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ABSTRACT. We investigate the dynamical properties of a Holling type I predator-prey
model, which harvests both prey and predator and stock predator impulsively. By using
the Floquet theory and small amplitude perturbation method we prove that there exists
a stable prey-extermination solution when the impulsive period is less than some critical
value, which implies that the model could be extinct under some conditions. Moreover,
we give a sufficient condition for the permanence of the model.

1. Introduction

One important component of the predator-prey relationship is the predator’s
rate of feeding on prey, i.e., the so-called predator’s functional response. Functional
response refers to the change in the density of prey attached per unit time per
predator as the prey density changes. Based on experiments, Holling [6] gave three
different kinds of functional response for different kinds of species to model the
phenomena of predation. The basic model we considered is based on the following
predator-prey model with Holling type I.

1) = ar(t)(1 - ") (e (t)y(r).
(L) /(1) = = Dy(t) + b (a(t)y(t),

(2(07),y(07)) = (w0, y0) = %o,
with

cx(t),z <v,

cv,x > U,

(1.2) p(z(t)) = {

where xz(t),y(t) denote, respectively, the prey and predator densities. Here,
a,b, D, K,v are positive constants and K represents the environmental capacity
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and a a intrinsic birth rate, D denotes the death rate of the predator, b is the rate
of conversion of a consumed prey to a predator, ¢(x(t)) is the capture rate of prey
per predator or functional response of a predator and v is a constant characterizing
the threshold of prey concentration above which the predation rate is constant and
under which the predation rate is similar to the Lotka-Volterra one.

The theory of impulsive differential equations is much richer than the corre-
sponding theory of differential equations without impulse effects [1, 2, 3, 5, 7].
Thus, with the idea of periodic forcing and impulsive perturbations, we considered
the following predator-prey model.

70 = a1~ 52) ~ DleO)y(0) } 4
"(t) = —Dy(t) + bp(a(t))y(t),
(

(2(07),y(07)) = (20, y0) = X0,

where Ax(t) = z(tT) —x(t), Ay(t) = y(tT)—y(t) and 0 < p1,p2 < 1. T is the period
of the impulsive immigration or stock of the predator, ¢ is the size of immigration
or stock of the predator.

2. Preliminaries

Firstly, we give some notations, definitions and Lemmas which will be useful
for our main results.

Let Ry = [0,00) and R% = {x = (z(t),y(t)) € R? : z(t),y(t) > 0}. Denote N
the set of all of nonnegative integers and f = (fi, f2)7 the right hand of (1.3). Let
V:Ry x RE — Ry, then V is said to be in a class Vp if

(1) V is continuous on(nT, (n + 1)T] x R3 , and lim  V(t,y)=V(nTt x)
(t7y1;>(7%T7X)

exists.

(2) V is locally Lipschitzian in x.

Definition 2.1. Let V € Vg, (t,x) € (nT, (n +1)T] x R2. The upper right deriva-
tives of V(t,x) with respect to the impulsive differential system (1.3) is defined
as
1
DYV (t,x) =limsup — [V (t + h,x + hf(t,x)) — V(t,%)].

h—0+ h
Remark 2.2. (1) The solution of the system (1.3) is a piecewise continu-
ous function x : Ry — R?Z, x(¢) is continuous on (nT,(n + 1)T],n € N and
x(nTT) = limy;_,,,7+ x(t) exists.
(2) The smoothness properties of f guarantee the global existence and uniqueness
of solution of the system (1.3) (see [7] for the details).
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d d
Since d—gtc = d—:g = 0 whenever z(t) = y(t) = 0,t # nT and x(nTT) = (1 —

p1)z(nT), y(nTT) = (1 — p2)y(nT) + q(0 < p; < 1,i = 1,2,q > 0). We have the
following lemma.

Lemma 2.3. Let x(t) = (x(t),y(t)) be a solution of (1.3). Then we have the
following assertions.

(1) If x(0%) > 0 then x(t) > 0 for all t > 0.

