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On a Reverse of the Slightly Sharper Hilbert-type Inequality
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P. R. China
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Abstract. In this paper, by introducing parameters λ, α and two pairs of conjugate

exponents (p, q), (r, s) and applying the improved Euler-Maclaurin’s summation formula,

we establish a reverse of the slightly sharper Hilbert-type inequality. As applications, the

strengthened version and the equivalent form are given.

1. Introduction

Suppose (p, q) is one pair of conjugate exponents (
1

p
+

1

q
= 1), and p > 1,

an, bn ≥ 0, 0 <
∑∞

n=1 a
p
n < ∞ and 0 <

∑∞
n=1 b

q
n < ∞, then we have the slightly

sharper Hilbert’s inequality as (see [1]):

(1.1)
∞∑

n=0

∞∑
m=0

ambn
m+ n+ 1

<
π

sin(π/p)
(

∞∑
n=0

apn)
1/p(

∞∑
n=0

bqn)
1/q,

where the constant factor
π

sin(π/p)
is the best possible. Inequality (1.1) is important

in analysis and its applications (see [2]). In recent years, some best extensions and
a new applications are given for inequality (1.1) by introducing a parameter λ and
the β function (see [3]-[5]). In 2005, Yang gave the following extended form of (1.1)
with several parameters (see [6], (3.1)):

If (p, q), (r, s) are two pairs of conjugate exponents, and p > 1, r > 1, 0 < λ ≤
min{r, s} an, bn ≥ 0, then

∞∑
n=0

∞∑
m=0

ambn
(m+ n+ 1)λ

< B(
λ

r
,
λ

s
){

∞∑
n=0

(n+
1

2
)p(1−

λ
r )−1apn}

1
p {

∞∑
n=0

(n+
1

2
)q(1−

λ
s )−1bqn}

1
q ,(1.2)

where the constant factor B(
λ

r
,
λ

s
) is the best possible. Inequality (1.2) turns into
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(1.1) when λ = 1, s = p, r = q.
Under the same condition of (1.1), we have the Hilbert-type inequality (see [1],

Th. 319, Th. 341) similar to (1.1) as:

(1.3)

∞∑
n=1

∞∑
m=1

ambn
max{m,n}

< pq(

∞∑
n=1

apn)
1/p(

∞∑
n=1

bqn)
1/q,

where the constant factor pq is the best possible.
Recently, Yang (see [7]) gave the following form which is shaper than inequality

(1.3) by introducing a parameter α ≥ 3

4
:

(1.4)
∞∑

n=0

∞∑
m=0

ambn
max{m,n}+ α

< pq(
∞∑

n=0

apn)
1/p(

∞∑
n=0

bqn)
1/q,

where the constant factor pq is also the best possible. Obviously, inequality (1.4)
reduces to (1.3) when α = 1.

It is a difficult problem to discuss the reverse forms of inequalities (1.1) and
(1.3) before introducing some parameters and the β function. In 2004, Yang (see
[8]) gave the reverse form of Hilbert’s double series inequality as follows: Suppose

0 < p < 1,
1

p
+

1

q
= 1, then

(1.5)
∞∑

n=0

∞∑
m=0

ambn
(m+ n+ 1)2

> 2{
∞∑

n=0

[1− 1

4(n+ 1)
]

apn
2n+ 1

}
1
p {

∞∑
n=0

bqn
2n+ 1

}
1
q ,

where the constant factor 2 is the best possible.
In 2006, Yang (see [9]) established the estimate value of reminder for the Euler-

Maclaurin summation formula in mild conditions and gave the reversed version of
Hilbert-type inequality as follows:

(1.6)
∞∑

n=1

∞∑
m=1

ambn
m2 + n2

>
π

2
{

∞∑
n=1

[1− 3

2πn)
]
apn
n
}1/p{

∞∑
n=1

bqn
n
}1/q,

where the constant factor
π

2
is the best possible. And Yang also gave a strengthened

version of inequality (1.6) as:

(1.7)
∞∑

n=1

∞∑
m=1

ambn
m2 + n2

>
π

2
{

∞∑
n=1

[1− 3

2πn)
]
apn
n
}1/p{

∞∑
n=1

(1− 1

2πn
)
bqn
n
}1/q.

