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ABSTRACT. Let X be a direct system of topological spaces and X its direct limit. We
show that under certain conditions the direct limit of a “subsystem” of X embeds in a
canonical way as a closed subspace of X.

1. Introduction

For any relation < on a set A and subset B of A, we shall let <p denote the
relation < restricted to B. Let X = (X,,p%, (A, <)) be a direct system (Section
2) of spaces and maps and X = dirlimX. Suppose that B C A and (B, =p) is
a directed set. We shall call (B,=<pg) a sub-directed set of (A,=<). Observe that
Y = (X,,p’, (B, =<p)) is a direct system; we let Y = dirlim Y. In this situation,
there is a canonical map (Section 2) f : Y — X of direct systems whose direct limit,
f =dirlimf : Y — X is a map. Our Main Results are Embedding Theorems 3.4
and 3.5. These show that if Y satisfies certain “Embedding Conditions” in X, then
the map f is a closed embedding. In Section 4 we shall provide an example that
illustrates the effectiveness of Theorem 3.5.

2. Direct systems

A description of the notion of a direct system of topological spaces and its limit
can be found in Appendix II of [1] where it is called a direct spectrum (see also
[2]). We shall review the main ideas. A direct system X = (X,,p%, (4, <)) (only of
topological spaces herein) consists of a directed set (A, <), topological spaces X,
a € A, and for each a < b, a map p° : X, — X, where p? : X, — X, is always
the identity map and whenever a < b < ¢, then pj o pb = p¢. The maps p’ are
called connecting maps, and one refers to the spaces X, as coordinate spaces. An
equivalence relation ~ is defined on Y {X,|a € A} as follows!. Let a, b € A and
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'As a set, S {Xo|a € A} equals {X, x {a}|a € A}. This is done so that for a # b,
(Xao x{a})N (X, x {b}) = 0. By convention, one ignores the a-coordinate in X, x {a} and
just writes X,. Because of this, some confusion can arise when speaking of an element =
of X, if also z € X;. When we write z € X, we mean that x ¢ Xj.
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suppose that z € X,, y € Xp. Then we shall say that x ~ y if and only if there
exists ¢ € A, a =< ¢, b < ¢ such that pg(x) = pi(y).

Let X be the set of equivalence classes of ~, p : Y {X,|a € A} — X the
quotient function, and X have the quotient topology. Then X is referred to as
the direct limit of X, and we shall write X = dirlim X. For each a € A, there
is a map p, = p|X, : Xo = X. A subset U of X is open (closed) if and only if
p. (U) =p (U)N X, is open (closed) in X, for all @ € A. Note that whenever
a =< b, then p, = pp o pl.

Suppose that (B, <p) is a sub-directed set of (A, <), and put

Y - (Xa7pg7 (Bu jB))

Then Y is a direct system which we refer to as a sub-direct system of X. Write
Y =dirlimY and use ¢ : Y {Y;|b € B} = Y to designate the quotient map. The
inclusion j : B — A determines a canonical map f = (fy)pen : Y — X of direct
systems given so that for each b € B, f;, : Xy — Xj is the identity. This induces a
canonical map f = dirlimf : Y — X which operates as follows. If y € Y, then for
some b € B and t € Xy, y = q(t). Then f(y) = p(t).

3. Embedding theorems

We are now going to state “Embedding Conditions” which we shall see (Theo-
rems 3.4 and 3.5) are related to the question of when the canonical map f indicated
in Section 2 is a closed embedding.

Definition 3.1. Let X = (X,,p%, (A, <)) be a direct system and (B, <p) a sub-
directed set of (A, <). Define Y = (X,,p%, (B,=<g)). The Embedding Conditions
of Y in X are as follows.

(1) ifr,seB,ce A, r=<c s=cy" eX,,z*ecX, and pi(y*) = pS(z*), then
there exists e € B such that r <p e, s <p e, and p%(y*) = pS(z*),

(2) ifb,d€ A,a€ B,a=<d,b=d, we X,, u€ Xp, and p?(w) = p{(u), then
there exist a* € B and t € X,- such that a* < b and p.(t) = u, and

(3) ifce A, RC B, foreachr € R, r < ¢, and F = {p5(X,.) |r € R}, then |JF
is closed in X..

