DOI QR코드

DOI QR Code

센서드리프트 판별을 위한 통계적 탐지기술 고찰

Statistical Techniques to Detect Sensor Drifts

  • 서인용 (전력연구원 원자력발전연구소) ;
  • 신호철 (전력연구원 원자력발전연구소) ;
  • 박문규 (전력연구원 원자력발전연구소) ;
  • 김성준 (강릉대학교 산업정보경영공학과)
  • 투고 : 2009.06.30
  • 심사 : 2009.09.08
  • 발행 : 2009.09.30

초록

원자력발전소에서 센서의 주기적 교정은 안전운전을 위해 꼭 필요하다. 그러나 실제 드리프트가 발생하여 교정을 요하는 센서는 약 2% 미만이다. 또한, 센서의 작동 상태를 매 핵연료 주기마다 수행하는 것은 고장 혹은 드리프트가 발생한 센서를 최대 18개월까지 감지하지 못한 채 운전할 위험이 있다. 원전의 안전운전 및 불필요한 교정을 줄이기 위해 센서의 상시 교정 감시가 필요하다. 이를 위해 주성분 분석과 Support Vector Regression(SVR)을 이용한 PCSVR 알고리즘을 개발하였고, 고리원전 3호기의 출력증발 데이터를 이용하여 검증하였다. 주성분분석은 선형변환을 통한 입력공간의 축소 및 노이즈 제거 효과를 나타내며, AASVR은 해석학적 및 기계학적 모델로 모델링하기 힘든 복잡계를 쉽게 나타낼 수 있는 장점이 있다. SVR의 세가지 파라미터는 반응표면분석법에 의해 최적화하였다. 센서의 고장탐지를 위해 모델 출력의 잔차를 슈하르트 관리도, EWMA, CUSUM 및 일반화우도비검정(GLRT)을 통해 그 결과를 비교하였다. 미세한 드리프트에 대해 CUSUM과 GLRT가 우수한 결과를 보였다. 개발된 알고리즘은 수출형 원전 APR1000 설계시 적용가능 할 것으로 판단된다.

In a nuclear power plant (NPP), periodic sensor calibrations are required to assure sensors are operating correctly. However, only a few faulty sensors are found to be calibrated. For the safe operation of an NPP and the reduction of unnecessary calibration, on-line calibration monitoring is needed. In this paper, principal component-based Auto-Associative support vector regression (PCSVR) was proposed for the sensor signal validation of the NPP. It utilizes the attractive merits of principal component analysis (PCA) for extracting predominant feature vectors and AASVR because it easily represents complicated processes that are difficult to model with analytical and mechanistic models. With the use of real plant startup data from the Kori Nuclear Power Plant Unit 3, SVR hyperparameters were optimized by the response surface methodology (RSM). Moreover the statistical techniques are integrated with PCSVR for the failure detection. The residuals between the estimated signals and the measured signals are tested by the Shewhart Control Chart, Exponentially Weighted Moving Average (EWMA), Cumulative Sum (CUSUM) and generalized likelihood ratio test (GLRT) to detect whether the sensors are failed or not. This study shows the GLRT can be a candidate for the detection of sensor drift.

키워드

참고문헌

  1. Atkeson, C. G., A. W. Moore, and S. Schaal (1997), "Locally Weighted Learning", Artificial Intelligence Review, Vol. 11, pp. 11-73: 1997. https://doi.org/10.1023/A:1006559212014
  2. Bickford, R., Holzworth, R.E., R.D. Griebenow, and A. Hussey (2003), "An Advanced Equipment Condition Monitoring System for Power Plants," Transactions of the American Nuclear Society, New Orleans, LA: Nov 16-20, 2003.
  3. Fantoni, P., S. Figedy, and A. Racz (1998), "A Neuro- Fuzzy Model Applied to Full Range Signal Validation of PWR Nuclear Power Plant Data", FLINS-98, Antwerpen, Belgium.
  4. Gunn, S. R. (1998), "Support Vector Machines for Classification and Regression," Technical Report, University of Southampton.
  5. Hines, J. W. and Garvey, D. (2007), "Process and Equipment Monitoring Methodologies Applied to Sensor Calibration Monitoring," Quality and Reliability Engineering International, Vol. 23, pp. 123-135. https://doi.org/10.1002/qre.818
  6. In-Yong, Seo., S. J. Kim, "An On-line Monitoring Technique Using Support Vector Regression and Principal Component Analysis," CIMCA 2008, Vienna, Austria, December 10-12, 2008.
  7. Kay, S. (2008), Fundamentals of Statistical Signal Processing, Vol. II, Prentice-Hall.
  8. Lucas J. M. and Saccucci, M. S. (1990), "Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements," Technometrics, Vol. 32, pp. 1-29. https://doi.org/10.2307/1269835
  9. Mott, Y., and R. W. King (1987), Pattern Recognition Software for Plant Surveillance, U.S. DOE Report.
  10. Runger, G. and Testik, C. (2003), "Control Charts for Monitoring Fault Signatures: Cuscore versus GLR," Quality and Reliability Engineering International, Vol. 19, pp. 387-396. https://doi.org/10.1002/qre.591
  11. Vapnik, N., (1988), Statistical Learning Theory, Wiley, New York.
  12. Wrest, D. Hines, J. W. and Uhrig, R. E. (1996), "Instrument Surveillance and Calibration Verification Through Plant Wide Monitoring Using Autoassociative Neural Networks", Proceedings of The 1996 American Nuclear Society Inter-national Meeting on Nuclear Plant Instrumentation, Control and Human Machine Interface Technologies, University Park, PA.