Enhanced Insecticidal Activity of Bacillus thuringiensis against the Diamondback Moth, Plutella xylostella, Using an Immunosuppressive Effect of Juvenile Hormone Analogue, Pyriproxyfen, Formulation

유약호르몬 유사체인 피리프록시펜 제제의 배추좀나방(Plutella xylostella) 면역 억제 효과와 이를 이용한 Bacillus thuringiensis 살충력 제고 기술

  • Kim, Geun-Seob (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
  • 김근섭 (안동대학교 생명자원과학과) ;
  • 김용균 (안동대학교 생명자원과학과)
  • Published : 2009.06.30

Abstract

Juvenile hormone (JH) is an insect hormone mediating immature metamorphosis and adult reproduction. It also mediates immune responses to suppress hemocyte behavior, which is, however, activated by ecdysteroid. This study investigated an effect of a commercial pyriproxyfen (a JH agonist) formulation on a cellular immune response of the diamondback moth, Plutella xylostella, and analysed its mixture with Bacillus thuringiensis (Bt) in insecticidal potency. The commercial pyriproxyfen formulation significantly suppressed hemocyte-spreading behavior at low doses as did in pyriproxyfen technical grade. When the commercial pyriproxyfen formulation was mixed with Bt, Bt toxicity was significantly increased against P. xylostella larvae in laboratory. The mixture effect was then confirmed in field cultivating cabbage infested with P. xylostella larvae. The mixture showed a significantly enhanced mortality and reduced effective lethal time, compared to only Bt treatment.

유약호르몬은 변태를 억제하고 성충의 생식작용을 중개하는 곤충호르몬이다. 이 호르몬은 또한 탈피호르몬과 길항적으로 면역반응에도 관여하여 혈구세포 활동을 억제시킨다. 본 실험은 배추좀나방(Plutella xylostella)의 세포성 면역반응에 대한 피리프록시펜 제형의 효과와 이를 Bacillus thuringiensis(Bt)와 혼합하였을 때의 살충력 제고 효과에 대해 분석하였다. 피리프록시펜 제형은 낮은 농도에서도 혈구세포의 활착능력을 현저히 억제하였다. 피리프록시펜 제형을 배추좀나방 대상으로 실내실험에서 Bt와 혼합하여 섭식처리 한 결과 살충력이 유의성이 있게 증가하였다. 이러한 실내실험 결과 토대로 피리프록시펜 제형과 Bt 혼합제를 배추좀나방이 서식하고 있는 배추포장에 약제처리 했을 때 Bt 단독처리 보다 살충효과를 높이고 살충시간이 효과적으로 줄어드는 것을 보여주었다.