Lemma 3.2. Suppose that X = (X,,pl, (A, X)) is a direct system, B C A, and
(B, =B) is a sub-directed set of (A,=<). Let Y = (Xa, 1%, (B,=<p)), X = dirlim X,
and Y = dithimY. IfY satisfies the Embedding Condition (1) in X, then the
canonical map f:Y — X is injective.

Proof. We shall use p for the quotient projection from > {X,|a € A} to X and
g for the quotient projection from » {X,|b € B} to Y. Suppose that y, z € Y,
and f(y) = f(2). Let r, s € B, y* € X,., z* € X, be chosen so that y = ¢(y*),
z = q(z*). Then by definition of f, p(y*) = f(y) = f(2) = p(z*). Hence there
exists ¢ € A such that r < ¢, s < ¢, and pS(y*) = pS(z*). By (1) of Definition 3.1,
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there exists e € B so that r <p e, s <p e, and pt(y*) = p¢(2z*). This shows that
y = q(y*) = q(z*) = 2, so f is injective. 0

Let us recall the next notion.

Definition 3.3. A directed set (A, <) is called cofinite if for each a € A, {b €
A|b = a} is finite.

Here is our First Embedding Theorem.

Theorem 3.4. Let X = (X,,0%, (A, X)) be a direct system with closed connecting
maps where (A, =X) is cofinite. Suppose that B C A, (B,=p) is a sub-directed set
of (A,X),Y = (X,,p2,(B,=B)), X =dirlimX, and Y = ditimY. If Y satisfies
the Embedding Conditions (1) and (2) in X, then the canonical map f:Y — X is
an embedding such that f(Y) is closed in X.

Proof. We shall use p for the quotient projection from Y {X,|a € A} to X and ¢
for the quotient projection from > {X;|b € B} to Y.

By Lemma 3.2, f is injective. We shall show that if D is a closed subset of Y,
then f(D) is a closed subset of X, and that will complete our proof. For each
b€ B, let D, = q~'(D) N X;,. Then of course Dy, is a closed subset of X}, and
D = q(IU{Ds | b € B}). Also notice that if a <p b, then

(A) po(Da) C Dy, and

(B) if v € Dy, u € X,, and p’(u) = v, then u € D,.
For each b € A\ B, let Sy = {a € Bla < b}. Since (A, X) is cofinite, then Sj is
finite. Put Dy, = J{p’(D.)|a € Sp}. Note that p? is a closed map, D, is closed in

X, for all a € Sy, and S, is finite; hence Dy, is closed in Xj.
Define

(C) D* = U{Dv|be A}.
We would like to show first that

(D) f(D) = p(D").
By the definition of the map f as indicated in Section 2, it is certain that f(D) C
p(D*). Let s € D* and « = p(s). Then for some b € A, s € D,. If b € B, put
y = q(s) € D, and we see that z = f(y). Now suppose that b € A\ B. By the
definition of Dy, there exists a € S, and u € D, such that pb(u) = s. It follows
that p(u) = p(s) = x. If we set y = q(u), then f(y) = x. Therefore p(D*) C f(D),
and we conclude that (D) is true.
To show that f(D) is closed in X, we shall prove that p~1(f(D)) N X, = D, for all
be A. From (D) p~(f(D)) = p~1(p(D*)), so (C) yields that Dy, C p~1(f(D))NXp.
To prove the opposite inclusion, let u € p~1(f(D)) N X,. Of course p(u) € p(D*).
So for some ¢ € A, there exists v € D, with p(u) = p(v). Choose d € A so that
b=d, c=<d,and pi(u) = p(v).
There exist a € Sc and w € D, so that p¢(w) = v. Observe that a < ¢ and ¢ < d,
so a = d. We then have b, d € A, a € B,a X d, b <d, w € X,, u € Xp, so
that pd(w) = p? o pc(w) = pd(v) = pi(u). By (2) of Definition 3.1, there exist
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a* € Band t € X,- so that a* < b and pl.(t) = u. So p.(t) = pf o pb.(t) =
pl(u) = pd(v) = pd(w). Noting that a*, a € B,d € A, a* < d, a < d, t € Xg»,
w € X,, and p. (t) = pd(w), then according to (1) of Definition 3.1, there exists
e € B such that a* <p e, a <p e, and pt.(t) = pS(w). But w € D,, which by (A)
implies that pS(w) € D.. Then p¢.(t) € D, so by (B), ¢ € D,~. For this reason,
u = pl.(t) € Dy, and our proof is complete. O

