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Abstract. With the aid of weakly weighted sharing and a recently introduced sharing

notion in [3] known as relaxed weighted sharing we investigate the uniqueness of mero-

morphic functions sharing a small function with its differential polynomials. Our results

will improve and supplement all the results obtained by Zhang and Yang [17] as well as a

substantial part of the results recently obtained by the present author [2] and thus provide

a better answer to the questions posed by Yu [14] in this regard.

1. Introduction definitions and results

Let f and g be two non-constant meromorphic functions defined in the open
complex plane C. A meromorphic function a is said to be a small function of f
provided that T (r, a) = S(r, f), that is T (r, a) = o(T (r, f)) as r −→ ∞, outside of
a possible exceptional set of finite linear measure. We denote by S(f) the set of all
small functions of f . If for some a ∈ S(f) ∩ S(g), f − a and g − a have the same
set of zeros with the same multiplicities, we say that f and g share a CM (counting
multiplicities), and if we do not consider the multiplicities then f and g are said to
share a IM (ignoring multiplicities). We denote by T (r) the maximum of T (r, f)
and T (r, g). The notation S(r) denotes any quantity satisfying S(r) = o(T (r))
as r −→ ∞, outside of a possible exceptional set of finite linear measure. Let
NE(r, a; f, g) (NE(r, a; f, g)) be the counting function (reduced counting function)
of all common zeros of f−a and g−a with the same multiplicities and N0(r, a; f, g)
(N0(r, a; f, g)) be the counting function (reduced counting function) of all common
zeros of f − a and g − a ignoring multiplicities.
If

N(r, a; f) +N(r, a; g)− 2NE(r, a; f, g) = S(r, f) + S(r, g)

then we say that f and g share a “CM”. On the other hand if

N(r, a; f) +N(r, a; g)− 2N0(r, a; f, g) = S(r, f) + S(r, g)
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then we say that f and g share a “IM”. We denote by L = L(f) the following
differential polynomial.

L(f) = f (k) + ak−1f
(k−1) + · · ·+ a0f,

where aj(j = 0, 1, · · · , k − 1) are small meromorphic functions of f .

R. Brück [4] first considered the uniqueness problems of an entire function
sharing one value with its derivative and proved the following result.

Theorem A([4]). Let f be a non-constant entire function. If f and f
′
share the

value 1 CM and if N(r, 0; f
′
) = S(r, f) then

f
′ − 1

f − 1
is a nonzero constant.

In the same paper Brück [4] posed the following conjecture.

Conjecture 1.1. Let f be a non-constant entire function, ρ1(f) be the first iterative
order of f . If ρ1(f) < ∞ and ρ1(f) is not a positive integer and if f and f

′
share

one finite value a CM then
f

′ − a

f − a
= c for some c ∈ C/{0}.

In 2003 Yu [14] investigated the uniqueness problem of an entire or a meromor-
phic function with its derivative and considered the case when a is a small function.
Yu proved the following two theorems.

Theorem B([14]). Let f be a non-constant entire function, a ∈ S(f) and

a ̸≡ 0,∞. If f − a and f (k) − a share 0 CM and δ(0; f) >
3

4
then f ≡ f (k).

Theorem C([14]). Let f be a non-constant non-entire meromorphic function,
a ∈ S(f) and a ̸≡ 0,∞. If

i) f and a have no common poles,

ii) f − a and f (k) − a share the value 0 CM,

iii) 4δ(0; f) + 2(8 + k)Θ(∞; f) > 19 + 2k,

then f ≡ f (k) where k is a positive integer.

In the same paper Yu [14] posed the following open questions.

(i) Can a CM shared be replaced by an IM shared value in Theorem B ?

(ii) Can the condition δ(0; f) >
3

4
of Theorem B be further relaxed ?

(iii) Can the condition (iii) in Theorem C be further relaxed ?

(iv) Can in general the condition (i) of Theorem C be dropped ?
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Progress to explore the possible answer of Yu [14] has been remarkable recently,
see [1], [9]-[10], [15]-[17]. In 2004, P. Liu and Y. X. Gu [11] provided affirmative
answers to the last three questions of Yu[14]. To state the next results we require
the following definition known as weighted sharing of values which measure how
close a shared value is to be shared IM or to be shared CM.

