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Abstract. In this paper, we first introduce a family S = {Sn : C → C} of

non-Lipschitzian mappings, called total asymptotically nonexpansive (briefly, TAN) on a

nonempty closed convex subset C of a real Banach space X, and next give necessary and

sufficient conditions for strong convergence of the sequence {xn} defined recursively by the

algorithm xn+1 = Snxn, n ≥ 1, starting from an initial guess x1 ∈ C, to a common fixed

point for such a continuous TAN family S in Banach spaces. Finally, some applications to

a finite family of TAN self mappings are also added.

1. Introduction

Let C be a nonempty closed convex subset of a real Banach space X and let
T : C → C be a mapping. Then T is said to be a Lipschitzian mapping if, for each
n ≥ 1, there exists a constant kn > 0 such that

(1.1) ∥Tnx− Tny∥ ≤ kn∥x− y∥

for all x, y ∈ C (we may assume that all kn ≥ 1). A Lipschitzian mapping T is
called uniformly k-Lipschitzian if kn = k for all n ≥ 1, nonexpansive if kn = 1 for
all n ≥ 1, and asymptotically nonexpansive [4] if limn→∞ kn = 1, respectively. The
class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
[4] as a generalization of the class of nonexpansive mappings. They proved that if
C is a nonempty bounded closed convex subset of a uniformly convex Banach space
X, then every asymptotically nonexpanisve mapping T : C → C has a fixed point.

On the other hand, as the classes of non-Lipschitzian mappings, there appear
in the literature two definitions, one is due to Kirk who says that T is a mapping
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of asymptotically nonexpansive type [7] if for each x ∈ C,

(1.2) lim sup
n→∞

sup
y∈C

(∥Tnx− Tny∥ − ∥x− y∥) ≤ 0

and TN is continuous for some N ≥ 1. The other is the stronger concept due to
Bruck, Kuczumov and Reich [2]. They say that T is asymptotically nonexpansive
in the intermediate sense if T is uniformly continuous and

(1.3) lim sup
n→∞

sup
x,y∈C

(∥Tnx− Tny∥ − ∥x− y∥) ≤ 0

In this case, observe that if we define

δn := sup
x,y∈C

(∥Tnx− Tny∥ − ∥x− y∥) ∨ 0,

where a ∨ b := max{a, b}, then δn → 0 and (1.3) immediately reduces to

(1.4) ∥Tnx− Tny∥ − ∥x− y∥ ≤ ∥x− y∥+ δn

for all x, y ∈ C and n ≥ 1.

Recently, Alber et al. [1] introduced the wider class of total asymptotically
nonexpansive mappings to unify various definitions of classes of nonlinear map-
pings associated with the class of asymptotically nonexpansive mappings; see also
Definition 1 of [3]. They say that a mapping T : C → C is said to be total asymp-
totically nonexpansive (TAN, in brief) [1] if there exist sequences {cn} and {dn} of
nonnegative real numbers with cn, dn → 0 as n→ ∞ and ϕ ∈ Γ(R+) such that

(1.5) ∥Tnx− Tny∥ ≤ ∥x− y∥+ cn ϕ(∥x− y∥) + dn,

for all x, y ∈ C and n ≥ 1, where R+ := [0,∞) and

ϕ ∈ Γ(R+) ⇔ ϕ is strictly increasing, continuous on R+ and ϕ(0) = 0.

Remark 1.1. (i) Note that if T is continuous, the property (1.5) with cn = 0 for
all n ≥ 1 is equivalent to (1.4) with dn = δn, and also that a mapping satisfying
the property (1.3) is non-Lipschitzian; see [6].

(ii) Also, if we take ϕ(t) = t for all t ≥ 0 and dn = 0 for all n ≥ 1 in (1.5), it can
be reduced to the concept of asymptotically nonexpansive mapping. Furthermore,
in addition, taking cn = 0 for all n ≥ 1, it is nonexpansive, that is,

∥Tx− Ty∥ ≤ ∥x− y∥

for all x, y ∈ C.

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F (T ) := {x ∈
C : Tx = x} the set of all fixed points of T .



