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Abstract. By using a tangle decomposition of a knot, we give a method for the construc-

tion of a knot with the lowest trivial HOMFLY coefficient polynomial. Applying this, we

show that there exist infinitely many 2-bridge knots with such a coefficient polynomial.

1. Introduction

The main subject of consideration in this paper is the HOMFLY polynomial
[2], [9], [10] of a knot. First of all, we recall it. Let L be an oriented link. The
HOMFLY polynomial P (L; v, z) ∈ Z[v±1, z±1] of L is an invariant of the isotopy
type of L, which is defined by the following formulas:

(1) P (U ; v, z) = 1;

(2) v−1P (L+; v, z)− vP (L−; v, z) = zP (L0; v, z),

where U is the trivial knot and L+, L−, L0 are three links that are identical except
near one point where they are as in Fig. 1. The second formula is called the skein
relation for the HOMFLY polynomial.
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Figure 1: A skein triple

By [9], the HOMFLY polynomial of a µ-component link L is of the form

P (L; v, z) =
∑
j≥0

P2j−µ+1(L; v)z
2j−µ+1,
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where each Laurent polynomial P2j−µ+1(L; v) ∈ Z[v±1] is called the (2j−µ+1)-th
coefficient polynomial of P (L; v, z) in z or the (2j − µ+ 1)-th HOMFLY coefficient
polynomial. In particular, the (1 − µ)-th coefficient polynomial is also called the
lowest coefficient polynomial. The 2j-th coefficient polynomial of a knot is said to
be trivial if it coincides with that of the trivial knot. Furthermore, P2j−µ+1(L; v) ∈
Z[v±2] if µ is odd and vP2j−µ+1(L; v) ∈ Z[v±2] if µ is even.

The realization problem of the HOMFLY polynomial is one of important and
interesting problems in knot theory. It poses the following questions. When a
given polynomial can be realized as the HOMFLY polynomial of a knot, how many
knots have the polynomial as their HOMFLY polynomials? When two realizable
HOMFLY polynomials are given, is there any difference between numbers of their
realizing knots? If there is any difference, what does it mean? Little attention has
been given to these questions. In this paper, as an approach to above questions,
we are concerned with the frequency problem of the appearance of a HOMFLY
coefficient polynomial. It is known that there exist non-trivial knots with the lowest
trivial HOMFLY coefficient polynomial. We focus on the knot 814 which is one of
such knots. By exploring and observing tangle decomposition of 814, we analyze the
reason why such a coefficient polynomial appears and give a claim for construction
of a knot with the coefficient polynomial. We also give an explicit example realizing
the claim, which induces the following main result.

Theorem 1.1. There exist infinitely many 2-bridge knots with the lowest trivial
HOMFLY coefficient polynomial, which have unknotting number at most two.

Remark 1.1. It is known that if a non-trivial knot has unknotting number at most
two, then its H(3)-unknotting number is one, see [4], [3]. Thus, the 2-bridge knots
given in Theorem 1.1 have H(3)-unknotting number one.

Remark 1.2. Kawauchi [7] has constructed an infinite family {Kn} of knots having
“almost” trivial HOMFLY coefficient polynomials with some additional conditions,
that is, P0(Kn; v) = 1 and for a given positive integer N P2k(Kn; v) = 0 (0 < k <
N). However, these knots are not necessarily of 2-bridge.

The Kauffman polynomial [6] of a link L, F (L; a, z) ∈ Z[a±1, z±1], is an invariant
for a link. For a knot K, it is of the form

F (K; a, z) =
∑
j≥0

Fj(K; a)zj ,

where each Laurent polynomial Fj(K; a) ∈ Z[a±1] is called the j-th coefficient
polynomial of F (K; a, z) in z or the j-th Kauffman coefficient polynomial ; See [5].
In particular, the 0-th coefficient polynomial is also called the lowest coefficient
polynomial. The j-th coefficient polynomial of a knot is said to be trivial if it
coincides with that of the trivial knot.

It is known that there is a relationship between coefficient polynomials of the
HOMFLY and the Kauffman polynomials.
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Proposition 1.2([8]). For a knot K, P0(K; v) = F0(K;
√
−1v−1).

By Proposition 1.2, we have the following as a corollary of Theorem 1.1.

