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Abstract. In this paper, we study the uniqueness problem on entire functions sharing

fixed points and prove some theorems which are related to one famous problem of Hayman.

1. Introduction and main results

In this paper, a meromorphic function will mean meromorphic in the whole
complex plane. We say that two meromorphic functions f(z) and g(z) share a
small function a(z) IM (ignoring multiplicities) when f −a and g−a have the same
zeros. If f(z) and g(z) have the same zeros with the same multiplicities, then we say
that f(z) and g(z) share a(z) CM (counting multiplicities). It is assumed that the
reader is familiar with the standard symbols and fundamental results of Nevanlinna
Theory, as found in [5], [8].

Let p be a positive integer and a ∈ C . We denote by Np(r,
1

f−a ) the counting
function of the zeros of f − a where an m-fold zero is counted m times if m ≤ p
and p times if m > p. We denote by NL(r,

1
f−1 ) the counting function for 1-points

of both f(z) and g(z) about which f(z) has larger multiplicity than g(z), with
multiplicity not being counted. We say that a finite value z0 is a fixed point of f(z)
if f(z0) = z0, and we define

Ef = {z ∈ C : f(z) = z, counting multiplicities}.

In order to answer one famous question of Hayman [4], Fang and Hua [1] and
Yang and Hua [7] obtained the following result.

Theorem A. Let f(z) and g(z) be two nonconstant entire functions, and let n ≥ 6
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be a positive integer. If fnf ′ and gng′share 1 CM, then either f(z) = c1e
cz, g(z) =

c2e
−cz, where c1, c2 and c are three constants satisfying (c1c2)

n+1c2 = −1 or f = tg
for a constant t such that tn+1 = 1.

In [3], Fang also got the following results.

Theorem B. Let f(z) and g(z) be two nonconstant entire functions, and let n, k
be two positive integers with n > 2k + 4. If (fn)(k) and (gn)(k)share 1 CM, then
either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)k(c1c2)
n(nc)2k = 1 or f = tg for a constant tsuch that tn = 1.

Theorem C. Let f(z) and g(z) be two nonconstant entire functions, and let n, k
be two positive integers with n ≥ 2k + 8. If (fn(f − 1))(k) and (gn(g − 1))(k) share
1 CM, then f = g.

Corresponding to the above results, some authors considered the uniqueness
problems of entire functions that have fixed points, see Fang and Qiu [2], Lin and
Yi [6]. Recently, Zhang [11] proved the following results, which generalized some
previous results.

Theorem D. Let f(z) and g(z) be two nonconstant entire functions, and let n, k
be two positive integers with n > 2k + 4. If E(f(n))k = E(g(n))k , then either (1)k =

1, f(z) = c1e
cz2

, g(z) = c2e
−cz2

, where c1, c2 and c are three constants satisfying
4(c1c2)

n(nc)2 = −1 or (2) f = tg for a constant t such that tn = 1.

Theorem E. Let f(z) and g(z) be two nonconstant entire functions, and let n, k be
two positive integers with n ≥ 2k + 6. If E(f(n)(f−1))k = E(g(n)(g−1))k , then f = g.

Now it is natural to ask whether the CM sharing value can be replaced by the
IM sharing value in Theorems D and E? In this paper, we give a positive answer to
the above question by proving the following theorems.

Theorem 1. Let f(z) and g(z) be two transcendental entire functions and let
n, k be two positive integers with n > 5k + 7. If (fn)(k) and (gn)(k)share z IM,

then f(z) = b1e
bz2

, g(z) = b2e
−bz2

for three constants b1, b2 and b that satisfy
4(b1b2)

n(nb)2 = −1 or f = tg for a constant t such that tn = 1.

Theorem 2. Let f(z) and g(z) be two transcendental entire functions and let n, k
be two positive integers with n > 5k + 11. If [fn(f − 1)](k) and [gn(g − 1)](k)share
z IM, then f = g.