Approximation of Common Fixed Points 703

Let {Ti}Ni=1 be a finite family of mappings from C into itself. Then we denote
TnmodN by T[n], namely, the mod function takes values in the set {1, 2, · · · , N} as

T[n] :=

{
TN , if r = 0;
Tr, if 0 < r < N

for n = kN + r for some integers j ≥ 0 and 0 ≤ r < N . In this case, setting

(1.6) k(n) :=

{
k, if r = 0;
k + 1, if 0 < r < N

for each n ≥ 1, it is not hard to see that k(n) → ∞ as n→ ∞,

(1.7) k(n−N) = k(n)− 1, and T[n−N ] = T[n], n ≥ N.

We begin with the following simple observation.

Proposition 1.2. Let C be a nonempty closed convex subset of a real Banach space
X, N ≥ 1 a positive integer, and let {Ti}Ni=1 be a finite family of TAN mappings
from C into itself. Then there exist sequences {cn} and {dn} of nonnegative real
numbers with cn, dn → 0 and ϕ ∈ Γ(R+) such that

∥Anx−Any∥ ≤ ∥x− y∥+ cn ϕ(∥x− y∥) + dn,

for all x, y ∈ C and n ≥ 1, where

An is either Tn
[n] or

N∑
i=1

λ
(n)
i T

(n)
i ,

for all the λ
(n)
i ∈ [0, 1] with

∑N
i=1 λ

(n)
i = 1. In particular, if k(n) is given as in

(1.6), then

∥T k(n)
[n] x− T

k(n)
[n] y∥ ≤ ∥x− y∥+ cn ϕ(∥x− y∥) + dn.

Definition 1.3. Let C be a nonempty closed convex subset of a real Banach
space X. A discrete family S = {Sn : C → C} is said to be TAN on C if there
exist sequences {cn} and {dn} of nonnegative real numbers converging to zero and
ϕ ∈ Γ(R+) such that

(1.8) ∥Snx− Sny∥ ≤ ∥x− y∥+ cn ϕ(∥x− y∥) + dn

for all x, y ∈ C and n ≥ 1. Furthermore, we say that S is continuous on C provided
each Sn ∈ S is continuous on C.

Example 1.4. The discrete families of {An}∞n=1 and {T k(n)
[n] }∞n=1 in Proposition 1.2

are obviously TAN on C.



704 T. H. Kim and Y. K. Park

Example 1.5. Let X = R, C = [0,∞) and, for each n ≥ 1, define

Snx =
(
1 +

1

n

)
x+

1

n
tan−1 x, x ∈ C.

Then the family S = {Sn : C → C} is continuous TAN on C. In fact, use | tan−1 x| <
π
2 to get

|Snx− Sny| ≤
(
1 +

1

n

)
|x− y|+ π

n

for all x, y ∈ C and n ≥ 1, where ϕ(t) = t, cn = 1
n and dn = π

n .

Moreover, we have the following

Example 1.6. Let C be a nonempty closed convex subset of a real Banach space

X. Let two families ℑi = {T (i)
n : C → C} be continuous TAN on C satisfying the

property (1.8) with c
(i)
n ∈ [0, 1], d

(i)
n ≡ 0 and ϕi ∈ Γ(R+) for i = 1, 2, respectively.

Let {αn} and {βn} be sequences in [0, 1]. Then the family S = {Sn : C → C}
defined by

Sn = (1− αn)I + αnT
(1)
n [(1− βn)I + βnT

(2)
n ]

for each n ≥ 1 is also continuous TAN on C.

Proof. Putting Un := (1− βn)I + βnT
(2)
n and using (1.8) yield

∥Unx− Uny∥ ≤ (1− βn)∥x− y∥+ βn∥T (2)
n x− T (2)

n y∥
≤ (1− βn)∥x− y∥+ βn[∥x− y∥+ c(2)n ϕ2(∥x− y∥)]
≤ ∥x− y∥+ c(2)n ϕ2(∥x− y∥)

for all x, y ∈ C. Then, we can also compute

∥Snx− Sny∥ ≤ (1− αn)∥x− y∥+ αn∥T (1)
n (Unx)− T (1)

n (Uny)∥
≤ (1− αn)∥x− y∥+ αn[∥Unx− Uny∥+ c(1)n ϕ1(∥Unx− Uny∥)]
≤ ∥x− y∥+ c(2)n ϕ2(∥x− y∥) + c(1)n ϕ1

(
∥x− y∥+Mϕ2(∥x− y∥)

)
= ∥x− y∥+ cnψ(∥x− y∥),

where ψ(t) := ϕ2(t) + ϕ1
(
t +Mϕ2(t)