In this paper, by introducing two parameters λ, α and two pairs of conjugate
exponents, and estimating the weight coefficient, we establish a reverse version of
the extended form of (1.4). As applications, we give its strengthened version and
the equivalent form as well.
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Hence we will use the improved Euler-Maclaurin’s summation formula as follows
(see [10], [11]):

Suppose the function f(x) is a smooth piecemeal on [0,∞), (−1)if (i)(x) ≥
0, f (i)(∞) = 0(i = 0, 1, 2, 3) and

∫∞
0

f(x)dx < ∞, then

(1.8)

∫ ∞

0

f(x)dx+
1

2
f(0) ≤

∞∑
n=0

f(n) ≤
∫ ∞

0

f(x)dx+
1

2
f(0)− 1

12
f ′(0).

Inequality (1.8) takes the form of strict inequality as f(x) satisfies (−1)if (i)(x) >
0(i = 0, 1, 2, 3).

2. Some lemmas

Lemma 2.1. Suppose r > 1, then

(1) when λ > 0, α ≥ 2

3
λ+

1

12
, we have

(2.1) F (λ, α) :=
1

λ
α2 − 1

2
α− 1

12
≥ 5λ

48
> 0,

5λ2

48rα2
< 1 and

λ

2sα
< 1;

(2) when λ > 1, α ≥ 2

3
λ+

1

12
, we get

(2.2) 2α− 1 >
5λ2

24α
.

Proof. By the condition of (1), we find

F (λ, α) =
−λ− 6λα+ 12α2

12λ
=

6α(2α− λ)− λ

12λ

≥
(4λ+ 1

2 )(
1
3λ+ 1

6 )− λ

12λ
=

15λ2 + (λ− 1)2

144λ
≥ 5λ

48
> 0;

at the same time, we obtain

48rα2 > 48(
2

3
λ+

1

12
)2 =

64

3
λ2 +

16

3
λ+

1

3
> 5λ2,

2sα > 2(
2

3
λ+

1

12
) > λ.

Hence we get inequality (2.1).
By the condition of (2), we find

24α(2α− 1) ≥ (16λ+ 2)(
4

3
λ− 5

6
)

= 9λ2 + 7(λ2 − 1) +
16

3
(λ− 1)2 > 5λ2.
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So we complete to prove inequality (2.2). �

Suppose (r, s) is one pair of conjugate exponents (
1

r
+

1

s
= 1 and r > 1). Define

the weight coefficient ωm(s, λ, α) as:

(2.3) ωm(s, λ, α) :=

∞∑
n=0

(m+ α)λ/r

(max{m,n}+ α)λ
(

1

n+ α
)1−λ/s (m ∈ N0).

Lemma 2.2. Suppose r > 1,
1

r
+

1

s
= 1, 0 < λ ≤ min{r, s}, α ≥ 2

3
λ+

1

12
,m ∈ N0.

Then we get the following bilateral inequality:

(2.4) 0 <
rs

λ
[1− θ1(λ, s, α)

(m+ α)λ/s
] < ωm(s, λ, α) <

rs

λ
[1− θ2(λ, s, α)

(m+ α)λ/s
] <

rs

λ
.

where 0 < θ1(λ, s, α) = (1− λ

2sα
)α

λ
s < α

λ
s , θ2(λ, s, α) =

5λ2

48r
α

λ
s −2

Proof. Setting fm(x) =
1

(max{x,m}+ α)λ
( 1
x+α )

1−λ/s (m ∈ N0), x ∈ [0,∞). First

for m ∈ N+, when λ < s, we find

(2.5) fm(x) =

{
(x+ α)−1−λ/r, x ≥ m,
(m+ α)−λ(x+ α)−1+λ/s, x < m.

When λ = s, we have

(2.6) fm(x) =
1

(max{x,m}+ α)λ
=

{
(x+ α)−s, x ≥ m,
(m+ α)−s, x < m.

By (2.5) and (2.6), it follows

fm(0) =
α−1+λ/s

(m+ α)λ
(λ ≤ s),

(2.7) f ′
m(0) =

{
(−1 + λ

s )α
−2+λ/s(m+ α)−λ, λ < s,

0, λ = s,
(m ≥ 1).