2. Some Lemmas

Lemma 1([8]). Let f be a nonconstant meromorphic function, and a0, a1, a2, · · · an
be small functions of f such that an ̸= 0. Then

T (r, anf
n + an−1f

n−1 + · · · a1f + a0) = nT (r, f) + S(r, f).
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Lemma 2([10]). Let f be a nonconstant meromorphic function, and p, k be positive
integers. Then

(2.1) Np(r,
1

f (k)
) ≤ T (r, f (k))− T (r, f) +Np+k(r,

1

f
) + S(r, f),

(2.2) Np(r,
1

f (k)
) ≤ kN(r, f) +Np+k(r,

1

f
) + S(r, f).

Lemma 3([9]). Let

(2.3) H =

(
F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G− 1

)
,

where F and G are two nonconstant meromorphic functions. If F and G share 1
IM and H ̸≡ 0, then

T (r, F ) + T (r,G) ≤ 2(N2(r,
1

F
) +N2(r,

1

G
) +N2(r, F ) +N2(r,G))

+ 3(NL(r,
1

F − 1
) +NL(r,

1

G− 1
)) + S(r, F ) + S(r,G).(2.4)

Lemma 4([11]). Suppose that f and g are two nonconstant entire functions,
and n, k are two positive integers, and denote F = (fn)(k) and G = (gn)(k). If
there exist two non-zero constants a1 and a2 such that N(r, 1

F−a1
) = N(r, 1

G ) and

N(r, 1
G−a2

) = N(r, 1
F ), then n ≤ 2k + 4.

Lemma 5([11]). Suppose that F and G are given as in Lemma 4, if n > 2k and
F = G, then f = tg for a constant t such that tn = 1.

From the proof of Proposition 1 in [2] and Theorem 4 in [11], we get the following
Lemma.

Lemma 6([2], [11]). Suppose that F and G are given as in Lemma 4. If n > 2k+4

and FG = z2, then f(z) = b1e
bz2

, g(z) = b2e
−bz2

for three constants b1, b2 and b
that satisfy 4(b1b2)

n(nb)2 = −1.

Lemma 7([11]). Suppose that f and g are two nonconstant entire functions, and
n, k are two positive integers, and denote F1 = (fn(f − 1))(k) and G1 = (gn(g −
1))(k). If there exist two non-zero constants a1 and a2 such that N(r, 1

F−a1
) =

N(r, 1
G ) and N(r, 1

G−a2
) = N(r, 1

F ), then n ≤ 2k + 3.

Lemma 8([11]). Suppose that F1 and G1 are given as in Lemma 7. If n > 2k + 1
and F = G, then f = g.

Lemma 9([11]). Suppose that f is a transcendental meromorphic function with
finite number of poles, g is a transcendental entire function, and n, k are two
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positive integers. If (fn(f − 1))(k)(gn(g − 1))(k) = z2, then n ≤ k + 2.

3. Proof of Theorems

Proof of Theorem 1. Let

(3.1) F =
(fn(z))(k)

z
, G =

(gn(z))(k)

z
.

Then F and G are transcendental meromorphic functions that share 1 IM. Let H
be given by (2.3). If H ̸≡ 0, by Lemma 3, we know that (2.4) holds. From Lemma
1 and (2.1), we have

N2(r,
1

F
) ≤ N2(r,

1

(fn(z))(k)
) + S(r, f)

≤ T (r, (fn(z))(k))− nT (r, f) +Nk+2(r,
1

fn(z)
) + S(r, f)

= T (r, F )− nT (r, f) +Nk+2(r,
1

fn(z)
) + S(r, f).(3.2)

Similarly, we have

(3.3) N2(r,
1

G
) ≤ T (r,G)− nT (r, g) +Nk+2(r,

1

gn(z)
) + S(r, g).