)
for all t ≥ 0, M := supn≥1 c

(2)
n , and cn :=

max{c(1)n , c
(2)
n }. Therefore, the family S = {Sn : C → C} is continuous TAN on C

with cn and ψ ∈ Γ(R+). 2

Example 1.7. Let C be a nonempty closed convex subset of a real Banach space

X. Let families ℑi = {T (i)
n : C → C} be continuous TAN on C, equipped with

c
(i)
n ∈ [0, 1], d

(i)
n and ϕi ∈ Γ(R+) as in (1.8) for i = 1, 2, · · · , N , respectively, such

that the following two properties hold:

(C̃1) ∃α0, β > 0 such that ϕi(t) ≤ α0t for all t ≥ β, 1 ≤ i ≤ N ;
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(C̃2)
∑∞

n=1 c
(i)
n <∞ and

∑∞
n=1 d

(i)
n <∞, 1 ≤ i ≤ N .

Let {α(i)
n } be sequences in [0, 1] for 1 ≤ i ≤ N . Then the family S = {Sn : C → C}

defined by

Sn = (1− α(1)
n )I + α(1)

n T (1)
n

[
(1− α(2)

n )I + α(2)
n T (2)

n

[
(1− α(3)

n )I +

α(3)
n T (3)

n

(
· · ·+ α(N−1)

n T (N−1)
n

(
(1− α(N)

n )I + α(N)
n T (N)

n

)
· · ·

)]
is also continuous TAN on C, namely, there exist {cn}, {dn} and ϕ ∈ Γ(R+) such
that

∥Snx− Sny∥ ≤ ∥x− y∥+ cnϕ(∥x− y∥) + dn, x, y ∈ C.

Furthermore, the following properties are also satisfied:

(C̃1)′ ∃α (≥ α0), β > 0 such that ϕ(t) ≤ αt for all t ≥ β.

(C̃2)′
∑∞

n=1 cn <∞ and
∑∞

n=1 dn <∞.

Proof. First, we claim that the family S = {Sn : C → C} is continuous TAN on C
for N = 2, that is, where

Sn = (1− α(1)
n )I + α(1)

n T (1)
n

[
(1− α(2)

n )I + α(2)
n T (2)

n

]
.

Indeed, putting Un := (1− α
(2)
n )I + α

(2)
n T

(2)
n simply and using (1.8) yield

∥Unx− Uny∥ ≤ (1−α(2)
n )∥x−y∥+α(2)

n ∥T (2)
n x−T (2)

n y∥(1.9)

≤ (1−α(2)
n )∥x−y∥+α(2)

n [∥x−y∥+c(2)n ϕ2(∥x−y∥)]+d(2)n ]

≤ ∥x−y∥+c(2)n ϕ2(∥x− y∥)+d(2)n

for all x, y ∈ C. Then, we can also have

∥Snx− Sny∥ ≤ (1− α(1)
n )∥x− y∥+ α(1)

n ∥T (1)
n (Unx)− T (1)

n (Uny)∥(1.10)

≤ (1− α(1)
n )∥x− y∥+ α(1)

n [∥Unx− Uny∥
+ c(1)n ϕ1(∥Unx− Uny∥) + d(1)n ].

Using (C̃1) and the strictly increasing property of ϕi, we easily see

ϕi(t) ≤ ϕi(β) + αt

for all t ≥ 0 and 1 ≤ i ≤ N . In particular,

(1.11) ϕ1(∥Unx− Uny∥) ≤ ϕ1(β) + α∥Unx− Uny∥.

Now substituting (1.11) combined with (1.9) into (1.10) and simplifying, we get

∥Snx− Sny∥ ≤ ∥x− y∥+ c(2)n ϕ2(∥x− y∥) + c(1)n [α(∥x− y∥+ c(2)n ϕ2(∥x− y∥)]
+ d(1)n + (1 + αc(1)n )d(2)n + ϕ1(β)c

(1)
n

≤ ∥x− y∥+ cnψ(∥x− y∥) + dn,
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where ϕ(t) := ϕ2(t) + ϕ1
(
α(t +Mϕ2(t))

)
for all t ≥ 0, M := supn≥1 c

(2)
n , cn :=

max{c(1)n , c
(2)
n } and dn := d

(1)
n + (1 + αc

(1)
n )d

(2)
n + ϕ1(β)c

(1)
n . Therefore, the family

S = {Sn : C → C} is continuous TAN on C with cn, dn and ϕ ∈ Γ(R+) for N = 2.
Obviously,

