DOI QR코드

DOI QR Code

Visual Tracking Technique Based on Projective Modular Active Shape Model

투영적 모듈화 능동 형태 모델에 기반한 영상 추적 기법

  • 김원 (우송대학교 컴퓨터정보학과)
  • Received : 2009.03.06
  • Accepted : 2009.06.06
  • Published : 2009.06.30

Abstract

Visual tracking technique is one of the essential things which are very important in the major fields of modern society. While contour tracking is especially necessary technique in the aspect of its fast performance with target's external contour information, it sometimes fails to track target motion because it is affected by the surrounding edges around target and weak egdes on the target boundary. To overcome these weak points, in this research it is suggested that PDMs can be obtained by generating the virtual 6-DOF motions of the mobile robot with a CCD camera and the image tracking system which is robust to the local minima around the target can be configured by constructing Active Shape Model in modular base. To show the effectiveness of the proposed method, the experiment is performed on the image stream obtained by a real mobile robot and the better performance is confirmed by comparing the experimental results with the ones of other major tracking techniques.

영상 추적 기법은 현대 사회의 주요한 분야에서 필요로 하는 중요한 기술로 여겨지는 핵심 기술 중의 하나이다. 특히 물체의 외곽선 추적은 물체의 외형 정보를 파악하면서 빠른 추적을 할 수 있다는 측면에서 필요한 기술인데, 목표물 주변의 에지에 영향을 받기 쉬우며 연약 에지가 발생하였을 때 추적에 실패하는 경우가 발생한다. 이를 극복하기 위하여 이 연구에서는 카메라가 장착된 이동 로봇의 6자유도 운동을 가상적으로 발생시켜 PDM을 얻어내고, 이를 기반으로 모듈적으로 능동 형태 모델을 구성하여 추적 시스템을 설계하여 보다 국부적 최소점에 대하여 강인한 특성을 갖는 영상 추적기를 제안한다. 제안된 방법의 유효성을 보이기 위하여 실제 이동 로봇에서 관측되는 영상에 대하여 영상 추적 실험을 수행하였으며, 이를 다른 주요한 기법들과 비교하여 그 우수성을 확인하였다.

Keywords

References

  1. Blake, A. and Yuille, A. (1992), Active vision, MIT-Press.
  2. Trucco, E. and Verri, A. (1998) Introductory techniques for 3-D computer vision, Prentice Hall.
  3. Kass, M., Witkin, A. and Terzopoulos, D. (1988), "Snake : Active contour models," Int. J. Computer Vision, pp. 321-331.
  4. Amini, A. A., Weymouth, T. E. and Jain, R.C. (1990), "Using dynamic programming for solving variational problems in vision," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 12, pp. 855-867. https://doi.org/10.1109/34.57681
  5. Leymarie and Levine, M. D. (1993), "Tracking deformable objects in the plane using an active contour model," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 15, No. 6, pp. 617-634. https://doi.org/10.1109/34.216733
  6. Xu, C. and Prince, J. L. (1998), "Snakes, shapes, and gradient vector flow," IEEE Trans. Image Processing, Vol. 7, No. 3, pp. 359-369. https://doi.org/10.1109/83.661186
  7. Caselles, V., Kimmel, R. and Sapiro, G. (1997), "Geodesic Active Contours," International Journal of Computer Vision, Vol. 22, pp. 61-79. https://doi.org/10.1023/A:1007979827043
  8. Paragios, N. and Deriche, R. (2000), "Geodesic Active Contours and Level Sets for the Detection and Tracking og Moving Objects," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 3.
  9. Goldenberg, R., Kimmel, R., Rivlin E. and Rudzsky, M. (2001), "Fast Geodesic Active Contours," IEEE Transactions on Image Processing, Vol. 10, No. 10.
  10. Li, C., Xu, C., Gui, C. and Fox, M. D. (2005), "Level Set Evolution Without Re-initialization : A New Variational Formulation," IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'05).
  11. Cootes, T. F., Taylor, C. J., Cooper, D. H. and Graham, J. (1995), "Active Shape Models - Their Training and Application," Computer Vision and Image Understanding, Vol. 61, No. 1, pp. 38-59. https://doi.org/10.1006/cviu.1995.1004
  12. Hill, A., Cootes, T. F. and Taylor, C. J. (1996), "Active Shape Models and the Shape Approximation Problems," Image and vision Computing, Vol. 14, pp. 601-607. https://doi.org/10.1016/0262-8856(96)01097-9
  13. Cootes, T. F., Edwards, G. J. and Taylor, C. J. (1998), "Active Appearance Models," Proc. European Conference Computer Vision, Vol. 61, pp. 484-498.
  14. Ginneken, B. A., Frangi, F. J., Staal, J., Romeny, B. M. H. and Viergever, M. A. (2002), "Active Shape Model Segmentaiton With Optimal Features," IEEE Transactions on Medical Imaging, Vol. 21, No. 8.
  15. Sukno, F. M., Ordas, S., Butakoff, C. and Cruz, S. (2007), "Active Shape Models With Invariant Optimal Features : Application to Facial Analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No. 7.
  16. Kim, W. and Lee, J. (2005), "Object Tracking based on the Modular Active Shape Model," International Journal of Mechatronics, Vol. 15, pp. 371-402. https://doi.org/10.1016/j.mechatronics.2004.09.002
  17. Jain, A. K. (1989), Fundamentals of digital image processing, NJ:Prentice-Hall.
  18. Hartley, R. and Zisserman, A. (2000), Multiple View Geometry in Computer Vision, Cambridge Univeristy Press.
  19. Zhang, Z. (1997), "Determining the Epiploar Geometry and Its Uncertainty : A Review," Intenational Journal of Computer Vision, 27(2):161-195.
  20. Torr, P. H. S. (2002), A Structure and Motion Toolkit in Matlab "Interactive Adventures in S and M", Technical Report MSR-TR-2002-56, Microsoft Research.
  21. Benhimane, S. and Malis, E. (2004), "Real-time imagebased tracking of planes using Efficient Second-order Minimization," Int. Conf. on Intelligent Robot and Systems, IROS'04, Vol. 1, pp. 943-948, Sendai, Japan.
  22. Buenaposada, J. and Baumela, L. (2002), "Real-time tracking and estimation of plane pose," IEEE ICPR 2002, Vol. 2, pp. 697-700, Quebec, Canada.
  23. Buenaposada, J. and Baumela, L. (2002), "Speeding up SSD Planar Tracking by Pixel Selection," IEEE ICIP 2002, Vol. 1, pp. 565-568, Rochester, USA.