From (3.2) and (3.3), we obtain

(3.4) N2(r,
1

F
) ≤ Nk+2(r,

1

fn(z)
) + S(r, f),

and

(3.5) N2(r,
1

G
) ≤ Nk+2(r,

1

gn(z)
) + S(r, g).

Again, from (3.2) and (3.3), we have

n(T (r, f) + T (r, g)) ≤ T (r, F ) + T (r,G)−N2(r,
1

F
)−N2(r,

1

G
)

+Nk+2(r,
1

fn(z)
) +Nk+2(r,

1

gn(z)
) + S(r, f) + S(r, g).

Noting that

N(r,
1

F
) ≤ N(r,

1

(fn)(k)
) + S(r, f).

Combining with (2.2), we obtain

N(r,
1

F
) ≤ N1(r,

1

(fn)(k)
) + S(r, f) ≤ kN(r, fn) +Nk+1(r,

1

fn
)

+ S(r, f) ≤ kN(r, f) + (k + 1)N(r,
1

f
) + S(r, f).(3.6)
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By the definition of NL(r,
1

F−1 ) and (3.6), we get

NL(r,
1

F − 1
) ≤ N(r,

1

F − 1
)−N(r,

1

F − 1
) ≤ N(r,

F

F ′ ) + S(r, f)

≤ N(r,
F ′

F
) + S(r, f) ≤ N(r,

1

F
) +N(r, F ) + S(r, f)

≤ (k + 1)(N(r, f) +N(r,
1

f
)) + S(r, f).(3.7)

Similarly, we have

(3.8) NL(r,
1

G− 1
) ≤ (k + 1)(N(r, g) +N(r,

1

g
)) + S(r, g).

From (2.4), (3.4)–(3.8), we obtain

n(T (r, f) + T (r, g)) ≤ 2(Nk+2(r,
1

fn
) +Nk+2(r,

1

gn
))

+ 3(NL(r,
1

F − 1
) +NL(r,

1

G− 1
)) + S(r, f) + S(r, g).

i.e.,

n(T (r, f) + T (r, g)) ≤ (k + 2)(N(r,
1

f
) +N(r,

1

g
))

+ 3((k + 1)N(r,
1

f
) + (k + 1)N(r,

1

g
)) + S(r, f) + S(r, g).

That is
(n− (5k + 7))(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which is a contradiction as n > 5k + 7. Therefore H ≡ 0. Integrating twice, we get
from (2.3) that

(3.9)
1

F − 1
=

A

G− 1
+B,

where A( ̸= 0) and B are constants. From (3.9), we have

(3.10) F =
(B + 1)G+ (A−B − 1)

BG+ (A−B)
, G =

(B −A)F + (A−B − 1)

BF − (B + 1)
.

We consider the following three cases.
Case 1. Suppose that B ̸= 0,−1. From (3.10) we have N(r, 1

F−B+1
B

) = N(r,G).

From the second fundamental theorem, we have

T (r, F ) ≤ N(r,
1

F
) +N(r,

1

F − B+1
B

) + S(r, F )

= N(r,
1

F
) +N(r,G) + S(r, F ) ≤ N(r,

1

F
) + S(r, F ).(3.11)
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By (2.1) and (3.11) , we obtain

T (r, F ) ≤ N1(r,
1

F
) + S(r, f)

≤ T (r, F )− nT (r, f) +Nk+1(r,
1

fn(z)
) + S(r, f).

Hence

nT (r, f) ≤ (k + 1)N(r,
1

f
) + S(r, f)

≤ (k + 1)T (r, f) + S(r, f),

which contradicts n > 5k + 7.
Case 2. Suppose that B = 0. From (3.10) we have

(3.12) F =
G+ (A− 1)

A
, G = AF − (A− 1).

If A ̸= 1, we get from (3.12) that N(r, 1
F−A−1

A

) = N(r, 1
G ) and N(r, 1

F ) =

N(r, 1
G+(A−1) ). By Lemma 4, we have n ≤ 2k+4. This contradicts the assumption

that n > 5k + 7. Thus A = 1 and F = G, that is, (fn)(k) = (gn)(k). By Lemma 5,
we get f = tg for a constant t such that tn = 1.