Definition 1.1([6], [7]). Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}
we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z0 is an
a-point of f with multiplicity m (≤ k) if and only if it is an a-point of g with
multiplicity m (≤ k) and z0 is an a-point of f with multiplicity m (> k) if and only
if it is an a-point of g with multiplicity n (> k), where m is not necessarily equal
to n. We write f , g share (a, k) to mean that f , g share the value a with weight
k. Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or
(a,∞) respectively. If a is a small function we define that f and g share (a, l) which
means f and g share a with weight l if f − a and g− a share (0, l). Though we use
the standard notations and definitions of the value distribution theory available in
[5], we explain some definitions and notations which are used in the paper.

Definition 1.2([9]). Let p be a positive integer and a ∈ C ∪ {∞}.

(i) N(r, a; f |≥ p) (N(r, a; f |≥ p))denotes the counting function (reduced count-
ing function) of those a-points of f whose multiplicities are not less than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p))denotes the counting function (reduced count-
ing function) of those a-points of f whose multiplicities are not greater than
p.

Definition 1.3([13]). For a ∈ C ∪ {∞} and a positive integer p we denote by
Np(r, a; f) the sum N(r, a; f) + N(r, a; f |≥ 2) + · · · + N(r, a; f |≥ p). Clearly
N1(r, a; f) = N(r, a; f).

Definition 1.4([15]). For a positive integer p and a ∈ C ∪ {∞} we put

δp(a; f) = 1− lim sup
r−→∞

Np(r, a; f)

T (r, f)

Clearly 0 ≤ δ(a; f) ≤ δp(a; f) ≤ δp−1(a; f) ≤ · · · ≤ δ2(a; f) ≤ δ1(a; f) = Θ(a; f).

In 2004 Lahiri and Sarkar [15] also gave some affirmative answers to the first
three questions imposing some restrictions on the zeros and poles of a. But they did
not provide any definite answer corresponding to the question (i) of Yu as mentioned
above. Rather they confined their investigations of sharing of small function up to
weight 2. In 2005 Q. C. Zhang [15] studied the problem of meromorphic or entire
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function sharing one small function and improved the results of Lahiri and Sarkar
[9] and answered all the four open questions of Yu. Zhang proved the following
theorems.

Theorem D([15]). Let f be a non-constant meromorphic function and k(≥ 1),
l(≥ 0) be integers. Also let a ≡ a(z) (̸≡ 0,∞) be a meromorphic small function.
Suppose that f − a and f (k) − a share (0, l). If l(≥ 2) and

(1.1) (3 + k) Θ(∞, f) + 2 δ2+k(0; f) > 4 + k

or l=1 and

(1.2) (4 + k) Θ(∞, f) + 3 δ2+k(0; f) > 6 + k

or l = 0 and

(1.3) (6 + 2k) Θ(∞, f) + 5 δ2+k(0; f) > 10 + 2k

then f ≡ f (k).

In 2006 Lin and Lin [10] introduced the notion of weakly weighted sharing which
we shall define next.

Definition 1.5([10]). Let f , g share a “IM” for a ∈ S(f)∩S(g) and k be a positive
integer or ∞.

(i) N
E
(r, a; f, g |≤ k) denotes the reduced counting function of those a-points of

f whose multiplicities are equal to the corresponding a-points of g, both of
their multiplicities are not greater than k.

(ii) N
0
(r, a; f, g |> k) denotes the reduced counting function of those a-points of

f which are a-points of g, both of their multiplicities are not less than k.

Definition 1.6([10]). For a ∈ S(f) ∩ S(g), if k be a positive integer or ∞ and

N(r, a; f |≤ k)−N
E
(r, a; f, g |≤ k) = S(r, f), N(r, a; g |≤ k)−N

E
(r, a; f, g |≤ k) =

S(r, g)

N(r, a; f |≥ k + 1)−N
0
(r, a; f, g |≥ k + 1)

= S(r, f), N(r, a; g |≥ k + 1)−N
0
(r, a; f, g |≥ k + 1)

= S(r, g)

or if k = 0 and

N(r, a; f)−N0(r, a; f, g) = S(r, f), N(r, a; g)−N0(r, a; f, g) = S(r, g),

then we say f , g weakly share a with weight k. Here we write f , g share “(a, k)”
to mean that f , g weakly share a with weight k.
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Obviously if f , g share “(a, k)”, then f , g share “(a, p)” for any integer p,
0 ≤ p < k. Also we note that f , g share a “IM” or “CM” if and only if f , g
share “(a, 0)” or “(a,∞)” respectively. With the notion of weakly weighted sharing
improving the results of Yu [14] and Liu-Gu [11] Lin and Lin [10] proved the following
results.