(2) If x(0%) > 0 then x(t) > 0 for all t > 0.

We show that all solutions of (1.3) are uniformly ultimately bounded.

Lemma 2.4. There is an M > 0 such that z(t),y(t) < M for all t large enough,
where (z(t),y(t)) is a solution of (1.3).

Proof. Let x(t) = (x(t),y(t)) be a solution of (1.3) and let V(¢,x) = bx(t) + y(t).
Then V € Vp, if t # nT

b
(2.1) DYV +kV = —?“ﬁ(t) +b(a + k)a(t) + e(k — D)y(t).
b k)2 K?
Clearly, the right hand of (2.1), is bounded by My = % when 0 < k < D.

When t = nT, V(nTT) = bx(nT™) +y(nTT) = (1 —p1)bx(nT) + (1 —p2)y(nT) +q
< V(nT) + q. So we can choose 0 < kg < D and My > 0 such that

(2.2)

DYV < —koV + My, t #nT,
V(ntt) < V(nt)+ q,t = nT.

From Lemma 2.2 of [4], we can obtain that

V() <(V(0") - A,f—f) exp(—kot)

(2.3)
q(1 —exp(—(n+ 1)koT)) M,
— —nT 20
+ 1= exp(—hoT) exp(—ko(t —nT)) + "
koT
for t € (nT, (n 4+ 1)T]. Therefore, V (t) is bounded by M = _aexp(koT) for suf-
exp(koT) — 1

ficiently large t. Hence there is an M > 0 such that z(¢t) < M,y(t) < M for a
solution (z(t), y(t)) with all ¢ large enough. i

Now, we give the basic properties of the following impulsive differential equation.
y/<t) = _Dy(t)? t 7& ’I?,T,

(2.4) y(tt) = (1 —p2)y(t) + ¢, t = nT,
y(0F) = wo.

Then we can easily obtain the following results.
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Lemma 2.6. (1) y*(t) = 1= (1 = pa) exp(—DT)’ te (nT,(n+1)T], n € N and
*(F) —
O = T ) (DT o
n gexp(— o
(2) u(6) = (L= p2)™ " (0(0") = = ) (D) (1) s the
solution of (2.4) with yo > 0, t € (nT, (n+1)T] and n € N.

(3) All solutions y(t) of (1.3) with yo > 0 tend to y*(t). i.e., |y(t) — y*(t)] = 0 as
t — o0.

is a positive periodic solution of (2.4).

3. Extinction and Permanence

Now, we present a condition which guarantees locally asymptotical stability of
the prey-free periodic solution (0, y*(t)).

Theorem 3.1. The solution (0,y*(t)) is locally asymptotically stable if

cq(1 — exp(—DT)) n 1

o < bD(1 — (1 — p2) exp(—DT)) 1—po

Proof. The local stability of the periodic solution (0,y*(¢)) of (1.3) may be deter-
mined by considering the behavior of small amplitude perturbations of the solution.
So in this case we can take ¢(z(t)) = cx(t). Let (z(t),y(t)) be any solution of (1.3).
Define z(t) = u(t),y(t) = y*(t) + v(¢). Then they may be written as

(3.1) (%;) — (1) <Z§8§) 0<t<T,
where ®(t) satisfies

do a—cy*(t) O
(3.2) E = ( bcyg(t) D) CI)(ﬁ)

and ®(0) = I, the identity matrix. The linearization of the third and fourth equation
of (1.3) becomes

5 (o) = (2% ().
1—p; 0

Note that all eigenvalues of S = < 0 1—p2

><I>(T) are p1 = exp(—dT) < 1
and po = (1 — pa) exp(foT a — cy*(t)dt). Since

T in  a(l—exp(—=DT))
/0 v (B)dt = D(1 — (1 —pa) exp(—=DT))’
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we have

1o = (1 — pa) exp (aT ~ gl —exp(=DT)) )