Keywords

References

  1. Baines. D., T. Desantis and R. G. H. Downer (1992) Octopamine and 5 hydroxytryptamine enhance the phagocytic and nodule formation activities of cockroach (Periplaneta americana) haemocytes. J. Insect Physiol. 38:905-914 https://doi.org/10.1016/0022-1910(92)90102-J
  2. Broderick, N. A, K. F. Raffa and J. Handelsman (2006) Midgut hacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl. Acad. Sci. USA 103:15196-15199 https://doi.org/10.1073/pnas.0604865103
  3. Clark, K. D., Y. Kim and M. R. Strand (2005) Plasmatocyte sensitivity to plasmatocyte spreading peptide (PSP) fluctuates with the larval molting cycle. J. Insect Physiol. 51 :587-596 https://doi.org/10.1016/j.jinsphys.2005.03.002
  4. Ehlers, D., B. Zosel, W. Mohrig, E. Kauschke and E. Ehlers (1992) Comparison of an in vivo and in vitro phagocytosis in Galleria mellonella L. Parasitol. Res. 78:354-359 https://doi.org/10.1007/BF00937096
  5. Ericsson, J. D., A F. Janmaat, C. Lowcnberger and J. H. Myers (2009) Is decreased generalized immunity a cost of Bt resistance in cabbage looers Trichoplusia ni? J. Invertebr. Pathol. 100:61-67 https://doi.org/10.1016/j.jip.2008.10.007
  6. Ferre, J. and J. Van Rie (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 47:501-533 https://doi.org/10.1146/annurev.ento.47.091201.145234
  7. Franssens, V., G. Smagghe, G. Simonet, I. Claeys, B. Breugelmans, A Dc Loof and J. Vanden Broeck (2006) 20 Hydroxyccdysone and juvenile hormone regulate the laminarin induced nodulation reaction in larvae of the flesh fly, Neobellieria bullata. Dev. Comp. Immunol. 30:735-740 https://doi.org/10.1016/j.dci.2005.10.010
  8. Gill, S. S., E. A Cowles and P. V. Pietrantonio (1992) The mode of action of Bacillus thuringiensis delta-endotoxins. Annu. Rev. Entomol. 37:615-636 https://doi.org/10.1146/annurev.en.37.010192.003151
  9. Gillespie, J. P., M. R. Kanost and T. Trenczek (1997) Biological mediators of insect immunity. Anon. Rev. Entomol. 42:611-643 https://doi.org/10.1146/annurev.ento.42.1.611
  10. Goldsworthy, G., L. Mullen, K. Opoku Ware and S. Chandrakant (2003) Interactions between the endocrine and immune systems in locusts. Physiol. Entomol. 28:54-61 https://doi.org/10.1046/j.1365-3032.2003.00314.x
  11. Hoffman, C., H. Vanderbruggen, H. Hofte, J. Van Rie, S. Jansens and H. Van Mellaert (1988) Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85: 7844-7848 https://doi.org/10.1073/pnas.85.21.7844
  12. Kawada, H., S. Saita, K. Shimabukuro, M. Hirano, M. Koga, T. Iwashita and M. Takagi (2006) Mosquito larvicidal effectiveness of EcoBio Block S: A novel integrated water purifying concrete block formulation containing insect growth regulator pyriproxyfen. J. Am. Mosq. Control Assoc. 22:451-456 https://doi.org/10.2987/8756-971X(2006)22[451:MLEOES]2.0.CO;2
  13. Kim, Y., E. D. Davari, V. Sevala and K. G. Davey (1999) Functional binding of a vertebrate hormone, L 3,5,3' triiodothyronine ($T_3$), on insect follicle cell membranes. Insect Biochem. Mol. Biol. 29:943-950 https://doi.org/10.1016/S0965-1748(99)00070-3
  14. Kim, Y., S. Jung and M. Nalini (2008) Antagonistic effect of juvenile hormone on hemocyte-spreading behavior of Spodoptera exigua in response to an insect cytokine and its putative membrane action. J. Insect Physiol. 54:909-915 https://doi.org/10.1016/j.jinsphys.2008.03.012
  15. Kirsh, K. and H. Schmutterer (1988) Low efficacy of a Bacillus thuringiensis (Berl) formulation in controlling the diamondback moth, Plutella xylostella (L.) in the Phillippines. J. Appl. Entomol. 105:249-255 https://doi.org/10.1111/j.1439-0418.1988.tb00183.x
  16. Kwon, S. and Y. Kim (2007) Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. Kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Biol. Control 42:72-76 https://doi.org/10.1016/j.biocontrol.2007.03.006
  17. Lackie, A. M. (1988) Hemocyte behaviour. Adv. Insect Physiol. 21:85-178 https://doi.org/10.1016/S0065-2806(08)60123-X
  18. Ma, G., H. Roberts, M. Sarjan, N. Featherstone, J. Lahnstcin, R. Akhurst and O. Schmidt (2005a) Is the mature endotoxin CrylAc f개m Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Insect Biochem. Mol. Biol. 35:729-739 https://doi.org/10.1016/j.ibmb.2005.02.011
  19. Ma, G., M. Sarjan, C. Preston, S. Asgari and O. Schmidt (2005b) Mechanisms of indncible resistance against Bacillus thuringiensis endotoxins in invertebrates. Insect Sci. 12:319-330 https://doi.org/10.1111/j.1005-295X.2005.00039.x
  20. McGaughey, W. H. (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229:193-195 https://doi.org/10.1126/science.229.4709.193
  21. Monconduit, H. and B. Mauchamp (1998) Effects of ultra doses of fenoxycarb on Juvenile hormone regulated physiological parameters in the silkworm, Bombyx mori Arch. Insect Biochem. Physiol. 37:178-189 https://doi.org/10.1002/(SICI)1520-6327(1998)37:2<178::AID-ARCH6>3.0.CO;2-Q
  22. Nalini, M., Y. Lee and Y. Kim (2007) Pyriproxyfen inhibits hemocytic phagocytosis of the beet armyworm, Spodoptera exigua. Kor. J. Pesti. Sci. 11:164-170
  23. Pigott, C. R. and D. J. Ellar (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev. 71:255-281 https://doi.org/10.1128/MMBR.00034-06
  24. Rantala, M. J., A. Vainikka and R. Kortet (2003) The role of juvenile hormone in immune function and pheromone production trade offs: a test of the immunocompetence handicap principle. Proc. R. Soc. Lond. B. 270:2257-2261 https://doi.org/10.1098/rspb.2003.2472
  25. Ratcliffe, N. A., A. F. Rowley, S. W. Fitzgerald and C. P. Rhodes (1985) Invertebrate immunity: basic concepts and recent advances. Intl. J. Cytol. 97:186-350
  26. SAS Institute, Inc. (1989) SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
  27. Stanley-Samuelson, D. W. (1994) Assessing the significance of prostaglandins and other eicosanoids in insect physiology. J. Insect Physiol. 40:3-11 https://doi.org/10.1016/0022-1910(94)90106-6
  28. Tabashnik, B. E., N. L. Cushing, N. Finson and M. W. Johnson (1990) Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 83:1671-1676 https://doi.org/10.1093/jee/83.5.1671
  29. Van Rie, J., W. H. McGaughey, D. E. Johnson, B. D. Barnett and H. Van Mellaert (1990) Mechanisms of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247:72-74 https://doi.org/10.1126/science.2294593
  30. Wang, P., J-Z. Zhao, A. Rodrico-Simon, W. Kain, A. F. Janmaat, A. M. Shelton, J. Ferre and J. H. Myers (2007) Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of the cabbage looper, Trichoplusia ni. Appl. Environ. Microbiol. 73:1199-1207 https://doi.org/10.1128/AEM.01834-06
  31. Zhang, X., M. Candas, N. B. Griko, L. Rose-Young and L. A. Bulla Jr. (2005) Cytotoxicity of Bacillus thuringiensis CrylAb toxin depends on specific binding of the toxin to the cadherin receptor Bt-$R_I$ expressed in insect cells. Cell Death Differ. 12:1407-1416 https://doi.org/10.1038/sj.cdd.4401675
  32. Zhang, X., N. B. Griko, S. K Corona and L. A. Bulla Jr. (2008) Enhanced exocytosis of the receptor Bt-$R_I$ induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. 149B: 581-588
  33. 김용균 (2004) 경북 북부지역의 양잠산업에 피해를 주고 있는 누에(Bombyx mori) 미화용 기작에 관한 연구. 한응공지 43:143-153