Corollary 1.3. There exist infinitely many 2-bridge knots with the lowest trivial
Kauffman coefficient polynomial, which have unknotting number at most two.

2. Tangle decomposition and coefficient polynomial

A 2-string tangle T is a pair (B3, t1 ∪ t2) of a 3-ball B3 and two properly
embedded arcs t1 and t2 with ∂(t1 ∪ t2) = ∂B3 ∩ (t1 ∪ t2). Each endpoint of t1 ∪ t2
is called a endpoint of T . T is called properly oriented if each arc of T is oriented
as in Fig. 2.
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Figure 2: A properly oriented 2-string tangle

The numerator (resp. denominator) of T denoted by N(T ) (resp. D(T )) is a
link obtained from T by connecting four endpoints of T by two arcs outside T as in
the left (resp. right) figure of Fig. 3.
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Figure 3: The numerator and the denominator

A tangle T is said to be of type N1 (resp. type D1) or an N1-tangle (resp. a
D1-tangle) if T is a properly oriented 2-string tangle and N(T ) (resp. D(T )) is a
knot.

We denote by E2n, n ∈ Z, and E∞ tangles of type D1 and of type N1 as in
Fig. 4, respectively. E2n has 2|n| positive (resp. negative) crossings if n > 0 (resp.
n < 0) and E0 means horizontal parallel strings without crossings.

Let L(T ), L(E0) and L(E∞) be three links identical outside a ball and inside
are a properly oriented 2-string tangle T , the D1-tangle E0 and the N1-tangle E∞,
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Figure 4: Trivial tangles

respectively.

Lemma 2.1. For a D1-tangle T , there exists a unique pair (f(T ; v, z), g(T ; v, z))
of polynomials so that

P (L(T ); v, z) = f(T ; v, z)P (L(E0); v, z) + vzg(T ; v, z)P (L(E∞); v, z),

where f(T ; v, z), g(T ; v, z) ∈ Z[v±2, z2].

Proof. Since any properly oriented 2-string tangle can be expressed as a linear
combination of E0 and E∞ by linear skein theory, we easily obtain a unique pair
(f(T ; v, z), g(T ; v, z)) of polynomials such that

P (L(T ); v, z) = f(T ; v, z)P (L(E0); v, z) + vzg(T ; v, z)P (L(E∞); v, z),

where f(T ; v, z), g(T ; v, z) ∈ Z[v±1, z±1]. We only have to show that f(T ; v, z) and
g(T ; v, z) are elements of Z[v±2, z2]. Considering the HOMFLY polynomials of the
numerator and the denominator of T , we have

P (N(T ); v, z) = f(T ; v, z)P (N(E0); v, z) + vzg(T ; v, z)P (N(E∞); v, z)

and

P (D(T ); v, z) = f(T ; v, z)P (D(E0); v, z) + vzg(T ; v, z)P (D(E∞); v, z).

Since D(E0) and N(E∞) are trivial knots and N(E0) and D(E∞) are 2-component
trivial links, we obtain

P (N(T ); v, z) = (v−1 − v)z−1f(T ; v, z) + vzg(T ; v, z)

and

P (D(T ); v, z) = f(T ; v, z) + (1− v2)g(T ; v, z).

From these equalities, we have

{(1− v2)− v2z2}g(T ; v, z) = (1− v2)P (D(T ); v, z)− vzP (N(T ); v, z).



Knots with a Trivial Coefficient Polynomial 805

It is easy to see that P (D(T ); v, z) and vzP (N(T ); v, z) are elements of Z[v±2, z2].
It follows that g(T ; v, z) ∈ Z[v±2, z2], which leads to f(T ; v, z) ∈ Z[v±2, z2]. �

Remark 2.1. Since f(T ; v, z) and g(T ; v, z) are elements of Z[v±2, z2], f(T ; v, z)

and g(T ; v, z) can be expressed as
∑
j≥0

f2j(T ; v)z
2j and

∑
j≥0

g2j(T ; v)z
2j respectively,

where f2j(T ; v), g2j(T ; v) ∈ Z[v±2] for each j.