D(1 — (1 = p2) exp(—DT))
By Floquet Theory ([4]), (0,y*(¢)) is locally asymptotically stable if |us| < 1.i.e.,

cq(1 — exp(—DT)) n 1 . -
D(1— (1 —p2)exp(—DT)) 1—po
Definition 3.2. The system (1.3) is permanent if there exist M > m > 0 such
that, for any solution (x(t),y(¢)) of (1.3) with x¢ > 0,

al <

m < lim inf 2(¢) < lim supa(t) < M and m < lim infy(¢) < lim supy(t) < M.
t—o0 t—o00 t—o00 t—o0

Theorem 3.3. The system (1.3) is permanent if

cq(1 — exp(—DT)) 1
+In .
D(1 — (1 —p2) exp(—DT)) L —po
Proof. Let (x(t),y(t)) be any solution of (1.3) with xq > 0. From Lemma 2.4,
we may assume that z(t) < M, y(t) < M ,t > 0 and M > & Let my =
c
gexp(—DT)
= (1= p) exp(—DT)
for all ¢ large enough. Now we shall find an my > 0 such that z(t) > m; for all ¢
large enough. We will do this in the following two steps.
(Step 1) Since

al >

— €9, € > 0. From Lemma 2.5, clearly we have y(t) > mq

cq(1 — exp(—DT)) i 1

ol > D(1 — (1 —ps)exp(—DT)) 1—po’

we can choose ms > 0, €; > 0 small enough such that 0 < m3 < min{b—Dc, v} and
a cq(1 — exp(—DT))
R=(1- (T——T -
(=p2)explal = zelma = 5= =) exp(— DT))
that x(t) < mg for all t. Then we get y/(t) < y(¢t)(—D + ), where § = bemg.
By Lemma 2.2 of [4], we have y(t) < u(t) and u(t) — u*(¢), t = oo, where u(t) is
the solution of

—C€1T> > 1. Suppose

uw'(t) = (=D + d)u(t), t #nT,
(3.4) u(t+) (1 —p2)u(t) +q, t = nT,
(

o
+

= € (nT,(n + 1)T]. Then there exists
—a ~ (nT, (n + T

(t) < u* t) + € and
2'(t) = a(t)(a — (b)) — cr(t)y(t)
> z(t)(a — %mg —c(u*(t)+€)) for t > Ty
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Let N1 € N and N;T > T;. We have, for n > N;

(3.5) {x/“’ > a(t){a — spms — c(u*(t) + 1)), t £ T,
z(tt) =1 -px(t),t =nT.

Integrating (3.5) on (nT, (n+ 1)T](n > Np), we obtain

(n+1)T
2((n+1)T) > x(nT™) exp(/ a— %mg —c(u*(t) + e1)dt) = z(nT)R.
nT

Then z((N7 + k)T) > 2(N1T)R* — oo as k — oo which is a contradiction. Hence
there exists a ¢; > 0 such that z(¢1) > ms.

(Step 2) If 2(t) > mg for all ¢ > t;, then we are done. If not, we may let
t* = infys, {x(t) < ms}.Then x(t) > mg for ¢ € [t1,t*] and, by the continuity of
z(t), we have z(t*) = m3. In this step, we have only to consider two possible cases.

Case 1) t* = mT for some ny € N. Then (1 — p;)msz < z(t*") =

ln(ME_li_ )
(1 — p1)x(t*) < mg. Select ny,n3 € N such that (ng — )T > ﬁ and

(1 — p1)"™R"™ exp(naoT) > (1 — p1)™2R™exp((ny + 1)oT) > 1, where o =
a— %mg —cM < 0. Let T" = noT +n3T. In this case we will show that there exists

ty € (t*,t* + T'] such that z(t2) > ms. Otherwise, by (3.4) with u(t*T) = y(t*1),
we have

u(t) —u*(t) =

(1—po)t! (u(t*+) T qu";:)(e_xl; (EL_‘SI))TJZ 6)T)> exp(—D + 8)(t — 1))

for (n—1)T <t <nT andn; +1 <n <ny+1+ns+ ns. So we get |u(t) —
u ()] < (M + @) exp((—D + 0)(t — t*)) < e and y(t) < u(t) < u*(t) + € for
t* +noT <t < t*+T'. Also we get to know that