When λ < s, by (2.5), we have∫ ∞

0

fm(x)dx =

∫ ∞

m

(x+ α)−1−λ/rdx+ (m+ α)−λ

∫ m

0

(x+ α)−1+λ/sdx

=
r

λ
(m+ α)−λ/r +

s

λ
(m+ α)−λ/r − s

λ
αλ/s(m+ α)−λ(2.8)

When λ = s, by (2.6),∫ ∞

0

fm(x)dx =

∫ ∞

m

(x+ α)−sdx+ (m+ α)−s

∫ m

0

dx

= (r − 1)(m+ α)1−s +m(m+ α)−s.(2.9)
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It is obvious that (2.5) and (2.6) satisfy the condition of (1.8). In particular, (1.8)
takes strictly inequality when λ < s, 0 < λ ≤ min{r, s}. Thus we obtain the
following inequality by (1.8), (2.3) (2.7), (2.8) and (2.1):

ωm(s, λ, α) =
∞∑

n=0

(m+ α)λ/r

(max{m,n}+ α)λ
(

1

n+ α
)1−λ/s

= (m+ α)λ/r
∞∑

n=0

fm(n)

< (m+ α)λ/r
∫ ∞

0

fm(x)dx+
1

2
(m+ α)λ/rf(0)− 1

12
(m+ α)λ/rf ′(0)

=
rs

λ
+ α−2+λ/s[− s

λ
α2 +

α

2
+

1

12
(1− λ

s
)](m+ α)−λ/s

<
rs

λ
− 1

α2
(
s

λ
α2 − α

2
− 1

12
)(

α

m+ α
)λ/s

<
rs

λ
[1− λ

rα2
(
1

λ
α2 − α

2
− 1

12
)(

α

m+ α
)λ/s]

≤ rs

λ
[1− 5λ2

48rα2
(

α

m+ α
)λ/s] =

rs

λ
[1− θ2(λ, s, α)

(m+ α)λ/s
] <

rs

λ
.(2.10)

At the same time, we have

ωm(s, λ, α) = (m+ α)λ/r
∞∑

n=0

fm(n)

> (m+ α)λ/r
∫ ∞

0

fm(x)dx+
1

2
(m+ α)λ/rfm(0)

=
rs

λ
− (

s

λ
− 1

2α
)(

α

m+ α
)λ/s =

rs

λ
[1− 1

r
(1− λ

2sα
)(

α

m+ α
)λ/s]

>
rs

λ
[1−

(1− λ
2sα )α

λ/s

(m+ α)λ/s
] =

rs

λ
[1− θ1(λ, s, α)

(m+ α)λ/s
].(2.11)

When λ = s ≤ r, by (1.8), (2.3), (2.7), (2.9), (2.2) and α ≥ 2

3
λ+

1

12
>

3

4
, we get

ωm(s, λ, α) =
∞∑

n=0

(m+ α)s/r

(max{m,n}+ α)s
= (m+ α)s−1

∞∑
n=0

fm(n)

= (m+ α)s−1

∫ ∞

0

fm(x)dx+
fm(0)

2
(m+ α)s−1

= r − 1 +
2m+ 1

2(m+ α)
= r − 2α− 1

2(m+ α)

< r − 5λ2

48α(m+ α)
= r[1− 5λ2

48rα(m+ α)
] < r.(2.12)
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At the same time,

ωm(s, λ, α) = (m+ α)s−1
∞∑

n=0

fm(n) = r − 2α− 1

2(m+ α)

= r[1− 2α− 1

2r(m+ α)
] > r[1− 2α− 1

2(m+ α)
] = r[1− (1− 1

2α
)

α

(m+ α)
].(2.13)

Hence (2.4) is correct by (2.10), (2.11), (2.12), (2.13) when m ∈ N+.

Then we consider the condition of m = 0, we get f0(x) = (x+ α)−1−λ
r for 0 <

λ ≤ min{r, s}, x ∈ [0,+∞}. Obviously, f0(0) = α−1−λ
r , f ′

0(0) = −(1 + λ
r )α

−2−λ
r .

Hence by (1.8) and (2.3), we have

αλ/r

∫ ∞

0

(x+ α)−1−λ
r dx+

1

2α
< ω0(s, λ, α) = αλ/r

∞∑
n=0

f0(n)

< αλ/r

∫ ∞

0

(x+ α)−1−λ
r dx+

1

2α
+

1

12α2
(1 +

λ

r
),

i.e.,
r

λ
+

1

2α
< ω0(s, λ, α) <

r

λ
+

1

2α
+

1

12α2
(1 +

λ

r
).

