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ABSTRACT. In this paper, we first introduce a family § = {S, : C — C} of
non-Lipschitzian mappings, called total asymptotically nonexpansive (briefly, TAN) on a
nonempty closed convex subset C' of a real Banach space X, and next give necessary and
sufficient conditions for strong convergence of the sequence {z,} defined recursively by the
algorithm z,4+1 = Spx,, n > 1, starting from an initial guess z1 € C, to a common fixed
point for such a continuous TAN family § in Banach spaces. Finally, some applications to
a finite family of TAN self mappings are also added.

1. Introduction

Let C' be a nonempty closed convex subset of a real Banach space X and let
T :C — C be a mapping. Then T is said to be a Lipschitzian mapping if, for each
n > 1, there exists a constant k,, > 0 such that

(L.1) [Tz — T"y[| < knllz —yl|

for all z,y € C' (we may assume that all k, > 1). A Lipschitzian mapping T is
called uniformly k-Lipschitzian if k,, = k for all n > 1, nonexpansive if k, = 1 for
all n > 1, and asymptotically nonexpansive [4] if lim,,_, o ky, = 1, respectively. The
class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
[4] as a generalization of the class of nonexpansive mappings. They proved that if
C'is a nonempty bounded closed convex subset of a uniformly convex Banach space
X, then every asymptotically nonexpanisve mapping T : C' — C' has a fixed point.

On the other hand, as the classes of non-Lipschitzian mappings, there appear
in the literature two definitions, one is due to Kirk who says that T is a mapping
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of asymptotically nonexpansive type [7] if for each x € C,

(1.2) lim sup sup([|T"z — T"y[| — [lz — y[) <0

n—oo yel

and TV is continuous for some N > 1. The other is the stronger concept due to
Bruck, Kuczumov and Reich [2]. They say that T is asymptotically nonexpansive
in the intermediate sense if T' is uniformly continuous and

(1.3) limsup sup ([[T"z —T"y[| - [lz —y[[) <0

n—oo x,ycC

In this case, observe that if we define

6= sup (1T — Tl = |}z — yl) VO,
z,yeC

where a V b := max{a, b}, then §,, — 0 and (1.3) immediately reduces to
(1.4) [Tz =Tyl — [l = yll < llz = yll + on
for all x, y € C and n > 1.

Recently, Alber et al. [1] introduced the wider class of total asymptotically
nonexpansive mappings to unify various definitions of classes of nonlinear map-
pings associated with the class of asymptotically nonexpansive mappings; see also
Definition 1 of [3]. They say that a mapping T : C — C is said to be total asymp-
totically nonexpansive (TAN, in brief) [1] if there exist sequences {c,} and {d,} of
nonnegative real numbers with ¢, d,, — 0 as n — co and ¢ € I'(R™") such that

(1.5) 1Tz =Tyl < [lz = yll + cn ¢z = yll) + dn,
for all z, y € C and n > 1, where R := [0, 00) and
¢ € T(R") & ¢ is strictly increasing, continuous on R™ and ¢(0) = 0.

Remark 1.1. (i) Note that if T' is continuous, the property (1.5) with ¢, = 0 for
all n > 1 is equivalent to (1.4) with d,, = d,, and also that a mapping satisfying
the property (1.3) is non-Lipschitzian; see [6].

(ii) Also, if we take ¢(t) =t for all ¢ > 0 and d,, = 0 for all n > 1 in (1.5), it can
be reduced to the concept of asymptotically nonexpansive mapping. Furthermore,
in addition, taking ¢, = 0 for all n > 1, it is nonexpansive, that is,

[Tz =Tyl < ||z - yll

for all z,y € C.