(3.6) { a'(t) > a(t)(a - =M c(u* +e1)),t # nT,
w(tt) = (1 —p1)z(t), t = nT,

for t € [t* 4+ naT,t* + T’]. As in step 1, we have
ot +T) > z(t* +nT)R™.
Since y(t) < M, we have

(3.7) { a'(t) = a(t) (a - %mg - CM) =oxz(t),t # nT,

x(tT) = (1 —p1)x(t),t = nT,
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for t € [t*,t* + noT)]. Integrating (3.7) on [t*,t* + noT| we have

z((t* + n2T)) > mzexp(onaT)
> m3(1l — p1)™ exp(on2T) > ms.

Thus z(t*+T") > ms(1—p1)™ exp(on2T)R"™ > mg which is a contradiction. Now,
let ¢t = inf;~y«{z(t) > ms}. Then z(t) < mg for t* < t < ¢ and z(t) = ms. For
t € [t*, %), suppose t € (t*+(k—1)T,t*+kT), k € Nand k < ny+mn3So, we have, for
t € [t*, 1), from (3.7) we obtain z(¢) > x(t*T)(1 — p1)*Lexp((k — 1)oT) exp(o(t —
(t*+(k—1)T))) > m3(1—p1)* exp(kaT) < m3(1—p;1)"2+" exp(o(ng+n3)T) = m).

Case (2) t* # nT,n € N. Then z(t) > mg for t € [t1,t*) and z(t*) = ms.
Suppose that t* € (n|T, (n} + 1)T) for some n} € N. There are two possible cases.

Case(2(a)) z(t) < mg for all t € (¢*, (n] + 1)T]. In this case we will show that
there exists to € [(n} + 1)T, (n} + 1)T + T'] such that z2(t2) > ms3. Suppose not.
ie., z(t) < mg, for all t € [(n} + 1)T, (n] + 1+ ne +n3)T]. Then z(t) < ms for all
t € (t*,(n] +1+n2+n3)T]. By (3.4) with u((n} +1)T") = y((n} +1)T"), we have

u(t) —u(t) =
gexp(—D +9)
1—(1—=p2)exp(=D +9)

(ulm +1)T*) ~ ) exp((—=D +8)(t = (v} + 1)T))

fort € (nT,(n+ 1)T),nf +1 <n <n} +ns+ n3. A similar argument as in (step
1), we have

z((n] +1+n2 +n3)T) > xo((n} + 1+ ng)T)R™.

It follows from (3.7) that
z((n] +1+n2)T) > ms(1 —p)"2 T exp(o(ng + 1)T).

Thus z((n} + 1+ ng +n3)T) > m3(1 — p)"2Ftlexp(o(ny + 1)T)R™ > mg3 which is
a contradiction. Now, let ¢ = infis¢«{x(t) > ms}. Then z(t) < mg for t* <t <t
and z(t) = ms. For t € [t*,t), suppose t € (n|T + (K + 1)T,n\T + K'T], k' € N,
k' < 1+ ng + ng, we have z(t) > ms(1 — p)ttm2+% exp(o(1 + ng + n3)T) = my.
Since my < mj, so z(t) > my for t € (t*,¢).

Case (2(b)) There is a t' € (t*,(n} + 1)T] such that z2(t') > ms. Let

t = inf;sp{x(t) > mz}. Then x(t) < mgy for t € [t*,1) and x(f) = m3. Also,
(3.7) holds for t € [t*,#). Integrating the equation on [t*,)(t* <t < 1), we can get
that z(t) > x(t*) exp(o(t —t*)) > msexp(cT) > my. Thus in both case the similar
argument can be continued since x(t) > my for some ¢ > t;. This completes the
proof. O
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