DOI QR코드

DOI QR Code

Highly Efficient Cold Sputtered Iridium Oxide Films for Polyimide based Neural Stimulation Electrodes

  • Kim, Shin-Ae (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Kim, Eui-Tae (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Kim, Sung-June (School of Electrical Engineering and Computer Science, Seoul National University)
  • Published : 2009.06.30

Abstract

Iridium oxide films (IROFs) have been extensively studied as a material for electrical stimulation of neurons, as iridium oxide has higher charge storage capacity than other metal films. More recently, sputtered iridium oxide film (SIROF) has been studied, because it can be made more conveniently than activated iridium oxide film (AIROF). Typically, the SIROFs are grown at temperatures from 400 to 600 $^{\circ}C$. However, such high temperatures cannot be used when the iridium oxide (IrOx) film is to be deposited on a flexible polymer material, such as polyimide. In this paper, we show that we can still obtain excellent characteristics in SIROFs grown without heating (cold SIROF), by optimizing the growth conditions. We show that the oxygen flow rate is a critical parameter for controlling the surface properties of a cold SIROF. At an oxygen flow rate of 12 seem, the cold SIROF exhibited a charge storage capacity (CSC) of 60 mC/cm$^2$, which is comparable to or better than other published values for iridium oxide films including heated SIROFs. The film produced under these conditions also had the minimum impedance value of all cold SIROFs deposited for this study. A stability test and biocompatibility test also demonstrated the superiority of the optimized cold SIROF.