Theorem E([10]). Let f be a non-constant meromorphic function and k(≥ 1),
l(≥ 0) be integers. Also let a ∈ S(f) and a ̸≡ 0,∞. Suppose that f − a and f (k) − a
share “(0, l)”. If
2 ≤ l ≤ ∞ and

(1.4) 4 Θ(∞, f) + 2 δ2+k(0; f) > 5

or l=1 and

(1.5)
9 + k

2
Θ(∞, f) +

5

2
δ2+k(0; f) > 6 +

k

2

or l = 0 and

(1.6) (7 + 2k) Θ(∞, f) + 5 δ2+k(0; f) > 11 + 2k

then f ≡ f (k).

In [2] the present author has improved all the results of Theorem E by relaxing
the conditions (1.4)-(1.6) and obtained the following results.

Theorem F([2]). Let f be a non-constant meromorphic function and k(≥ 1),
l(≥ 0) be integers a ∈ S(f) and a(z) ̸≡ 0,∞. Suppose that f − a and f (k) − a share
“(0, l)”. If
2 ≤ l ≤ ∞ and

(1.7) 3Θ(∞; f) + δ2+k(0; f) + δ2(0; f) > 4

or l = 1 and

(1.8)
7 + k

2
Θ(∞; f) + δ2+k(0; f) +

1

2
δ1+k(0; f) + δ2(0; f) > 5 +

k

2

or l = 0 and

(1.9) (6 + 2k) Θ(∞; f) + δ2+k(0; f) + δ1+k(0; f) + δ2(0; f) + 2 Θ(0; f) > 10 + 2k

then f ≡ f (k).

Recently Zhang and Yang [17] not only improved the results of Zhang [15] by
weakening all the conditions (1.1)-(1.3) but also replaced f (k) by L(f). They have
proved the following theorem.

Theorem G([17]). Let f be a non-constant meromorphic function and k(≥ 1),
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l(≥ 0) be integers. Also, let a ≡ a(z) ( ̸≡ 0,∞) be a small meromorphic function.
Suppose that f − a and L(f)− a share (0, l). If
2 ≤ l ≤ ∞ and

(1.10) 3 Θ(∞, f) + δ2+k(0; f) + δ2(0; f) + δ(a, f) > 4

or l=1 and

(1.11)
7 + k

2
Θ(∞, f) + δ2+k(0; f) +

1

2
δ1+k(0; f) + δ2(0; f) + δ(a, f) > 5 +

k

2

or l = 0 and
(1.12)
(6 + 2k) Θ(∞, f) + δ2+k(0; f) + 2δ1+k(0; f) + δ2(0; f) + Θ(0; f) + δ(a, f) > 10 + 2k

then f ≡ L(f).

It is worth mentioning that recently in [1] the present author has also studied
the uniqueness of f and f (k) and improved Theorem D partially by replacing the
conditions (1.2) and (1.3) by two weaker ones which are different from that of
Zhang and Yang [17]. But in the paper we will concentrate our attention to improve
Theorems F-G and consequently provide better answers to the questions of Yu than
that was given in [17].

We now state the following two theorems.

Theorem 1.1. Let f be a non-constant meromorphic function and k(≥ 1), l(≥ 0)
be integers a ∈ S(f) and a(z) ̸≡ 0,∞. Suppose that f − a and L(f) − a share
“(0, l)”. If
2 ≤ l ≤ ∞ and

(1.13) 3Θ(∞; f) + δ2+k(0; f) + δ2(0; f) + δ3(a, f) > 4

or l = 1 and

(1.14)
7 + k

2
Θ(∞, f) + δ2+k(0; f) +

1

2
δ1+k(0; f) + δ2(0; f) + δ3(a, f) > 5 +

k

2

or l = 0 and
(1.15)
(6+ 2k) Θ(∞; f) + δ2+k(0; f) + 2δ1+k(0; f) + δ2(0; f) +Θ(0; f) + δ2(a; f) > 10+ 2k

then f ≡ L(f).

