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Abstract. We investigate the dynamical properties of a Holling type I predator-prey

model, which harvests both prey and predator and stock predator impulsively. By using

the Floquet theory and small amplitude perturbation method we prove that there exists

a stable prey-extermination solution when the impulsive period is less than some critical

value, which implies that the model could be extinct under some conditions. Moreover,

we give a sufficient condition for the permanence of the model.

1. Introduction

One important component of the predator-prey relationship is the predator’s
rate of feeding on prey, i.e., the so-called predator’s functional response. Functional
response refers to the change in the density of prey attached per unit time per
predator as the prey density changes. Based on experiments, Holling [6] gave three
different kinds of functional response for different kinds of species to model the
phenomena of predation. The basic model we considered is based on the following
predator-prey model with Holling type I.

(1.1)

x′(t) = ax(t)(1− x(t)

K
)− ϕ(x(t))y(t),

y′(t) = −Dy(t) + bϕ(x(t))y(t),

(x(0+), y(0+)) = (x0, y0) = x0,

with

(1.2) ϕ(x(t)) =

{
cx(t), x ≤ ν,

cν, x > ν,

where x(t), y(t) denote, respectively, the prey and predator densities. Here,
a, b,D,K, ν are positive constants and K represents the environmental capacity
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and a a intrinsic birth rate, D denotes the death rate of the predator, b is the rate
of conversion of a consumed prey to a predator, ϕ(x(t)) is the capture rate of prey
per predator or functional response of a predator and ν is a constant characterizing
the threshold of prey concentration above which the predation rate is constant and
under which the predation rate is similar to the Lotka-Volterra one.

The theory of impulsive differential equations is much richer than the corre-
sponding theory of differential equations without impulse effects [1, 2, 3, 5, 7].
Thus, with the idea of periodic forcing and impulsive perturbations, we considered
the following predator-prey model.

(1.3)



x′(t) = ax(t)(1− x(t)

K
)− ϕ(x(t))y(t),

y′(t) = −Dy(t) + bϕ(x(t))y(t),

}
t ̸= nT,

∆x(t) = −p1x(t),

∆y(t) = −p2y(t) + q,

}
t = nT,

(x(0+), y(0+)) = (x0, y0) = x0,

where ∆x(t) = x(t+)−x(t),∆y(t) = y(t+)−y(t) and 0 ≤ p1, p2 < 1. T is the period
of the impulsive immigration or stock of the predator, q is the size of immigration
or stock of the predator.

2. Preliminaries

Firstly, we give some notations, definitions and Lemmas which will be useful
for our main results.

Let R+ = [0,∞) and R2
+ = {x = (x(t), y(t)) ∈ R2 : x(t), y(t) ≥ 0}. Denote N

the set of all of nonnegative integers and f = (f1, f2)
T the right hand of (1.3). Let

V : R+ × R2
+ → R+, then V is said to be in a class V0 if

(1) V is continuous on(nT, (n+ 1)T ]× R2
+, and lim

(t,y)→(nT,x)
t>nT

V (t,y) = V (nT+,x)

exists.

(2) V is locally Lipschitzian in x.

Definition 2.1. Let V ∈ V0, (t,x) ∈ (nT, (n+ 1)T ]× R2
+. The upper right deriva-

tives of V (t,x) with respect to the impulsive differential system (1.3) is defined
as

D+V (t,x) = lim sup
h→0+

1

h
[V (t+ h,x+ hf(t,x))− V (t,x)].

Remark 2.2. (1) The solution of the system (1.3) is a piecewise continu-
ous function x : R+ → R2

+, x(t) is continuous on (nT, (n + 1)T ], n ∈ N and
x(nT+) = limt→nT+ x(t) exists.
(2) The smoothness properties of f guarantee the global existence and uniqueness
of solution of the system (1.3) (see [7] for the details).
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Since
dx

dt
=

dy

dt
= 0 whenever x(t) = y(t) = 0, t ̸= nT and x(nT+) = (1 −

p1)x(nT ), y(nT
+) = (1 − p2)y(nT ) + q(0 ≤ pi < 1, i = 1, 2, q ≥ 0). We have the

following lemma.

Lemma 2.3. Let x(t) = (x(t), y(t)) be a solution of (1.3). Then we have the
following assertions.
(1) If x(0+) ≥ 0 then x(t) ≥ 0 for all t ≥ 0.
(2) If x(0+) > 0 then x(t) > 0 for all t ≥ 0.

We show that all solutions of (1.3) are uniformly ultimately bounded.

Lemma 2.4. There is an M > 0 such that x(t), y(t) ≤ M for all t large enough,
where (x(t), y(t)) is a solution of (1.3).