Case 3. Suppose that B = −1. From (3.10) we obtain

(3.13) F =
A

−G+ (A+ 1)
, G =

(A+ 1)F −A

F
.

If A ̸= −1, we obtain from (3.13) that N(r, 1
F− A

A+1

) = N(r, 1
G ), N(r, F ) =

N(r, 1
G−A−1 ). By the same reasoning mentioned in Case 1 and Case 2, we get

a contradiction. Hence A = −1, from (3.13), we have FG = 1. That is

(fn)(k)(gn)(k) = z2, by Lemma 6, we obtain f(z) = b1e
bz2

, g(z) = b2e
−bz2

for
three constants b1, b2 and b that satisfy 4(b1b2)

n(nb)2 = −1. This completes the
proof of Theorem 1. �

Proof of Theorem 2. Let

(3.14) F =
(fn(f − 1))(k)

z
, G =

(gn(g − 1))(k)

z
.

Then F and G are transcendental meromorphic functions that share 1 IM. Let H
be given by (2.3). In the same manner as Theorem 1, we get

N(r,
1

F
) ≤ N1(r,

1

(fn(f − 1))(k)
) + S(r, f)

≤ kN(r, fn(f − 1)) +Nk+1(r,
1

fn(f − 1)
)

+ S(r, f) ≤ kN(r, f) + (k + 1)N(r,
1

f
) +N(r,

1

f − 1
) + S(r, f).(3.15)
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By the definition of NL(r,
1

F−1 ) and (3.15), we have

(3.16) NL(r,
1

F − 1
) ≤ (k + 1)(N(r, f) +N(r,

1

f
)) +N(r,

1

f − 1
) + S(r, f).

Using the same argument in the proof of Theorem 1, we get H ≡ 0 and F = G or
FG = 1 when n > 5k + 11.
If F = G, then (fn(f − 1))(k) = (gn(g − 1))(k). From Lemma 8, we obtain f = g.
If FG = 1, then (fn(f − 1))(k)(gn(g − 1))(k) = z2. From Lemma 9, we get a con-
tradiction. Theorem 2 follows. �

Acknowledgment. The author would like to thank the referee for his/her valuable
suggestions.

References

[1] M. L. Fang, X. H. Hua, Entire functions that share one value, Nanjing Daxue Xuebao
Shuxue Bannian Kan, 13(1)(1996), 44-48.

[2] M. L. Fang, H. L. Qiu, Meromorphic functions that share fixed-points, J. Math. Anal.
Appl., 268(2000), 426-439.

[3] M. L. Fang, Uniqueness and value-sharing of entire functions, Comput. Math. Appl.,
44(2002), 823-831.

[4] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann.
of Math., 70(1959), 9-42.

[5] W. K. Hayman, Meromorphic Functions, Oxford, 1964.

[6] W. C. Lin, H. X. Yi, Uniqueness theorems for meromorphic function concerning fixed-
points, Complex Var. Theory Appl., 49(11)(2004), 793-806.

[7] C. C. Yang, X. H. Hua, Uniqueness and value-sharing of meromorphic functions,
Ann. Acad. Sci. Fenn. Math., 22(2)(1997), 395-406.

[8] C. C. Yang, H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Aca-
demic Publishers, The Netherlands, 2003.

[9] H. X. Yi, Meromorphic Functions that share one or two values, Kodai Math. J.,
22(1999), 264-272.

[10] J. L. Zhang, L. Z. Yang, Some results related to a conjecture of R. Brück, J. Inequal.
Pure Appl. Math., 8(1)(2007), Art. 18.

[11] J. L. Zhang, Uniqueness theorems for entire functions concerning fixed points, Com-
puters and Mathematics with Applications, 56(2008), 3079-3087.