And by 2α ≥ 4

3
λ+

1

6
> λ > λ · r − 1

r
, we obtain

r

λ
>

r − 1

2α
, i.e.,

r

λ
+

1

2α
>

r

2α
=

rs

λ
[1− (1− λ

2sα
)]. By (2.1), we obtain

rs

λ
(1− 5λ2

48rα2
)− r

λ
− 1

2α
− 1

12α2
(1 +

λ

r
)

=
1

α2
(
s

λ
α2 − α

2
− 1

12
− 5sλ

48
− λ

12r
)

=
1

λα2
(
s

r
α2 + λF (λ, α)− 5sλ2

48
− λ2

12r
)

≥ 1

λα2
(
s

r
α2 +

5(1− s)λ2

48
− λ2

12r
)

=
s− 1

λα2
(α2 − 5λ2

48
− λ2

12s
)

≥ s− 1

λα2
[(
2

3
λ+

1

12
)2 − 5λ2

48
− λ2

12s
]

=
(s− 1)[(49s− 12)λ2 + s(16λ+ 1)]

144λsα2
> 0

i.e.,
r

λ
+

1

2α
+

1

12α2
(1 +

λ

r
) <

rs

λ
(1− 5λ2

48rα2
).

Hence (2.4) is correct for m = 0. The lemma is proved. �
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Remark. By symmetry, (2.4) is still correct as s and m are replaced by r and n
respectively.

Lemma 2.3. Suppose (p, q), (r, s) are two pairs of conjugate exponents, and 0 <

p < 1, r > 1, 0 < λ ≤ min{r, s}, α ≥ 2

3
λ +

1

12
, then we get the following inequality

for 0 < ε <
pλ

r
:

Ĩ :=

∞∑
n=1

∞∑
m=1

(m+ α)−1− ε
p+

λ
r (n+ α)−1− ε

q+
λ
s

(max{m,n}+ α)λ

<
λ

(− ε
p + λ

r )(
ε
p + λ

s )

∞∑
n=1

1

(n+ α)1+ε
.(2.14)

Proof. Setting g(x) =
1

(max{x, n}+ α)λ
(x + α)−1− ε

p+
λ
r . Obviously, g(x) is de-

creasing in (−α,∞), thus

∞∑
m=1

g(m) <

∫ ∞

−α

g(x)dx =

∫ ∞

−α

(x+ α)−1− ε
p+

λ
r

(max{x, n}+ α)λ
dx

=

∫ n

−α

(x+ α)−1− ε
p+

λ
r

(n+ α)λ
dx+

∫ ∞

n

(x+ α)−1− ε
p+

λ
r

(x+ α)λ
dx

=
λ(n+ α)−

ε
p−

λ
s

(− ε
p + λ

r )(
ε
p + λ

s )
.(2.15)

By (2.15), we find

Ĩ :=
∞∑

n=1

(n+ α)−1− ε
q+

λ
s

∞∑
m=1

(m+ α)−1− ε
p+

λ
r

(max{m,n}+ α)λ

=
∞∑

n=1

(n+ α)−1− ε
q+

λ
s

∞∑
m=1

g(m)

<

∞∑
n=1

(n+ α)−1− ε
q+

λ
s [

λ(n+ α)−
ε
p−

λ
s

(− ε
p + λ

r )(
ε
p + λ

s )
]

=
λ

(− ε
p + λ

r )(
ε
p + λ

s )

∞∑
n=1

1

(n+ α)1+ε
.

Hence (2.14) is true. The lemma is proved. �

3. Main results and applications

Theorem 3.1. Suppose (p, q), (r, s) are two pairs of conjugate exponents, and 0 <
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p < 1, r > 1, 0 < λ ≤ min{r, s}, α ≥ 2

3
λ+

1

12
, an, bn ≥ 0, such that 0 <

∑∞
n=0(n+

α)p(1−
λ
r )−1apn < ∞ and 0 <

∑∞
n=0(n+ α)q(1−

λ
s )−1bqn < ∞, then

I :=
∞∑

n=0

∞∑
m=0

ambn
(max{m,n}+ α)λ

>
rs

λ
{

∞∑
n=0

[1− θ1(λ, s, α)

(n+ α)
λ
s

](n+ α)p(1−
λ
r )−1apn}

1
p {

∞∑
n=0

(n+ α)q(1−
λ
s )−1bqn}

1
q ,(3.1)

where 0 < θ1(λ, s, α) = (1 − λ

2sα
)α

λ
s < α

λ
s and the constant factor

rs

λ
is the best

possible. And (3.1) can be strengthened as

I >
rs

λ
{

∞∑
n=0

[1− θ1(λ, s, α)

(n+ α)
λ
s

](n+ α)p(1−
λ
r )−1apn}

1
p

×{
∞∑

n=0

[1− θ2(λ, s, α)

(n+ α)
λ
s

](n+ α)q(1−
λ
s )−1bqn}

1
q ,(3.2)

where θ2(λ, s, α) =
5λ2

48r
α

λ
s −2.