Proof. Let x(t) = (x(t), y(t)) be a solution of (1.3) and let V (t,x) = bx(t) + y(t).
Then V ∈ V0, if t ̸= nT

(2.1) D+V + kV = −ba

K
x2(t) + b(a+ k)x(t) + c(k −D)y(t).

Clearly, the right hand of (2.1), is bounded by M0 =
b(a+ k)2K2

4ak
when 0 < k < D.

When t = nT , V (nT+) = bx(nT+)+ y(nT+) = (1− p1)bx(nT )+ (1− p2)y(nT )+ q
≤ V (nT ) + q. So we can choose 0 < k0 < D and M0 > 0 such that

(2.2)

{
D+V ≤ −k0V +M0, t ̸= nT,

V (nτ+) ≤ V (nτ) + q, t = nT.

From Lemma 2.2 of [4], we can obtain that

(2.3)

V (t) ≤(V (0+)− M0

k0
) exp(−k0t)

+
q(1− exp(−(n+ 1)k0T ))

1− exp(−k0T )
exp(−k0(t− nT )) +

M0

k0

for t ∈ (nT, (n + 1)T ]. Therefore, V (t) is bounded by M =
q exp(k0T )

exp(k0T )− 1
for suf-

ficiently large t. Hence there is an M > 0 such that x(t) ≤ M,y(t) ≤ M for a
solution (x(t), y(t)) with all t large enough. 2

Now, we give the basic properties of the following impulsive differential equation.

(2.4)


y′(t) = −Dy(t), t ̸= nT,

y(t+) = (1− p2)y(t) + q, t = nT,

y(0+) = y0.

Then we can easily obtain the following results.
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Lemma 2.6. (1) y∗(t) =
q exp(−D(t− nT ))

1− (1− p2) exp(−DT )
, t ∈ (nT, (n + 1)T ], n ∈ N and

y∗(0+) =
q

1− (1− p2) exp(−DT )
is a positive periodic solution of (2.4).

(2) y(t) = (1 − p2)
n+1

(
y(0+) − q exp(−DT )

1− (1− p2) exp(−DT )

)
exp(−Dt) + y∗(t) is the

solution of (2.4) with y0 ≥ 0, t ∈ (nT, (n+ 1)T ] and n ∈ N.
(3) All solutions y(t) of (1.3) with y0 ≥ 0 tend to y∗(t). i.e., |y(t) − y∗(t)| → 0 as
t → ∞.

3. Extinction and Permanence

Now, we present a condition which guarantees locally asymptotical stability of
the prey-free periodic solution (0, y∗(t)).

Theorem 3.1. The solution (0, y∗(t)) is locally asymptotically stable if

aT <
cq(1− exp(−DT ))

bD(1− (1− p2) exp(−DT ))
+ ln

1

1− p2
.

Proof. The local stability of the periodic solution (0, y∗(t)) of (1.3) may be deter-
mined by considering the behavior of small amplitude perturbations of the solution.
So in this case we can take ϕ(x(t)) = cx(t). Let (x(t), y(t)) be any solution of (1.3).
Define x(t) = u(t), y(t) = y∗(t) + v(t). Then they may be written as

(3.1)

(
u(t)
v(t)

)
= Φ(t)

(
u(0)
v(0)

)
, 0 ≤ t ≤ T,

where Φ(t) satisfies

(3.2)
dΦ

dt
=

(
a− cy∗(t) 0
bcy∗(t) −D

)
Φ(t)

and Φ(0) = I, the identity matrix. The linearization of the third and fourth equation
of (1.3) becomes

(3.3)

(
u(nT+)
v(nT+)

)
=

(
1− p1 0

0 1− p2

)(
u(nT )
v(nT )

)
.

Note that all eigenvalues of S =

(
1− p1 0

0 1− p2

)
Φ(T ) are µ1 = exp(−dT ) < 1

and µ2 = (1− p2) exp(
∫ T

0
a− cy∗(t)dt). Since∫ T

0

y∗(t)dt =
q(1− exp(−DT ))

D(1− (1− p2) exp(−DT ))
,



Extinction and Permanence of a Holling I Type Impulsive Predator-prey Model 767

we have

µ2 = (1− p2) exp

(
aT − cq(1− exp(−DT ))

D(1− (1− p2) exp(−DT ))

)
.

By Floquet Theory ([4]), (0, y∗(t)) is locally asymptotically stable if |µ2| < 1.i.e.,

aT <
cq(1− exp(−DT ))

D(1− (1− p2) exp(−DT ))
+ ln

1

1− p2
. 2

Definition 3.2. The system (1.3) is permanent if there exist M ≥ m > 0 such
that, for any solution (x(t), y(t)) of (1.3) with x0 > 0,

m ≤ lim
t→∞

inf x(t) ≤ lim
t→∞

supx(t) ≤ M and m ≤ lim
t→∞

inf y(t) ≤ lim
t→∞

sup y(t) ≤ M.