ϕ(t) = ϕ2(t) + ϕ1
(
α(t+Mϕ2(t))

)
≤ α[t+ α(t+Mϕ2(t))]

≤ α(1 + α+M)t := α̃t, t ≥ β

and also
∑∞

n=1 cn <∞,
∑∞

n=1 dn <∞.
Now use the mathematical induction to complete the proof. 2

Remark 1.8. Note that Sn in Example 1.7 is rewritten as the following recursive
form:

(1.12)



Sn = (1− α
(1)
n )I + α

(1)
n T

(1)
n U

(1)
n ,

U
(1)
n = (1− α

(2)
n )I + α

(2)
n T

(2)
n U

(2)
n ,

...

U
(N−2)
n = (1− α

(N−1)
n )I + α

(N−1)
n T

(N−1)
n U

(N−1)
n ,

U
(N−1)
n = (1− α

(N)
n )I + α

(N)
n T

(N)
n , n ≥ 1,

First let us consider a brief history of strong convergence problems for a single
non-Lipschitzian mapping T : C → C which is both completely continuous and
asymptotically nonexpansive in the intermediate sense as in (1.3) with F (T ) ̸= ∅.

Theorem 1.9([6]). Suppose that a mapping T : C → C is both completely con-
tinuous and AN in the intermediate sense with F (T ) ̸= ∅. Let {xn} be a sequence
defined by  x1 ∈ C chosen arbitrarily,

xn+1 = αnxn + βnT
nyn + γnun,

yn = α′
nxn + β′

nT
nxn + γ′nvn, n ≥ 1,

where {αn}, {βn},{γn}, {α′
n}, {β′

n},{γ′n} are real sequences in [0,1] and {un}∞n=1,
{vn}∞n=1 are two bounded sequences in C such that

(i) {αn} is bounded away from 0, {β′
n} is bounded away from 1, and {βn} is

bounded away from both 0 and 1.
(ii) αn + βn + γn = α′

n + β′
n + γ′n = 1 for all n ≥ 1,

(iii)
∑∞

n=1 γn < ∞,
∑∞

n=1 γ
′
n < ∞ and

∑∞
n=1 δn < ∞, where δn is given as in

(1.4). Then, {xn} converges strongly to a fixed point of T .

Recently, Chidume and Ofoedu [3] established the following necessary and suf-
ficient condition for strong convergence for a finite family of TAN self mappings
defined on a nonempty closed convex subset in real Banach spaces.
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Theorem 1.10([3]). Let C be a nonempty closed convex subset of a real Banach
space X and let {Ti}Ni=1 be a finite family of TAN mappings from C into itself with
FN := ∩N

i=1F (Ti) ̸= ∅. Let {xn} be the sequence defined explicitly by either{
x1 ∈ C chosen arbitrarily,
xn+1 = (1− αn)xn + αnT

n
1 xn, n ≥ 1

for N = 1 or

(1.13)



x1 ∈ C chosen arbitrarily,
xn+1 = (1− αn)xn + αnT

n
1 y1n,

y1n = (1− αn)xn + αnT
n
2 y2n,

...
y(N−2)n = (1− αn)xn + αnT

n
N−1 y(N−1)n,

y(N−1)n = (1− αn)xn + αnT
n
N xn, n ≥ 1

for N ≥ 2, where {αn} is a sequence in [0, 1]. Assume that {c(i)n }, {d(i)n } and ϕi,
1 ≤ i ≤ N , satisfy the following properties:

(C1) ∃αi, βi > 0 such that ϕi(t) ≤ αit for all t ≥ βi, 1 ≤ i ≤ N .

(C2)
∑∞

n=1 c
(i)
n <∞ and

∑∞
n=1 d

(i)
n <∞, 1 ≤ i ≤ N ;

Then {xn} converges strongly to a common fixed point of {Ti}Ni=1 if and only if
lim infn→∞ d(xn, FN ) = 0, where d(z,A) := infa∈A ∥x − a∥ for all z ∈ C and
A ⊂ C.

Remark 1.11. (i) ϕi(t) = ts, 0 < s ≤ 1, 1 ≤ i ≤ N enjoys the condition (C1); see
Remark 15 of [3].