Lemma 2.2. For an N1-tangle T , there exists a unique pair (f(T ; v, z), g(T ; v, z))
of polynomials so that

P (L(T ); v, z) = vzf(T ; v, z)P (L(E0); v, z) + g(T ; v, z)P (L(E∞); v, z),

where f(T ; v, z), g(T ; v, z) ∈ Z[v±2, z2].

Proof. The proof of the lemma is similar to that of Lemma 2.1. �
Polynomials f(T ; v, z) and g(T ; v, z) which appear in Lemmas 2.1 or 2.2 are

essentially determined by the tangle T only. So, we call a pair (f(T ; v, z), g(T ; v, z))
of polynomials the normal coordinate of T .

Let T and S be properly oriented 2-string tangles. We define addition of tangles
T and S by connecting endpoints of T and S as in Fig. 5 and denote it by T + S.

If T is a D1-tangle and S is an N1-tangle, then T + S is an N1-tangle.
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Figure 5: Addition of tangles

Lemma 2.3. Let T be a D1-tangle and S an N1-tangle. Let (f(T ; v, z), g(T ; v, z))
and (f(S; v, z), g(S; v, z)) be normal coordinates of T and S, respectively. Then,

P (N(T + S); v, z) = (1− v2)f(T ; v, z)f(S; v, z) + f(T ; v, z)g(S; v, z)

+ v2z2g(T ; v, z)f(S; v, z) + (1− v2)g(T ; v, z)g(S; v, z).

Proof. Since N(E0 + S) = N(S) and N(E∞ + S) = D(S), we have

P (N(T + S); v, z) = f(T ; v, z)P (N(E0 + S); v, z)

+ vzg(T ; v, z)P (N(E∞ + S); v, z)

= f(T ; v, z)P (N(S); v, z) + vzg(T ; v, z)P (D(S); v, z).

Since

P (N(S); v, z) = vzf(S; v, z)P (N(E0); v, z) + g(S; v, z)P (N(E∞); v, z)

= (1− v2)f(S; v, z) + g(S; v, z)
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and

P (D(S); v, z) = vzf(S; v, z)P (D(E0); v, z) + g(S; v, z)P (D(E∞); v, z)

= vzf(S; v, z) + (v−1 − v)z−1g(S; v, z),

we obtain the desired formula. �
The following lemma on the lowest coefficient polynomial is an immediate con-

sequence of Lemma 2.3 and Remark 2.1.

Lemma 2.4. Under the same assumption as Lemma 2.3,

P0(N(T + S); v) = (1− v2)f0(T ; v)f0(S; v)

+ f0(T ; v)g0(S; v) + (1− v2)g0(T ; v)g0(S; v).

For a tangle T , T ! means the mirror image of T which is the tangle obtained from
T by switching all crossings of T .

The following three lemmas are analogous to Lemmas 2.2, 2.3 and 2.4.

Lemma 2.5. Under the same assumption as Lemma 2.2,

(f(T !; v, z), g(T !; v, z)) = (−v−2f(T ;−v−1, z), g(T ;−v−1, z)).

Lemma 2.6. Under the same assumption as Lemma 2.3,

P (N(T + S!); v, z) = (1− v−2)f(T ; v, z)f(S;−v−1, z) + f(T ; v, z)g(S;−v−1, z)

− z2g(T ; v, z)f(S;−v−1, z) + (1− v2)g(T ; v, z)g(S;−v−1, z).

Lemma 2.7. Under the same assumption as Lemma 2.3,

P0(N(T + S!); v) = (1− v−2)f0(T ; v)f0(S;−v−1)

+ f0(T ; v)g0(S;−v−1) + (1− v2)g0(T ; v)g0(S;−v−1).

Proposition 2.8. Let T be a tangle of type D1 and S a tangle of type N1. Let
(f(T ; v, z), g(T ; v, z)) and (f(S; v, z), g(S; v, z)) be normal coordinates of T and S,
respectively. Suppose that P0(N(T + S); v) = P0(N(T + S);−v−1). If f0(T ; v) =
f0(T ;−v−1) and vg0(T ; v) = −v−1g0(T ;−v−1), then P0(N(T +S!); v) = P0(N(T +
S); v).

Proof. By the assumption of the proposition and Lemmas 2.4 and 2.7, we obtain

P0(N(T + S!); v) = (1− v−2)f0(T ;−v−1)f0(S;−v−1) + f0(T ;−v−1)g0(S;−v−1)

+ (1− v−2)g0(T ;−v−1)g0(S;−v−1)

= P0(N(T + S);−v−1) = P0(N(T + S); v).