A point x € C is a fized point of T provided Tx = z. Denote by F(T') := {z €
C : Tx = x} the set of all fixed points of T.
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Let {T;}¥, be a finite family of mappings from C into itself. Then we denote
Thmod N by Tjyy), namely, the mod function takes values in the set {1,2,--- N} as

T Ty, ifr=0;
=Y T, ifo<r<N

for n = kN + r for some integers 7 > 0 and 0 <7 < N. In this case, setting

k, if r =0;
(1.6) k(”)'_{kﬂ, if0<r<N

for each n > 1, it is not hard to see that k(n) — oo as n — oo,
(1.7) k(n—N)=k(n)—1, and Tj,,_n) =Tjn), n > N.
We begin with the following simple observation.
Proposition 1.2. Let C' be a nonempty closed convex subset of a real Banach space
X, N > 1 a positive integer, and let {T;}}., be a finite family of TAN mappings

from C into itself. Then there exist sequences {c,} and {d,} of nonnegative real
numbers with ¢y, d, — 0 and ¢ € T(R") such that

[Anz — Any| < |z = yll + cn o(llz — yl) + dn,

forall x, y € C and n > 1, where

N
; ; mn (n)(n)
Ap s either Ty, or E AT
i=1

for all the )\Z(.n) € [0,1] with Zf\il )\gn) = 1. In particular, if k(n) is given as in
(1.6), then

k k
175 e = Ty < flz =yl + en bl — yll) + do-

Definition 1.3. Let C' be a nonempty closed convex subset of a real Banach
space X. A discrete family § = {S,, : C — C} is said to be TAN on C if there
exist sequences {c, } and {d,} of nonnegative real numbers converging to zero and
¢ € T'(RT) such that

(1.8) [Sne = Snyll < llz =yl + cn ¢(llz = yl) + dn

for all z,y € C and n > 1. Furthermore, we say that 8 is continuous on C provided
each S,, € 8 is continuous on C.

Example 1.4. The discrete families of {A, }22 ; and {T[IZ(]")}SLO:l in Proposition 1.2
are obviously TAN on C.
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Example 1.5. Let X =R, C = [0,00) and, for each n > 1, define
1 1,
Spr = (1+ f)a:Jrftan x, zxe€C.
n n

Then the family 8§ = {S,, : C' — C} is continuous TAN on C'. In fact, use | tan™! z| <
Z to get
2

1
Suz = Syl < (14 2 )le =yl + -
n n
for all z,y € C and n > 1, where ¢(t) =t, ¢, = % and d,, = 7.

Moreover, we have the following

Example 1.6. Let C be a nonempty closed convex subset of a real Banach space
X. Let two families &; = {Tél) : C — C'} be continuous TAN on C satisfying the
property (1.8) with ¥ ¢ [0, 1], d =0 and ¢; € T(RT) for i = 1,2, respectively.
Let {ay} and {5,} be sequences in [0,1]. Then the family § = {S, : C — C}
defined by

Sn=(1—an)I +a TN (1 = Bu) + BT Y]
for each n > 1 is also continuous TAN on C.
Proof. Putting Uy, := (1 — 8,)I + B,T\* and using (1.8) yield

< (L=B)lle =yl + Bl TPz — TPy|
< (1=B)le =yl + Balllz = yll + ¢ d2(llz = yl)]
< o=yl + e da(lle — yl)

[Unz — Uny||

for all z,y € C. Then, we can also compute

[Sna = Snyll (1= an)le =yl + an| T (Unz) = TP (Uny) |

< n
< (L= an)llz =yl + anlllUnz = Unyll + ¢ $1(|[Unz — Unyl))]
< lz =yl + ePe(llz = yl) + e (lz = yll + Ma(llz — yl)))

[z =yl + cnto(llz — yll),

where (t) := ¢a(t) + ¢1(t + Ma(t)) for all t > 0, M := sup,,>, 0512), and ¢, =

max{c%l), cg)}. Therefore, the family 8 = {S,, : C — C} is continuous TAN on C
with ¢, and ¢ € T(R™). O

Example 1.7. Let C be a nonempty closed convex subset of a real Banach space
X. Let families &; = {Ty) : C — C} be continuous TAN on C, equipped with
e [0, 1], d? and ¢; € T(RY) as in (1.8) for i = 1,2,--- | N, respectively, such
that the following two properties hold:

(5’1) Fap, B> 0 such that ¢;(t) < apt for all t > 5,1 <i < N;



Approximation of Common Fixed Points 705

(C2) > (’)<ooandz LAY <00, 1<i< N,

n=1

Let {an } be sequences in [0, 1] for 1 <i < N. Then the family § = {S,, : C — C}
defined by

Sn

(1= a1 + a7 (1= o) +aPTH (1 - al)1 +
a7 (- 4 oM DTND (1 = M) 4 aMTN)Y . )}

is also continuous TAN on C, namely, there exist {c,},{d,} and ¢ € T(RT) such
that

[Snz = Snyll < [l —yll + cnd(lz = yll) +dn,  z,y €C.
Furthermore, the following properties are also satisfied:
(C1) Ja (> ag), B> 0 such that ¢(t) < at for all t > 8.
(C2) Yoo ien <ocand Y dy, < o0.

Proof. First, we claim that the family § = {S,, : C — C'} is continuous TAN on C
for N = 2, that is, where

S, = (1 _agll))j+a$11)Tr(L1) [( (2))I+a( )T(Q)}
Indeed, putting U,, := (1 — (2))[ +aP7? simply and using (1.8) yield
(1.9) [[Unz — Unyll < e —yll+aP | TP e =Ty |
04(2 Mz—yll+a? [le—yll+c da(lle—yl)]+d?]
||$*y||+cn2) ¢a(llz — yll)+d

/\/\

for all x,y € C. Then, we can also have

Wi
(110) 1Sz = Spyll < (1 =)z =yl + oD | T (Una) = TV (Uny) |
< (A=a)z =yl + o PV[lUnz = Unyl|
+ 0 61(1Un = Unyl) + dD).
Using (6’ 1) and the strictly increasing property of ¢;, we easily see

¢i(t) < ¢i(B) + at
forallt >0 and 1 <i < N. In particular,
(L.11) ¢1([|Unz — Unyll) < 61(8) + | Unz — Unyl|-
Now substituting (1.11) combined with (1.9) into (1.10) and simplifying, we get
IS0z = Syl < llz = yll + P da(llz — yll) + cVlalllz =yl + e da(llz — y]))]
+dP + (14 ac)dD + ¢1(8)c)
=yl + ento(llz = yl) + da,

IN
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where ¢(t) 1= ¢2(t) + ¢1(a(t + Mps(t))) for all ¢ > 0, M := sup,,>; S
max{cg), cg)} and d,, = dg) +(1+ acsll))dg) + ¢1(ﬁ)c£}). Therefore, the family
8§ ={S, : C — C} is continuous TAN on C with ¢,, d,, and ¢ € I'(R") for N = 2.
Obviously,

(1)

d2(t) + o1 (alt + Ma(t)))
alt + a(t + Mea(t))]

<
< al+a+Mit:=at, t>p

and also Yo | ¢, < 00, Dooo d, < 0.
Now use the mathematical induction to complete the proof. O

Remark 1.8. Note that 5, in Example 1.7 is rewritten as the following recursive
form:

Sp = (1= aI + oV UM
W= (1= + DT U,
(1.12) ;
U2 = (1 — oV D) 4 oDV (-1
UNY = (1= a1+ a7V 1

First let us consider a brief history of strong convergence problems for a single
non-Lipschitzian mapping T : C' — C which is both completely continuous and
asymptotically nonexpansive in the intermediate sense as in (1.3) with F(T) # 0.

Theorem 1.9([6]). Suppose that a mapping T : C — C is both completely con-
tinuous and AN in the intermediate sense with F(T) # 0. Let {z,} be a sequence
defined by

x1 € C chosen arbitrarily,

T+l = QpTp + BT Yn + Yniin,

Yn = ATy + B, T xn + 7, Un, n>1,

where {an}, {Bab i}, 1L}, {810} are real sequences in [0,1] and {un}32,,
{vn}22 are two bounded sequences in C' such that

(i) {an} is bounded away from 0, {8} is bounded away from 1, and {B,} is
bounded away from both 0 and 1.