Keywords

References

  1. T. Stieglit, H. Beutel, M. Schuettler, and J. U. Meyer, "Micromachined, polyimide-based devices for flexible neural interfaces," Biomedical Microdevices, vol. 2, pp. 283-294, 2000 https://doi.org/10.1023/A:1009955222114
  2. T. Akin, B. Ziaie, S. A. Nikles, and K. Najafi, "A modular micromachined high-density connector system for biomedical application," IEEE Trans. Biomed. Eng., vol. 46, pp. 471-480,1999 https://doi.org/10.1109/10.752944
  3. D. J. Edell, J. N. Churchill, and I. M. Gourley, "Biocompatibility of a silicon based peripheral nerve electrode," Biomat. Med. Dev. Art. Org, vol. 10, pp. 103-122, 1982
  4. X. Navarro, S. Calvet, M. Buti, N. Gomez, E. Cabruja, P. Garrido, R. Villa, and E. Valderrama, "Perioheral nerve regeneration through microelectrode arrays based on silicon technology," Testor. Neurol. Neurosci., vol. 9, pp. 151-160, 1996
  5. J. M. Seo, S. J. Kim, H. Chung, E. T. Kim, H. G. Yu, and Y. S Yu, "Biocompatibility of polyimide microelectrode array for retinal stimulation," Materials Science and Engineering C, vol. 24, pp. 185-189, 2004 https://doi.org/10.1016/j.msec.2003.09.019
  6. J. F. Rizzo, J. Wyatt, J. Loewenstein, S. Kelly, and D. Shire, "Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials," Invest. Ophthalmol. Vis. Sci., vol. 44, pp. 5362-5369, 2003 https://doi.org/10.1167/iovs.02-0817
  7. A. Y. Chow, V. Y. Chow, "Subretinal electrical stimulation of the rabbit retina, "Neurosci Lett., vol. 225, pp. 13-16, 1997 https://doi.org/10.1016/S0304-3940(97)00185-7
  8. J. F. Rizzo, J. Wyatt, and M. Humayun, "Retinal prosthesis: an encouraging first decade with major challenges ahead," Ophthalmology, vol. 108, pp. 13-14, 2001 https://doi.org/10.1016/S0161-6420(00)00430-9
  9. M. S. Humayun, de Juan E Jr, and J. D. Weiland, "Pattern electrical stimulation of the human retina," Vision Res, vol. 39, pp. 2569-2576, 1999 https://doi.org/10.1016/S0042-6989(99)00052-8
  10. J. D. Weiland, S. Cogan, and M. S. Humayun, "Micro-machined, polyimide stimulating electrodes with electroplated iridium oxide," in Proc. The first join BMES/EMBS conference, Atlanta, USA, Oct. 1999, pp. 378
  11. J. D. Weiland, D. J. Anderson, and M. S. Humayun, "In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes," IEEE Trans. Biomed. Eng., vol. 49, pp.1574-1579, 2002 https://doi.org/10.1109/TBME.2002.805487
  12. I. S. Lee, C. N. Whang, K. Choi, M. S. Choo, and Y. H. Lee, "Characterization of iridium film as a stimulating neural electrode," Biomaterials, vol. 23, pp. 2375-2380, 2002 https://doi.org/10.1016/S0142-9612(01)00373-8
  13. E. Slavcheva, R. Vitushinsky, W. Mokwa, and U. Schnakenberg, "Sputtered iridium oxide films as charge injection material for functional electrostimulation," J Electrochem Soc., vol. 151, pp.E226-E237, 2004 https://doi.org/10.1149/1.1747881
  14. R. H. Horng, D. S. Wuu, L. H. Wu, and M. K. Lee, "Formation process and material properties of reactive sputtered IrO2 thin films," Thin Solid Films, vol. 373, pp. 231-234, 2000 https://doi.org/10.1016/S0040-6090(00)01141-X
  15. J. D. Klein, S. L. Clausin, and S. F. Cogan, "Morphology and charge capacity of sputtered iridium oxide films," J Vac. Sci. Technol., vol. 7, pp. 3043-3047, 1989 https://doi.org/10.1116/1.576313
  16. T. J. Park, D. S. Jeong, C. S. Hwang, M. S. Park, and N. S. Kang, "Fabrication of ultrathin IrO2 top electrode for improving thermal stability of metal-insulator-metal field emission cathodes," Thin Solid Films, vol. 471, pp. 236-242, 2005 https://doi.org/10.1016/j.tsf.2004.05.131
  17. S. F. Cogan, P. R. Troyk, J. Ehrlich, and T. D. Plante, "In vitro comparison of the charge-injection limits of activated iridium oxide and platinum-iridium microelectrodes," IEEE Trans. Biomed. Eng, vol. 52, no. 9, pp. 1612-1614, 2005 https://doi.org/10.1109/TBME.2005.851503
  18. K. W. Kim, I. H. Lee, J. S. Kim, K. H. Sin, B. I. Jung, and K. H. Kim, "Performance improvement of iridium oxide electrode for organic destruction," HWAHAK KONGAK, vol. 40, no. 2, pp. 146-151, 2002
  19. C. S. Kim, S. Ufer, C. M. Seagle, C. L. Engle, H. T. Nagle, T. A. Johnson, and W. E. Cascio, "Use of micromachined probes for the recording of cardiac electrograms in isolated heart tissues," Biosens. Bioelectron., vol. 19, pp. 1109-1116, 2004 https://doi.org/10.1016/j.bios.2003.10.011
  20. A. Oliveira-Sousa, M. A. S. Silva, S. A. S. Machado, L. A. Avaca, and P. Lima-Neto, "Influence of the preparation method on the morphological and electrochemical properties of Ti/IrO2-coated electrodes," Electrochim. Acta, vol. 45, pp. 4467-4473, 2000 https://doi.org/10.1016/S0013-4686(00)00508-9
  21. L. M. Schiavone, W. C. Dautremont-Smith, G. Beni, and J. L. Shay, "Improved electrochromic behavior of reactively sputtered iridium oxide films," J Electrochem. Soc, vol. 128, pp. 1339-1342, 1981 https://doi.org/10.1149/1.2127632
  22. L. S. Robblee, J. L. Lefko, and S. B. Brummer, "Activated Ir: An electrode stuitable for reversible charge injection in saline solution," J Electrochem Soc, vol.130, pp. 731-733, 1983 https://doi.org/10.1149/1.2119793
  23. Sachin S. Thanawala, Ronald J. Baird, Daniel G. Georgiev, and Gregory W. Auner, "Amorphous and crystalline IrO2 thin films as potential stimulation electrode coatings," Appl. Surf. Sci, vol. 254, pp. 5164-5169, 2008 https://doi.org/10.1016/j.apsusc.2008.02.054