Theorem 3.3. The system (1.3) is permanent if

aT >
cq(1− exp(−DT ))

D(1− (1− p2) exp(−DT ))
+ ln

1

1− p2
.

Proof. Let (x(t), y(t)) be any solution of (1.3) with x0 > 0. From Lemma 2.4,

we may assume that x(t) ≤ M , y(t) ≤ M , t ≥ 0 and M >
a

c
. Let m2 =

q exp(−DT )

1− (1− p2) exp(−DT )
− ϵ2, ϵ2 > 0. From Lemma 2.5, clearly we have y(t) ≥ m2

for all t large enough. Now we shall find an m1 > 0 such that x(t) ≥ m1 for all t
large enough. We will do this in the following two steps.

(Step 1) Since

aT >
cq(1− exp(−DT ))

D(1− (1− p2) exp(−DT ))
+ ln

1

1− p2
,

we can choose m3 > 0, ϵ1 > 0 small enough such that 0 < m3 < min{D
bc , ν} and

R = (1− p2) exp
(
aT − a

K
Tm3 −

cq(1− exp(−DT ))

D(1− (1− p2) exp(−DT ))
− cϵ1T

)
> 1. Suppose

that x(t) < m3 for all t. Then we get y′(t) ≤ y(t)(−D + δ), where δ = bcm3.
By Lemma 2.2 of [4], we have y(t) ≤ u(t) and u(t) → u∗(t), t → ∞, where u(t) is
the solution of

(3.4)


u′(t) = (−D + δ)u(t), t ̸= nT,

u(t+) = (1− p2)u(t) + q, t = nT,

u(0+) = y0,

and u∗(t) =
q exp((−D + δ)(t− nT ))

1− (1− p2) exp((−D + δ)T )
, t ∈ (nT, (n + 1)T ]. Then there exists

T1 > 0 such that y(t) ≤ u(t) ≤ u∗(t) + ϵ1 and

x′(t) = x(t)(a− a

K
x(t))− cx(t)y(t)

≥ x(t)
(
a− a

K
m3 − c(u∗(t) + ϵ1)

)
for t ≥ T1.
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Let N1 ∈ N and N1T ≥ T1. We have, for n ≥ N1

(3.5)

{
x′(t) ≥ x(t)(a− a

K
m3 − c(u∗(t) + ϵ1)), t ̸= nT,

x(t+) = (1− p)x(t), t = nT.

Integrating (3.5) on (nT, (n+ 1)T ](n ≥ N1), we obtain

x((n+ 1)T ) ≥ x(nT+) exp(

∫ (n+1)T

nT

a− a

K
m3 − c(u∗(t) + ϵ1)dt) = x(nT )R.

Then x((N1 + k)T ) ≥ x(N1T )R
k → ∞ as k → ∞ which is a contradiction. Hence

there exists a t1 > 0 such that x(t1) ≥ m3.

(Step 2) If x(t) ≥ m3 for all t ≥ t1, then we are done. If not, we may let
t∗ = inft>t1{x(t) < m3}.Then x(t) ≥ m3 for t ∈ [t1, t

∗] and, by the continuity of
x(t), we have x(t∗) = m3. In this step, we have only to consider two possible cases.

Case 1) t∗ = n1T for some n1 ∈ N. Then (1 − p1)m3 ≤ x(t∗+) =

(1 − p1)x(t
∗) < m3. Select n2, n3 ∈ N such that (n2 − 1)T >

ln( ϵ1
M+q )

−d+ δ
and

(1 − p1)
n2Rn3 exp(n2σT ) > (1 − p1)

n2Rn3 exp((n2 + 1)σT ) > 1, where σ =

a− a

K
m3−cM < 0. Let T ′ = n2T +n3T . In this case we will show that there exists

t2 ∈ (t∗, t∗ + T ′] such that x(t2) ≥ m3. Otherwise, by (3.4) with u(t∗+) = y(t∗+),
we have

u(t)− u∗(t) =

(1− p2)
n1+1

(
u(t∗+)− q exp((−D + δ)T )

1− (1− p2) exp((−D + δ)T )

)
exp((−D + δ)(t− t∗))

for (n − 1)T < t ≤ nT and n1 + 1 ≤ n ≤ n1 + 1 + n2 + n3. So we get |u(t) −
u∗(t)| ≤ (M + q) exp((−D + δ)(t − t∗)) < ϵ1 and y(t) ≤ u(t) ≤ u∗(t) + ϵ1 for
t∗ + n2T ≤ t ≤ t∗ + T ′. Also we get to know that

(3.6)

{
x′(t) ≥ x(t)

(
a− a

K
m3 − c(u∗ + ϵ1)

)
, t ̸= nT,

x(t+) = (1− p1)x(t), t = nT,

for t ∈ [t∗ + n2T, t
∗ + T ′]. As in step 1, we have

x(t∗ + T ′) ≥ x(t∗ + n2T )R
n3 .