(i) an+Bn+ =0, + B, +~,=1 foralln>1,

(iil) D02 v < 00, Yoot v < oo and Y .., 8, < 0o, where &, is given as in
(1.4). Then, {x,} converges strongly to a fixed point of T

Recently, Chidume and Ofoedu [3] established the following necessary and suf-
ficient condition for strong convergence for a finite family of TAN self mappings
defined on a nonempty closed convex subset in real Banach spaces.
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Theorem 1.10([3]). Let C be a nonempty closed convex subset of a real Banach
space X and let {T;}Y_; be a finite family of TAN mappings from C into itself with
Fy =N F(T;) # 0. Let {x,} be the sequence defined explicitly by either

x1 € C chosen arbitrarily,
Tnt1 = (1 —ap)z, + @Iz, n>1

for N=1 or

x1 € C chosen arbitrarily,

Tpyl = (1 — Oén)il'n + anTln Yin,
(1 13) Yin = (1 - O‘n)xn + anTQn Yon,

YN-2)n = (]— - an)xn +anTy_y YN-1)n>
YN-1)n = (]- - an)xn + anT;\} Tp, n=>1

for N > 2, where {ay,} is a sequence in [0,1]. Assume that {csli)}, {de)} and ¢,
1 <i <N, satisfy the following properties:

(C1) Jay, B; > 0 such that ¢;(t) < ayt for allt > B;, 1 <i < N.

(C2) >, ch) <ooand Y 07, de) <00,1<i<N;

Then {x,} converges strongly to a common fived point of {T;}X., if and only if
liminf, ,o d(zn, Fn) = 0, where d(z,A) := infeca ||z — al| for all z € C and
AcC.

Remark 1.11. (i) ¢;(t) =1t°,0< s <1,1 <i < N enjoys the condition (C1); see
Remark 15 of [3].
(ii) For any fixed 8; > 0 and f € I'([0,8;)), 1 < i < N, define a function ¢; by

oL L fsds  ifo<t<p
@(t)_{ Logi-n =g

provided ¢(3;—) := limy_,5,— ¢(t) exists. Then, ¢, € T'(RT), 1 < i < N and it
obviously satisfies the condition (C1) with «; := éq{)(ﬂi—). Especially, note that
if X is uniformly convex, taking f := dx, modulus of convexity of X, we see that
(1.14) holds with 3; := 2, 1 < i < N, because dx : [0,2] — [0,1] is continuous on
[0,2), 6x(2) = 1, and strictly increasing on [0, 2]; see [5] or [9].

(iii) Note that (C1) is equivalent to (C1). In fact, for (C1) = (C1), take a :=
max{a; : 1 <i< N} and §:=max{8; : 1 <i < N}. For the converse, take a; = «
and §; = foralli=1,2,---,N.

In particular, taking T = ", ol = ay, in (1.13), by Example 1.7, the family
8§ = {8, : C — C} defined by (1.12) is also continuous TAN on C. Therefore, the
explicit algorithm (1.13) can be shortly rewritten as

(1.14)

(1.15) Tn+1 = SnTn, n>1.
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In this paper, motivated and stimulated by the result(see Theorem 1.10) by
Chidume and Ofoedu [3], we shall give necessary and sufficient conditions for strong
convergence of the algorithm (1.15) to a common fixed point for a continuous TAN
family 8 = {S,, : C — C} of non-Lipschitzian mappings, defined as in Definition
1.3. Also, some applications to a finite family of TAN self mappings are added.