From Theorem 1.1 we immediately have the following corollary.

Corollary 1.1. Let f be a non-constant meromorphic function and k(≥ 1), l(≥ 0)
be integers. Also let a ∈ S(f) and a ̸≡ 0,∞. Suppose that f − a and f (k) − a share
“(0, l)”. If
2 ≤ l ≤ ∞ and

(1.16) 2δ2+k(0; f) + 3Θ(∞; f) + δ3(a; f) > 4
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or l = 1 and

(1.17)
5

2
δ2+k(0; f) +

7 + k

2
Θ(∞; f) + δ3(a; f) > 5 +

k

2

or l = 0 and

(1.18) 5δ2+k(0; f) + (6 + 2k)Θ(∞; f) + δ2(a; f) > 10 + 2k

then f ≡ f (k).

Conditions (1.13)-(1.15) weaken all the conditions of Theorem G. On the other
hand the conditions (1.13)-(1.14) are weaker than the conditions (1.7)-(1.8) in Theo-
rem F. Clearly conditions (1.16) and (1.18) provides respectively the better answers
corresponding to the second and first question of Yu [14] than that given by Zhang
and Yang [17]. Also (1.16) gives the better answers corresponding to the second
question of Yu [14] than that is given by Banerjee [2]. But whether the condition
(1.9) can be further relaxed still remains an open problem.

In the next theorem we shall show that if l ≥ k, the condition (1.13) stated above
can further be weakened at the cost of consideration a(̸= 0,∞) to be a constant.

Theorem 1.2. Let f be a non-constant meromorphic function and k(≥ 1), l(≥ 1)
be integers and a (̸= 0,∞) be a constant. Suppose that f − a and L(f) − a share
“(0, l)”. If l(≥ k) and

(1.19) 3Θ(∞; f) + δ2+k(0; f) + δ2(0; f) + δ2(a, f) > 4

then L(f) = f .

Now it is clear from Definition 1.1 and Definition 1.5 that weighted sharing
and weakly weighted sharing are respectively scalings between IM, CM and “IM”,
“CM”. Also weakly weighted sharing includes the definition of weighted sharing.

Recently in [3] another sharing notion known as relaxed weighted sharing has
been introduced which is also a scaling between “IM” and “CM” but weaker than
weakly weighted sharing and hence include the same definition. We first require the
following notation.

Definition 1.7([3]). For a ∈ S(f) ∩ S(g) we denote by N(r, a; f |= p; g |= q) the
reduced counting function of common zeros of f − a and g− a with multiplicities p
and q respectively.

We are now at a stage to discuss about the definition of relaxed weighted shar-
ing.

Definition 1.8([3]). For a ∈ S(f) ∩ S(g) let f , g share a “IM”. Also let k be a
positive integer or ∞. If

∑
p,q≤k

N(r, a; f |= p; g |= q) = S(r)

(p ̸= q)
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then we say f , g share a with weight k in a relaxed manner. Here we write f , g
share (a, k)∗ to mean that f , g share a with weight k in a relaxed manner.

Obviously if f , g share (a, k)∗, then f , g share (a, p)∗ for any integer p, 1 ≤ p < k.
Also we note that f , g share “(a, 0)” or “(a,∞)” if and only if f , g share (a, 1)∗ or
(a,∞)∗ respectively.
We note that f , g share “(a, k)” means they share (a, k)∗ for k ≥ 1 but not con-
versely. In particular when k ≥ 2, f , g share “(a, k − 1)” implies they share (a, k)∗

but not conversely. Also from the definition of relaxed weighted sharing it is clear
that for finite k f , g share (a, k)∗ actually means they share a “IM” with some
restrictions imposed on the common zeros of f−a and g−a up to multiplicity k. In
particular if k = 2 the restrictions are minimum. In the next theorem we will show
that if in Theorem 1.1 f and L(f) share (a, 2)∗ instead of “(a, 0)” the condition
(1.15) can further be weakened.