The next is our Second Embedding Theorem.

Theorem 3.5. Let X = (X,,p%, (A, =)) be a direct system. Suppose that B C A,
(B, =B) is a sub-directed set of (A, =), Y = (Xa, 0%, (B,=<5)), X =dirlimX, and
Y =dirlimY. IfY satisfies all three of the Embedding Conditions of Definition 3.1
in X, then the canonical map f:Y — X is an embedding such that f(Y) is closed
m X.

Proof. This proof is obtained from the proof of Theorem 3.4 by making exactly one
alteration. In the definition of Dy, for b € A\ B, this time S, = {a € B|a < b} need
not be finite and of course the connecting maps need not be closed. But condition
(3) of Definition 3.1 shows that, nevertheless, Dy, is closed in Xjp. |

4. Example

The following example applies Theorem 3.5. Let ¢yp = 1 and for each n € N,
1
en=1——. Put @ = {co}U{e, |n € N}. Thus Q is a compact subspace of R which
n

has an order induced from R.

Lemma 4.1. Let F be a collection of closed subsets of @ at least one of which is
infinite. Then |JF is closed in Q. O

We denote @~ = Q@ \ {co}. A subset of @~ will be called co-infinite if its
complement in @ is infinite. Let £ be the set of nonempty, co-infinite subsets of
Q™. For each FE € &, let Z(E) be the set of injective functions from E to N. Put
A={Z(E)|E € £}. For each a € A, there is a unique element E(a) € £ such
that @ € Z(E(a)). We denote X, = Q.

Suppose that a, b € A. Then we shall write a < b provided there is an embedding
p: X4 — Xp such that:

(R1) p(Xa \ Ea)) = X, \ E(),

(R2) p is order preserving on X, \ E(a), and

(R3) for each = € E(a), a(x) = bo p(z).

Such p, if it exists, is unique. We shall write it p2. Observe that p? exists and
equals the identity on X,. If @ < b and b < ¢, then one sees that pj o pb is a map
of X, to X, which meets the requirements (R1)-(R3) with b replaced by c¢. So
a =< c and p; equals pj o pb. It is not difficult to see that if a, b € A, then there
exists ¢ € A with @ < ¢ and b =< ¢. Hence (4, <) is directed. This shows that
X = (X,,pl, (A <)) is a direct system of compact 0-dimensional metrizable spaces
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and embeddings over an uncountable indexing set. Also the next lemma follows
because of the “co-infinite” property.

Lemma 4.2. Ifr, c € A and r =X ¢, then pS(X,) is an infinite closed subset of
X.. O

Put B = {a € A| card(E(a)) < oo}. It is not difficult to see that (B,=<p) is
a sub-directed set of (A4, =<). Define Y = (X,,%?, (B, =<p)). Then it is routine to
check that Y satisfies the Embedding Conditions (1), (2) of Definition 3.1 in X.
Applying Lemmas 4.1 and 4.2, one sees that Y satisfies the Embedding Condition
(3) of Definition 3.1 in X. Hence by Theorem 3.5, the canonical map f : dirlimY —

dirlim X is a closed embedding.
Note that in this example, (B, <) is not cofinal in (A, <). Hence, cofinality is
not implied by the Embedding Conditions.
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