Since y(t) ≤ M , we have

(3.7)

{
x′(t) ≥ x(t)

(
a− a

K
m3 − cM

)
= σx(t), t ̸= nT,

x(t+) = (1− p1)x(t), t = nT,
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for t ∈ [t∗, t∗ + n2T ]. Integrating (3.7) on [t∗, t∗ + n2T ] we have

x((t∗ + n2T )) ≥ m3 exp(σn2T )

≥ m3(1− p1)
n2 exp(σn2T ) > m3.

Thus x(t∗+T ′) ≥ m3(1−p1)
n2 exp(σn2T )R

n3 > m3 which is a contradiction. Now,
let t̄ = inft>t∗{x(t) ≥ m3}. Then x(t) ≤ m3 for t∗ ≤ t < t̄ and x(t̄) = m3. For
t ∈ [t∗, t̄), suppose t ∈ (t∗+(k−1)T, t∗+kT ], k ∈ N and k ≤ n2+n3So, we have, for
t ∈ [t∗, t̄), from (3.7) we obtain x(t) ≥ x(t∗+)(1− p1)

k−1 exp((k − 1)σT ) exp(σ(t−
(t∗+(k−1)T ))) ≥ m3(1−p1)

k exp(kσT ) ≤ m3(1−p1)
n2+n3 exp(σ(n2+n3)T ) ≡ m′

1.

Case (2) t∗ ̸= nT, n ∈ N. Then x(t) ≥ m3 for t ∈ [t1, t
∗) and x(t∗) = m3.

Suppose that t∗ ∈ (n′
1T, (n

′
1 + 1)T ) for some n′

1 ∈ N. There are two possible cases.

Case(2(a)) x(t) < m3 for all t ∈ (t∗, (n′
1 + 1)T ]. In this case we will show that

there exists t2 ∈ [(n′
1 + 1)T, (n′

1 + 1)T + T ′] such that x2(t2) ≥ m3. Suppose not.
i.e., x(t) < m3, for all t ∈ [(n′

1 + 1)T, (n′
1 + 1 + n2 + n3)T ]. Then x(t) < m3 for all

t ∈ (t∗, (n′
1+1+n2+n3)T ]. By (3.4) with u((n′

1+1)T+) = y((n′
1+1)T+), we have

u(t)− u∗(t) =(
u((n′

1 + 1)T+)− q exp(−D + δ)

1− (1− p2) exp(−D + δ)

)
exp((−D + δ)(t− (n′

1 + 1)T ))

for t ∈ (nT, (n + 1)T ], n′
1 + 1 ≤ n ≤ n′

1 + n2 + n3. A similar argument as in (step
1), we have

x((n′
1 + 1 + n2 + n3)T ) ≥ x2((n

′
1 + 1 + n2)T )R

n3 .

It follows from (3.7) that

x((n′
1 + 1 + n2)T ) ≥ m3(1− p)n2+1 exp(σ(n2 + 1)T ).

Thus x((n′
1 + 1 + n2 + n3)T ) ≥ m3(1− p)n2+1 exp(σ(n2 + 1)T )Rn3 > m3 which is

a contradiction. Now, let t̄ = inft>t∗{x(t) ≥ m3}. Then x(t) ≤ m3 for t∗ ≤ t < t̄
and x(t̄) = m3. For t ∈ [t∗, t̄), suppose t ∈ (n′

1T + (k′ + 1)T, n′
1T + k′T ], k′ ∈ N,

k′ ≤ 1 + n2 + n2, we have x(t) ≥ m3(1 − p)1+n2+n3 exp(σ(1 + n2 + n3)T ) ≡ m1.
Since m1 < m′

1, so x(t) ≥ m1 for t ∈ (t∗, t̄).

Case (2(b)) There is a t′ ∈ (t∗, (n′
1 + 1)T ] such that x2(t

′) ≥ m3. Let
t̂ = inft>t∗{x(t) ≥ m3}. Then x(t) ≤ m3 for t ∈ [t∗, t̂) and x(t̂) = m3. Also,
(3.7) holds for t ∈ [t∗, t̂). Integrating the equation on [t∗, t)(t∗ ≤ t ≤ t̂), we can get
that x(t) ≥ x(t∗) exp(σ(t− t∗)) ≥ m3 exp(σT ) ≥ m1. Thus in both case the similar
argument can be continued since x(t) ≥ m1 for some t > t1. This completes the
proof. 2
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