2. Necessary and sufficient conditions for convergence

Theorem 2.1. Let X be a real Banach space, C' be a nonempty closed convex
subset of X. Let a discrete family 8 = {S,, : C — C} be continuous TAN on C
with F .= N2, F(Sy,) # 0. Assume that {c,}, {dn} and ¢ satisfy the following two
conditions:

(A1) Ja, B >0 such that ¢(t) < at for allt > B.
(A2) > e <00, Yoo dy < oc0.

Then the sequence {x,} defined by the explicit iteration method (1.15) converges
strongly to a common fized point of 8 if and only if liminf, . d(x,, F)=0.

For the proof of Theorem 2.1, we shall need the following subsequent lemmas.
Lemma 2.2([8], [10]). Let {a,}, {¢n} and {d,}be sequences of nonnegative real

numbers such that 3
Ap41 S (1 + En)an + dn

for all n > 1. Suppose that >~ ¢, < 0o and > o, d, < 0o. Then lim,— oo an
exists. Moreover, if in addition, liminf,,_ . a, = 0, then lim, . a, = 0.
Lemma 2.3. Under the same hypotheses as Theorem 2.1, there hold the following
properties:

(i) limp oo || — pl| exists for all p € F, and hence {x,} is bounded.

(i) limy,—eo d(zp, F) exists.

Proof. First, to prove (i), let p € F' and let n > 1 be arbitrarily given. Using (A1)
and strict increasing of ¢, we easily get

(2.1) o(t) < ¢(B) +at, t>0.
Use (1.8) and (2.1) in turn to derive
||xn+1 - pH = HSnxn - San
< lzn = pll + end(lzn —pll) + dn
< lzn = pll + enl(B) + allzn — pll] + dn

(1+ acn)llxn - p|| + cnd(B) 4 d-
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Putting ¢, := ac, and d, = cn®(B) + dy, this implies that

(2.2) |Zns1 —pll < (1+é)llwn —pll + Jn
and
o0 o0 B
(2.3) Zén < oo and Zd" < o0
n=1 n=1

by using (A2). So, by Lemma 2.2, the limit lim, _, ||z, — p|| exists.
Now to show (ii), taking the infimum over all p € F on the both sides of
inequality (2.2) we obtain

d(xpt1, F) < (14 ¢&,)d(zn, F) + dy.
Applying Lemma 2.2 again, (ii) is quickly obtained. o
Proof of Theorem 2.1. Tt suffices to show the sufficiency. Assume that

lim inf d(z,, F') = 0.

n— oo

Then it follows from (ii) of Lemma 2.3 that lim,_,c d(zn, F') = 0. Since >_ &, < 0o
in the process proving Lemma 2.3, we observe that

(2.4) 1<K :=]J1+é) <ex <o

Given € > 0, since lim,, o d(2,, F) = 0 and ZJn < 00, we can choose a positive
integer ng sufficiently large so that

€ > - €
(2.5) d(z,, F) < ik and Zdi <z " > ng.

i=n

Let n,m > ng and p € F. First, use the inequality (2.2) repeatedly together with
(2.4) to derive

|7 — pll
n—1 n—2 ~ n—1 _
< [Ta+é&)lan —pl+ D> d [T O+&)+dua
i=ng 1=ng k=i+1
n—1 _
< Kllon, — vl + Y i,

i:no
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which implies that

[2n = Zm|l < llzn = pll + [J2m — pll

n—1 m—1

< Kllan = pll+ Y di] + K[, —pll + Y 4]
i=ng i=ng

< 2K llon, — vl + Y di].
i:no

Taking the infimum over all p € F firstly on both sides and next using (2.5), we
have

o
o0 =@l < 2K [d@ng, F)+ > di))
i:no
€ €
< 2K(E+E> =€ n,m > ng.

This shows that {x,} is a Cauchy sequence in X. Say z, — z* € X. Finally, we
claim that z* € F. In fact, note first that

2" = pll < llz* = znll + [0 — pl

for all p € F and n > 1. Taking the infimum again over all p € F on both sides
ensures that
d(z*, F) <||z* — an|| + d(zn, F) = 0

as n — oo. Since F is closed by continuity of 8, it follows that z* € F and the
proof is complete. O

Corollary 2.4. Under the same hypotheses as Theorem 2.1, the sequence {x,}
converges strongly to a common fized point p € F if and only if there exists a
subsequence {xy, } of {xn} which converges strongly to p.