Proof. Applying Hölder’s inequality (see [12]) and (2.3), we have

I :=
∞∑

n=0

∞∑
m=0

ambn
(max{m,n}+ α)λ

=
∞∑

n=0

∞∑
m=0

1

(max{m,n}+ α)λ
[
(m+ α)(1−

λ
r )/q

(n+ α)(1−
λ
s )/p

am][
(n+ α)(1−

λ
s )/p

(m+ α)(1−
λ
r )/q

bn]

≥ {
∞∑

n=0

∞∑
m=0

(m+ α)(p−1)(1−λ
r )

(max{m,n}+ α)λ
(

1

n+ α
)1−

λ
s apm}

1
p

× {
∞∑

n=0

∞∑
m=0

(n+ α)(q−1)(1−λ
s )

(max{m,n}+ α)λ
(

1

m+ α
)1−

λ
r bqn}

1
q

= {
∞∑

m=0

ωm(s, λ, α)(m+ α)p(1−
λ
r )−1apm}

1
p {

∞∑
n=0

ωn(r, λ, α)(n+ α)q(1−
λ
s )−1bqn}

1
q .

(3.3)

Since 0 < p < 1, q < 0, by (2.4) and the remark of Lemma 2, (3.1) can be seen.
And by the right hand side of (2.4), we get (3.2). For q < 0, we have

{rs
λ

∞∑
n=0

[1− θ2(λ, s, α)

(n+ α)
λ
s

](n+α)q(1−
λ
s )−1bqn}

1
q > {

∞∑
n=0

ωn(r, λ, α)(n+α)q(1−
λ
s )−1bqn}

1
q .
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(3.1) can be deduced from (3.2), hence (3.2) is the strengthened version of (3.1).

If the constant factor
rs

λ
in (3.1) is not the best possible, then there exists a

positive constant k (with k <
rs

λ
). For 0 < ε <

pλ

r
, in particular, setting ã0 =

0, b̃0 = 0; ãn = (n + α)−1− ε
p+

λ
r , b̃n = (n + α)−1− ε

q+
λ
s , n ∈ N, by the assumption,

we find

Ĩ =

∞∑
n=0

∞∑
m=0

ãmb̃n
(max{m,n}+ α)λ

> k{
∞∑

n=1

[1− θ1(λ, s, α)

(n+ α)
λ
s

](n+ α)p(1−
λ
r )−1ãpn}

1
p {

∞∑
n=1

(n+ α)q(1−
λ
s )−1b̃qn}

1
q

= k{
∞∑

n=1

[1− θ1(λ, s, α)

(n+ α)
λ
s

]
1

(n+ α)1+ε
}

1
p {

∞∑
n=1

1

(n+ α)1+ε
}

1
q

= k[1− o(1)]1/p
∞∑

n=1

1

(n+ α)1+ε
.(3.4)

In view of (2.14) and (3.4), we get

λ

(− ε
p + λ

r )(
ε
p + λ

s )

∞∑
n=1

1

(n+ α)1+ε
> k[1− o(1)]1/p

∞∑
n=1

1

(n+ α)1+ε
,

i.e.,
λ

(− ε
p + λ

r )(
ε
p + λ

s )
> k[1 − o(1)]1/p for ε → 0+, it follows that k ≤ rs

λ
, which

contradicts the fact that k >
rs

λ
. Hence the constant factor

rs

λ
in (3.1) is the best

possible. The theorem is proved. �

Theorem 3.2. Suppose (p, q), (r, s) are two pairs of conjugate exponents, and 0 <

p < 1, r > 1, 0 < λ ≤ min{r, s}, α ≥ 2

3
λ+

1

12
, an, bn ≥ 0 such that 0 <

∑∞
n=0(n+

α)p(1−
λ
r )−1apn < ∞, then

J :=

∞∑
n=0

(n+ α)
pλ
s −1[

∞∑
m=0

am
(max{m,n}+ α)λ

]p

> (
rs

λ
)p

∞∑
n=0

[1− θ1(λ, s, α)