(ii) For any fixed βi > 0 and f ∈ Γ([0, βi)), 1 ≤ i ≤ N , define a function ϕi by

(1.14) ϕi(t) =

{ ∫ t

0
f(s) ds if 0 ≤ t < βi

1
βi
ϕ(βi−)t if t ≥ βi

provided ϕ(βi−) := limt→βi− ϕ(t) exists. Then, ϕi ∈ Γ(R+), 1 ≤ i ≤ N and it
obviously satisfies the condition (C1) with αi := 1

βi
ϕ(βi−). Especially, note that

if X is uniformly convex, taking f := δX , modulus of convexity of X, we see that
(1.14) holds with βi := 2, 1 ≤ i ≤ N , because δX : [0, 2] → [0, 1] is continuous on
[0, 2), δX(2) = 1, and strictly increasing on [0, 2]; see [5] or [9].

(iii) Note that (C1) is equivalent to (C̃1). In fact, for (C1) ⇒ (C̃1), take α :=
max{αi : 1 ≤ i ≤ N} and β := max{βi : 1 ≤ i ≤ N}. For the converse, take αi = α
and βi = β for all i = 1, 2, · · · , N .

In particular, taking T
(i)
n = Tn

i , α
(i)
n = αn in (1.13), by Example 1.7, the family

S = {Sn : C → C} defined by (1.12) is also continuous TAN on C. Therefore, the
explicit algorithm (1.13) can be shortly rewritten as

(1.15) xn+1 = Snxn, n ≥ 1.
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In this paper, motivated and stimulated by the result(see Theorem 1.10) by
Chidume and Ofoedu [3], we shall give necessary and sufficient conditions for strong
convergence of the algorithm (1.15) to a common fixed point for a continuous TAN
family S = {Sn : C → C} of non-Lipschitzian mappings, defined as in Definition
1.3. Also, some applications to a finite family of TAN self mappings are added.

2. Necessary and sufficient conditions for convergence

Theorem 2.1. Let X be a real Banach space, C be a nonempty closed convex
subset of X. Let a discrete family S = {Sn : C → C} be continuous TAN on C
with F := ∩∞

n=1F (Sn) ̸= ∅. Assume that {cn}, {dn} and ϕ satisfy the following two
conditions:

(A1) ∃α, β > 0 such that ϕ(t) ≤ αt for all t ≥ β.

(A2)
∑∞

n=1 cn <∞,
∑∞

n=1 dn <∞.

Then the sequence {xn} defined by the explicit iteration method (1.15) converges
strongly to a common fixed point of S if and only if lim infn→∞ d(xn, F ) = 0.

For the proof of Theorem 2.1, we shall need the following subsequent lemmas.

Lemma 2.2([8], [10]). Let {an}, {c̃n} and {d̃n}be sequences of nonnegative real
numbers such that

an+1 ≤ (1 + c̃n)an + d̃n

for all n ≥ 1. Suppose that
∑∞

n=1 c̃n < ∞ and
∑∞

n=1 d̃n < ∞. Then limn→∞ an
exists. Moreover, if in addition, lim infn→∞ an = 0, then limn→∞ an = 0.

Lemma 2.3. Under the same hypotheses as Theorem 2.1, there hold the following
properties:

(i) limn→∞ ∥xn − p∥ exists for all p ∈ F , and hence {xn} is bounded.

(ii) limn→∞ d(xn, F ) exists.

Proof. First, to prove (i), let p ∈ F and let n ≥ 1 be arbitrarily given. Using (A1)
and strict increasing of ϕ, we easily get

(2.1) ϕ(t) ≤ ϕ(β) + αt, t ≥ 0.

Use (1.8) and (2.1) in turn to derive

∥xn+1 − p∥ = ∥Snxn − Snp∥
≤ ∥xn − p∥+ cnϕ(∥xn − p∥) + dn

≤ ∥xn − p∥+ cn[ϕ(β) + α∥xn − p∥] + dn

= (1 + αcn)∥xn − p∥+ cnϕ(β) + dn.
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Putting c̃n := αcn and d̃n := cnϕ(β) + dn, this implies that

(2.2) ∥xn+1 − p∥ ≤ (1 + c̃n)∥xn − p∥+ d̃n

and

(2.3)

∞∑
n=1

c̃n <∞ and

∞∑
n=1

d̃n <∞

by using (A2). So, by Lemma 2.2, the limit limn→∞ ∥xn − p∥ exists.