Proof. Note that there exists a subsequence {z, } of {z,} which converges strongly
to p if and only if limg_,o d(zp,, F') = 0. Since

liminf d(x,, F) <liminf d(x,,, F) = lim d(z,,,F) =0,
k— o0 k—oo

n—o0

it follows that liminf, . d(x,, F) = 0. Now apply Theorem 2.1 to complete the
proof. O
3. Applications to a finite family of TAN self mappings

Let C' be a nonempty closed convex subset of a real Banach space X and let
N > 1 be fixed. Let {T;}}Y, be a finite family of N continuous TAN mappings
defined on C, that is, for i =1,2,--- | N,

(3.1) TPz — TPy| < ||z =yl + (|2 — y]) + d
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for all x,y € C, where ¢; € T'(R"), {cﬁf)} and {dﬁf)} are sequences of nonnegative
real numbers such that cgf) — 0, dgf) —0asn—o00(1<i<N).
In this section, as a special case, we recall the following explicit iteration algo-

rithm (1.13) studied by Chidume and Ofoedu [3] for such a finite family {T;} X ,:

x1 € C chosen arbitrarily,
Tn+1l = (1 - an)xn + anTln Yin,
Yin = (1 - an)xn + anT2n Yon,

Y(N-2)n = (1 - an)xn + aan\Lffl YN-1)n>
YN-1)n = (1 - an)xn + anT]T\l] Tp, n=>1

Then the above algorithm (1.13) can be rewritten as a special form of (1.12)

equipped with Ty(bi) =1T", agf) = q, for 1 <7 < N, namely,

(32) Tn+1 = Snxna n > 17
where

S

=1 = an)+a,TnUW,
Uy =

(1= )] + o, TR U,
(3.3) :
UN™ = (1= o) + T3 _ U Y,
UMY = (1 -+ an TR, n>1,

x1 € K is arbitrarily given, «,, € [0,1] and y;, = U,(Li)xn for 1 <i<N.
By virtue of Example 1.7, 8§ = {S,, : C' — C} is obviously continuous TAN on
C,and Fy =N, F(T;) C F =N, F(Sy).

Corollary 3.1([3]). Let C be a nonempty closed convex subset of a real Banach
space X, N > 1 a positive integer, and let {T;}N.| be a finite family of TAN map-
pings from C into itself with Fy = NN F(T;) # 0. Let {x,,} be the sequence defined
explicitly by (1.13). Assume that {cgf)}, {dgf)} and ¢;, 1 < i < N, satisfy properties
(C1) and (C2). Then {x,} converges strongly to a common fized point of {T;}N ,
if and only if iminf, _ d(z,, Fn)=0.

Proof. By Example 1.7, since the family 8§ = {S,, : C — C'} defined recursively by
(3.2) is continuous TAN on C' and Fy C F, and (C1) < (C1) & (C1) = (A1) and
(C2) & (C2) = (C2) & (A2), all the assumptions in Theorem 2.1 are therefore
fulfilled. Now to prove the sufficiency, assume that lim inf,, ., d(z,, Fn) = 0. Since
Fy C F, (2.2) still remains true for all p € Fx and so lim,_,c d(zn, Fy) exists.
Hence lim,,—, o0 d(2y,, Fx) = 0. Now similarly mimicking the proof of Theorem 2.1

with Fyy instead F', we conclude that {z,} strongly converges to a common fixed
point of {T;}Y,. O
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Remark 3.2. (a) We still don’t know whether F' C Fy under the hypotheses of
Corollary 3.1 or not.

(b) Note that our proofs in Theorem 2.1 and Corollary 3.1 are simpler than the
one given by Chidume and Ofoedu [3].
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