(n+ α)
λ
s

](n+ α)p(1−
λ
r )−1apn,(3.5)

where 0 < θ1(λ, s, α) = (1 − λ

2sα
)α

λ
s < α

λ
s , and the constant factor (

rs

λ
)p is the

best possible. Inequality (3.5) is equivalent to (3.1).
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Proof. Setting bn as

bn := (n+ α)
pλ
s −1[

∞∑
m=0

am
(max{m,n}+ α)λ

]p−1 (n ∈ N0)

then bn > 0 and
∑∞

n=0(n+α)q(1−
λ
s )−1bqn = J > 0. If J = ∞, then (3.5) is naturally

valid; if 0 < J < ∞, then by (3.1), we find

∞∑
n=0

(n+ α)q(1−
λ
s )−1bqn = J = I

>
rs

λ
{

∞∑
n=0

[1− θ1(λ, s, α)

(n+ α)
λ
s

](n+ α)p(1−
λ
r )−1apn}

1
p {

∞∑
n=0

(n+ α)q(1−
λ
s )−1bqn}

1
q .(3.6)

Thus

(3.7)
∞∑

n=0

(n+ α)q(1−
λ
s )−1bqn = J > (

rs

λ
)p

∞∑
n=0

[1− θ1(λ, s, α)

(n+ α)
λ
s

](n+ α)p(1−
λ
r )−1apn,

and (3.5) is correct.
On the other hand, suppose (3.5) is valid. By Hölder’s inequality, we find

I =

∞∑
n=0

{(n+ α)
λ
s −

1
p

∞∑
m=0

am
(max{m,n}+ α)λ

}{(n+ α)
1
p−

λ
s bn}

≥ {
∞∑

n=0

(n+ α)
pλ
s −1[

∞∑
m=0

am
(max{m,n}+ α)λ

]p}
1
p {

∞∑
n=0

(n+ α)q(1−
λ
s )−1bqn}

1
q .(3.8)

By (3.5) and 0 < p < 1, we get (3.1). Hence (3.1) is equivalent to (3.5). If the

constant factor (
rs

λ
)p in (3.5) is not the best possible, then by (3.8), it contradicts

the fact that
rs

λ
in (3.1) is not the best possible too. Thus the constant factor (

rs

λ
)p

in (3.5) is the best possible. The theorem is proved. �

Remark. (i) By Th. 3.1, for λ = 1, α ≥ 2

3
+

1

12
=

3

4
, (3.1) reduces to

(3.9)
∞∑

n=0

∞∑
m=0

ambn
max{m,n}+ α

> rs{
∞∑

n=0

[1− θ1(s, α)

(n+ α)
1
s

](n+α)
p
s−1apn}

1
p {

∞∑
n=0

(n+α)
q
r−1bqn}

1
q ,

where θ1(s, α) = (1− 1

2sα
)α

1
s , and (3.9) can be strengthened as

(3.10) I > rs{
∞∑

n=0

[1− θ1(s, α)

(n+ α)
1
s

](n+α)
p
s−1apn}

1
p {

∞∑
n=0

[1− θ2(s, α)

(n+ α)
1
s

](n+α)
q
r−1bqn}

1
q ,
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where θ2(s, α) =
5

48r
α

1
s−2. By the characteristics of the constant factor of (1.4)

and (3.9), it shows that the problem of reverse version of (1.4) can be solved by
introducing two pairs of conjugate exponents independent. Thus (3.9) is the reverse
version of (1.4).

When λ = 1, α ≥ 3

4
, r =

1

p
, s =

1

1− p
, 0 < p < 1, (3.9) becomes to

∞∑
n=0

∞∑
m=0

ambn
max{m,n}+ α

>
1

p(1− p)
{

∞∑
n=0

[1− θ1(p, α)

(n+ α)1−p
](n+ α)(1−p)p−1apn}

1
p {

∞∑
n=0

(n+ α)pq−1bqn}
1
q .(3.11)

And by (3.5), we obtain the equivalent form of (3.11) as

∞∑
n=0

(n+ α)(1−p)p−1[
∞∑

m=0

am
max{m,n}+ α

]p

> [
1

p(1− p)
]p

∞∑
n=0

[1− θ1(p, α)

(n+ α)1−p
](n+ α)(1−p)p−1apn,(3.12)

where θ1(p, α) = (1− 1− p

2α
)α1−p.
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