterling, E. et al. Alumina nanoparticles induce expression of endothelial cell adhesion molecules. Toxicol Lett 178:160-166 (2008) https://doi.org/10.1016/j.toxlet.2008.03.011
  28. Bharathi Jagannatha Rao, K. S. & Stein, R. First evidence on induced topological changes in supercoiled DNA by an aluminium Daspartate complex. J Biol Inorg Chem 8:823-830 (2003) https://doi.org/10.1007/s00775-003-0484-1
  29. Anane, R. & Creppy, E. E. Lipid peroxidation as pathway of aluminium cytotoxicity in human skin fibroblast cultures: prevention by superoxide dismutase catalase and vitamins E and C. Hum Exp Toxicol 20:477-481 (2001) https://doi.org/10.1191/096032701682693053
  30. Moumen, R. et al. Aluminium increases xanthine oxidase activity and disturbs antioxidant status in the rat. J Trace Elements Med Biol 15:89-93 (2001) https://doi.org/10.1016/S0946-672X(01)80049-3
  31. van der Voet, G. B., Brandsma, A. E., Heijink, E. & de Wolff, F. A. Accumulation of aluminium in rat liver: association with constituents of the cytosol. Pharmacol Toxicol 70:173-176 (1992) https://doi.org/10.1111/j.1600-0773.1992.tb00451.x
  32. Zatta, P. et al. Aluminium inhibits the lysosomal proton pump from rat liver. Life Sci 66:2261-2266 (2000) https://doi.org/10.1016/S0024-3205(00)00555-5
  33. Sayed Aly, M., Wojcik, A., Schunck, C. & Obe, G. Correlation of chromosomal aberrations and sister chromatid exchanges in individual CHO cells pre-labelled with BrdU and treated with DNaseI or X-rays. Int J Radiat Biol 78:1037-1044 (2002) https://doi.org/10.1080/09553000210166598
  34. Ames, B. N., Durston, W. E., Yamasaki, E. & Lee, F. D. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA 70:2281-2285 (1973) https://doi.org/10.1073/pnas.70.8.2281
  35. Clements, J. Gene mutation assay in mammalian cells, In O''Hare, S. & Atterwill, C. K. (Ed.), Methods in Molecular Biology, Vol. 43, In vitro Toxicity Testing Protocols. Humana Press Inc. Totowa, NJ. 43:277-286 (1990)
  36. Robinson, W. D. et al. Statistical evaluation of bacterial/mammalian fluctuation test, in Statistical Evaluation of Mutagenicity Test Data (Kirkland, D. J., ed.). Cambridge University Press. Cambridge, UK, pp. 102-140 (1990)