We further prove the following.

Theorem 1.3. Let f be a non-constant meromorphic function and k(≥ 1) be an
integer, a ∈ S(f) and a ̸≡ 0,∞. Suppose that f − a and L(f)− a share (0, 2)∗. If

(1.20) (4 + k) Θ(∞; f) + δ2+k(0; f) + δ1+k(0; f) + δ2(0; f) + δ3(a; f) > 6 + k

then f ≡ L(f).

We now give some more definitions.

Definition 1.9. Let k be a positive integer and f , g be two non-constant mero-
morphic functions such that f and g share the value 1 “IM”. Let z0 be a zero of
f(z) − 1 of multiplicity p and a zero of g(z) − 1 of multiplicity q. We denote by
Nf≥k+1(r, 1; g |= m) the reduced counting functions of those 1-points of f and g
for which p ≥ k + 1 and q = m > 0.

Definition 1.10([8]). Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g ̸= b) the
counting function of those a-points of f , counted according to multiplicity, which
are not the b-points of g.

Definition 1.11. Let f and g be two non-constant meromorphic functions such
that f and g share the value 1 “IM”. Let z0 be a 1-point of f with multiplicity p, a
1-point of g with multiplicity q. We denote by NL(r, 1; f) the counting function of

those 1-points of f and g where p > q and by N
(2

E (r, 1; f) the counting function of
those 1-points of f and g where p = q ≥ 2, each point in these counting functions

is counted only once. In the same way we can define NL(r, 1; g), N
(2

E (r, 1; g).

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F , G be two non-constant meromorphic functions. Henceforth we shall denote by
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H the following function.

(2.1) H =

(
F

′′

F ′ − 2F
′

F − 1

)
−

(
G

′′

G′ − 2G
′

G− 1

)
.

Lemma 2.1([2]). If F , G be share (1, 1)∗ and H ̸≡ 0. Then

NE(r, 1;F,G |≤ 1) = ≤ N(r, 0;H)

≤ N(r,∞;H) + S(r, F ) + S(r,G).

Lemma 2.2. If for two positive integers p and k, Np (r, 0;L(f) | f ̸= 0) denotes
the counting function of those zeros of of L(f) which are not the zeros of f , where a
zero of L(f) with multiplicity m is counted m times if m ≤ p and p times if m > p
then

Np (r, 0;L(f) | f ̸= 0)

≤ Nk(r, 0; f) + kN(r,∞; f)−
∞∑

m=p+1

N

(
r, 0;

L(f)

f
|≥ m

)
+ S(r, f).

Proof. We omit the proof since the same can be carried out in the line of proof of
Lemma 2.2 [2]. �

Lemma 2.3([17]). For two positive integers p and k

Np(r, 0;L(f)) ≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 2.4([17]). For two positive integers p and k

Np(r, 0;L(f)) ≤ T (r, L(f))− T (r, f) +Np+k(r, 0; f) + S(r, f).

Lemma 2.5. Let f , g share (1, 2)∗. Then

2Nf≥3(r, 1; g |= 1) +Nf≥3(r, 1; g |= 2) ≤ N(r, 0; f) +N(r,∞; f) + S(r).

Proof. Using Lemma 2.2 we get

2Nf≥3(r, 1; g |= 1) +Nf≥3(r, 1; g |= 2) = 2N(r, 1; f |≥ 3) + S(r)

≤ N2(r, 0; f
′
| f ̸= 0) + S(r)

≤ N(r, 0; f) +N(r,∞; f) + S(r).

�
Lemma 2.6([12]). Let f be a non-constant meromorphic function and let

R(f) =

n∑
k=0

akf
k

m∑
j=0

bjf j
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be an irreducible rational function in f with constant coefficients {ak} and {bj}
where an ̸= 0 and bm ̸= 0. Then

T (r,R(f)) = dT (r, f) + S(r, f),

where d = max{n,m}.

Lemma 2.7([5, p.68]). Suppose that f is meromorphic and transcendental in the
plane and that

fnP = Q,

where P and Q are differential polynomials in f and the degree of Q is at most n.
Then

m(r, P ) = S(r, f) as r −→ +∞.