�
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3. Proof of Theorem 1.1

Let R be a tangle of type D1 such that D(R) is equivalent to the trivial knot.
Let X and Y be tangles of type D1 and of type N1 as in Fig. 6, respectively. We
comment that X comes from tangle decomposition of 814.
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JĴ

HY

Figure 6: Tangles X and Y

The following is easily obtained by using the skein relation.

Lemma 3.1. Let (f(X; v, z), g(X; v, z)) be the normal coordinate of X. Then,
f(X; v, z) = 1− v−2z2 and g(X; v, z) = (v−2 − 1) + v−2z2.

Lemma 3.2. P0(N(X + Y ); v) = 1.

Proof. It is easy to see that N(X + Y ) is equivalent to D(R!). Since D(R) is
equivalent to the trivial knot, D(R!) is also equivalent to the trivial knot. Thus, we
have P0(N(X + Y ); v) = P0(D(R!); v) = 1. �

Proposition 3.3. P0(N(X + Y !); v) = 1.

Proof. Let (f(X; v, z), g(X; v, z)) be the normal coordinate of X. Then, Lemma
3.1 shows that f0(X; v) = 1 and g0(X; v) = v−2 − 1. Since f0(X; v) = f0(X;−v−1)
and vg0(X; v) = v−1 − v = −v−1g0(X;−v−1), Lemma 3.2 and Proposition 2.8 give
the claim. �

Any 2-bridge knot can be expressed by some continued fraction a1+
1

a2+ . . .
1

+an
,

where aj ∈ Z, 1 ≤ j ≤ n. Then, it has a diagram denoted by C(a1, a2, · · · , an) as in
Fig. 7, where Q means a 3-braid σ−a1

1 σa2
2 · · ·σ−an

1 (resp. σ−a1
1 σa2

2 · · ·σan
2 ), which is

generated by elementary 3-braids σ1, σ
−1
1 , σ2 and σ−1

2 as in Fig. 8, if n is odd (resp.
even).

Let K2n, n ∈ Z, be a 2-bridge knot denoted by C(2, 1, 1, 2, 1, 1, 2, 2n). Note that
K0 = C(2, 1, 1, 2, 1, 1, 2, 0) is equivalent to C(2, 1, 1, 2, 2) which is 814. Since K2n is
a knot, the HOMFLY polynomial of K2n does not depend on its orientation.

Corollary 3.4. P0(K2n; v) = 1.

Proof. Let X and Y be tangles illustrated in Fig. 6. If R = E2n, then N(X + Y !)
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Figure 7: A 2-bridge knot
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Figure 8: Elementary 3-braids

is equivalent to K2n. Proposition 3.3 gives the claim. �
A reduced polynomial P (L; 1, z) ∈ Z[z] obtained from the HOMFLY polynomial

of a link L is called the Conway polynomial [1] of L and is denoted by ∇(L; z).

Lemma 3.5. ∇(K2n; z) = 1− (2n+ 2)z4 + 2nz6.

Proof. Since K0 is equivalent to 814, we obtain ∇(K0; z) = ∇(814; z) = 1−2z4. Let
J = C(2, 1, 1, 2, 1, 1, 2). Then, we see that ∇(J ; z) = 2z3 − 2z5. By using the skein
relation of the HOMFLY polynomial at v = 1 repeatedly, we have

∇(K2n; z) = ∇(K0; z)− nz∇(J ; z) = 1− (2n+ 2)z4 + 2nz6.

�
The unknotting number of a knot K, which is denoted by u(K), is the minimum

number of exchanges of crossings required to deform K into the trivial knot.

Lemma 3.6. u(K2n) ≤ 2.

Proof. Let U2n = C(2, 1,−1, 2, 1, 1, 0, 2n). It is easy to see that U2n is equivalent
to the trivial knot and K2n can be deformed into U2n by switching two crossings.
Thus, the unknotting number of K2n is less than or equal to 2. �
Proof of Theorem 1.1 By corollary 3.4 and Lemmas 3.5 and 3.6, the 2-bridge knots
K2,K4, · · · are the desired knots. �
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