Now to show (ii), taking the infimum over all p ∈ F on the both sides of
inequality (2.2) we obtain

d(xn+1, F ) ≤ (1 + c̃n)d(xn, F ) + d̃n.

Applying Lemma 2.2 again, (ii) is quickly obtained. 2

Proof of Theorem 2.1. It suffices to show the sufficiency. Assume that

lim inf
n→∞

d(xn, F ) = 0.

Then it follows from (ii) of Lemma 2.3 that limn→∞ d(xn, F ) = 0. Since
∑
c̃n <∞

in the process proving Lemma 2.3, we observe that

(2.4) 1 ≤ K :=
∏

(1 + c̃n) ≤ e
∑

c̃n <∞.

Given ϵ > 0, since limn→∞ d(xn, F ) = 0 and
∑
d̃n < ∞, we can choose a positive

integer n0 sufficiently large so that

(2.5) d(xn, F ) <
ϵ

4K
and

∞∑
i=n

d̃i <
ϵ

4K
, n ≥ n0.

Let n,m ≥ n0 and p ∈ F . First, use the inequality (2.2) repeatedly together with
(2.4) to derive

∥xn − p∥

≤
n−1∏
i=n0

(1 + c̃i) ∥xn0 − p∥+
n−2∑
i=n0

d̃i

n−1∏
k=i+1

(1 + c̃k) + d̃n−1

≤ K
[
∥xn0

− p∥+
n−1∑
i=n0

d̃i

]
,
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which implies that

∥xn − xm∥ ≤ ∥xn − p∥+ ∥xm − p∥

≤ K
[
∥xn0 − p∥+

n−1∑
i=n0

d̃i

]
+K

[
∥xn0 − p∥+

m−1∑
i=n0

d̃i

]
≤ 2K

[
∥xn0 − p∥+

∞∑
i=n0

d̃i

]
.

Taking the infimum over all p ∈ F firstly on both sides and next using (2.5), we
have

∥xn − xm∥ ≤ 2K
[
d(xn0 , F ) +

∞∑
i=n0

d̃i

]
)

≤ 2K
( ϵ

4K
+

ϵ

4K

)
= ϵ, n,m ≥ n0.

This shows that {xn} is a Cauchy sequence in X. Say xn → x∗ ∈ X. Finally, we
claim that x∗ ∈ F . In fact, note first that

∥x∗ − p∥ ≤ ∥x∗ − xn∥+ ∥xn − p∥

for all p ∈ F and n ≥ 1. Taking the infimum again over all p ∈ F on both sides
ensures that

d(x∗, F ) ≤ ∥x∗ − xn∥+ d(xn, F ) → 0

as n → ∞. Since F is closed by continuity of S, it follows that x∗ ∈ F and the
proof is complete. 2

Corollary 2.4. Under the same hypotheses as Theorem 2.1, the sequence {xn}
converges strongly to a common fixed point p ∈ F if and only if there exists a
subsequence {xnk

} of {xn} which converges strongly to p.

Proof. Note that there exists a subsequence {xnk
} of {xn} which converges strongly

to p if and only if limk→∞ d(xnk
, F ) = 0. Since

lim inf
n→∞

d(xn, F ) ≤ lim inf
k→∞

d(xnk
, F ) = lim

k→∞
d(xnk

, F ) = 0,

it follows that lim infn→∞ d(xn, F ) = 0. Now apply Theorem 2.1 to complete the
proof. 2

3. Applications to a finite family of TAN self mappings

Let C be a nonempty closed convex subset of a real Banach space X and let
N ≥ 1 be fixed. Let {Ti}Ni=1 be a finite family of N continuous TAN mappings
defined on C, that is, for i = 1, 2, · · · , N ,

(3.1) ∥Tn
i x− Tn

i y∥ ≤ ∥x− y∥+ c(i)n ϕi(∥x− y∥) + d
(i)
i
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for all x, y ∈ C, where ϕi ∈ Γ(R+), {c(i)n } and {d(i)n } are sequences of nonnegative

real numbers such that c
(i)
n → 0, d

(i)
n → 0 as n→ ∞ (1 ≤ i ≤ N).

In this section, as a special case, we recall the following explicit iteration algo-
rithm (1.13) studied by Chidume and Ofoedu [3] for such a finite family {Ti}Ni=1:

x1 ∈ C chosen arbitrarily,
xn+1 = (1− αn)xn + αnT

n
1 y1n,

y1n = (1− αn)xn + αnT
n
2 y2n,

...
y(N−2)n = (1− αn)xn + αnT

n
N−1 y(N−1)n,

y(N−1)n = (1− αn)xn + αnT
n
N xn, n ≥ 1

Then the above algorithm (1.13) can be rewritten as a special form of (1.12)

equipped with T
(i)
n = Tn

i , α
(i)
n ≡ αn for 1 ≤ i ≤ N , namely,

(3.2) xn+1 = Snxn, n ≥ 1,

where

(3.3)



Sn = (1− αn)I + αnT
n
1 U

(1)
n ,

U
(1)
n = (1− αn)I + αnT

n
2 U

(2)
n ,

...

U
(N−2)
n = (1− αn)I + αnT

n
N−1 U

(N−1)
n ,

U
(N−1)
n = (1− αn)I + αnT

n
N , n ≥ 1,

x1 ∈ K is arbitrarily given, αn ∈ [0, 1] and yin = U
(i)
n xn for 1 ≤ i ≤ N .

By virtue of Example 1.7, S = {Sn : C → C} is obviously continuous TAN on
C, and FN = ∩N

i=1F (Ti) ⊂ F = ∩∞
n=1F (Sn).

Corollary 3.1([3]). Let C be a nonempty closed convex subset of a real Banach
space X, N ≥ 1 a positive integer, and let {Ti}Ni=1 be a finite family of TAN map-
pings from C into itself with FN = ∩N

i=1F (Ti) ̸= ∅. Let {xn} be the sequence defined

explicitly by (1.13). Assume that {c(i)n }, {d(i)n } and ϕi, 1 ≤ i ≤ N , satisfy properties
(C1) and (C2). Then {xn} converges strongly to a common fixed point of {Ti}Ni=1
if and only if lim infn→∞ d(xn, FN ) = 0.

Proof. By Example 1.7, since the family S = {Sn : C → C} defined recursively by

(3.2) is continuous TAN on C and FN ⊂ F , and (C1) ⇔ (C̃1) ⇔ (C̃1)′ ⇒ (A1) and

(C2) ⇔ (C̃2) ⇒ (C̃2)′ ⇔ (A2), all the assumptions in Theorem 2.1 are therefore
fulfilled. Now to prove the sufficiency, assume that lim infn→∞ d(xn, FN ) = 0. Since
FN ⊂ F , (2.2) still remains true for all p ∈ FN and so limn→∞ d(xn, FN ) exists.
Hence limn→∞ d(xn, FN ) = 0. Now similarly mimicking the proof of Theorem 2.1
with FN instead F , we conclude that {xn} strongly converges to a common fixed
point of {Ti}Ni=1. 2
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Remark 3.2. (a) We still don’t know whether F ⊂ FN under the hypotheses of
Corollary 3.1 or not.

(b) Note that our proofs in Theorem 2.1 and Corollary 3.1 are simpler than the
one given by Chidume and Ofoedu [3].

References

[1] Ya. I. Alber, C. E. Chidume and H. Zegeye, Approximating fixed points of total asymp-
totically nonexpansive mappings, Fixed Point Theory and Appl., 2006(2006), article
ID 10673, 20 pages.

[2] R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically
nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq.
Math., 65(1993), 169–179.

[3] C. E. Chidume and E. U. Ofoedu, Approximation of common fixed points for fi-
nite families of total asymptotically nonexpansive mappings, J. Math. Anal. Appl.,
333(2007), 128-141.

[4] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive
mappings, Proc. Amer. Math. Soc., 35(1972), 171-174.

[5] K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ.
Press, Cambridge, 1990.

[6] G. E. Kim and T. H. Kim, Mann and Ishikawa iterations with errors for non-
Lipschitzian mappings in Banach spaces, Comput. Math. Appl., 42(2001), 1565–1570.

[7] W. A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically
nonexpansive type, Israel J. Math., 17(1974), 339–346.

[8] M. O. Osilike, S. C. Aniagbosor, and B. G. Akuchu, Fixed points of asymptotically
demicontractive mappings in arbitrary Banach spaces, PanAm. Math. J., 12(2002),
77–88.

[9] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama,
2000.

[10] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by
the Ishikawa iteration process, J. Math. Anal. Appl., 178(1993), 301-308.