3. Proofs of the theorems

Proof of Theorem 1.3. Let F =
L(f)

a
and G =

f

a
. Then F − 1 =

L(f)− a

a
and

G − 1 =
f − a

a
. Since f − a and L(f) − a share (0, 2)* it follows that F , G share

(1, 2)* except the zeros and poles of a(z). Now we consider the following cases.
Case 1 Let H ̸≡ 0. Since H has only simple poles, from (2.1) it can be easily
calculated that

N(r,∞;H) ≤ N(r,∞;F ) +NL(r, 1;F ) +NL(r, 1;G) +N(r, 0;F |≥ 2)(3.1)

+N(r, 0;G |≥ 2) +N0(r, 0;F
′
) +N0(r, 0;G

′
)

+N(r, 0; a) +N(r,∞; a),

where N0(r, 0;F
′
) is the reduced counting function of those zeros of F

′
which are

not the zeros of F (F − 1) and N0(r, 0;G
′
) is similarly defined. Now from Lemma

2.1 we have

N(r, 1;F ) +N(r, 1;G)(3.2)

≤ NE(r, 1;F,G |≤ 1) +N
(2

E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G)

+N(r, 1;G) +N(r,∞; a) +N(r, 0; a) + S(r, f)

≤ N(r,∞;H) +N
(2

E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N(r, 1;G) + S(r, f).

By the second fundamental theorem, (3.1), (3.2) and noting that N(r,∞;F ) =
N(r,∞;G) + S(r, f) we get
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T (r, F ) + T (r,G)(3.3)

≤ N(r,∞;F ) +N(r, 0;F ) +N(r,∞;G) +N(r, 0;G)

+N(r, 1;F ) +N(r, 1;G)−N0(r, 0;F
′
)−N0(r, 0;G

′
)

+S(r, F ) + S(r,G)

≤ 3N(r,∞; f) +N2(r, 0;F ) +N2(r, 0;G)

+N
(2

E (r, 1;F ) + 2NL(r, 1;F ) + 2NL(r, 1;G)

+N(r, 1;G) + S(r, f).

Since F and G share (1, 2)* we note that

2NL(r, 1;F ) + 2NL(r, 1;G) +N
(2

E (r, 1;F ) +N(r, 1;G)(3.4)

≤ N3(r, 1;G) + 2NF≥3(r, 1;G |= 1) +NF≥3(r, 1;G |= 2) + S(r, f).

Since N2(r, 0;F ) = N2(r, 0;L(f)) + S(r, f), using (3.4) and Lemmas 2.3-2.5 we get
from (3.3)

T (r, L(f)) + T (r, f)

≤ 4 N(r,∞; f) +N2(r, 0; f) +N2(r, 0;L(f)) +N(r, 0;L(f))

+N3(r, a; f) + S(r, f)

≤ (4 + k) N(r,∞; f) +N2(r, 0; f) + T (r, L(f))− T (r, f)

+N2+k(r, 0; f) +N1+k(r, 0; f) +N3(r, a; f) + S(r, f).

So it follows that

(4 + k)Θ(∞; f) + δ2+k(0; f) + δ1+k(0; f) + δ2(0; f) + δ3(a; f) ≤ 6 + k,

which contradicts (1.20).
Case 2 Let H ≡ 0. On integration we get from (2.1)

(3.5)
1

F − 1
≡ C

G− 1
+D,

where C, D are constants and C ̸= 0. If there exist a pole z0 of f with multiplicity
p which is not a pole and zero of a(z), then z0 is the pole of F with multiplicity
p + k and the pole of G with multiplicity p. This contradicts (3.5). So using (3.5)
we get

N(r,∞; f) ≤ N(r, 0; a) +N(r,∞; a) = S(r, f),

and hence
N (r,∞;L(f)) = S(r, f).

So Θ(∞; f) = 1. Therefore the assertion (1.20) reduces to

(3.6) δ2+k(0; f) + δ1+k(0; f) + δ2(0; f) + δ3(a; f) > 2
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Suppose D ̸= 0. From (3.5) we can deduce

(3.7)
L(f)

a
=

(D + 1)
f

a
+ C −D − 1

D
f

a
+ C −D

From (3.7) we have

(3.8) DfL(f) = a((D + 1)f + a(C −D − 1))− a(C −D)L(f)

Hence using Lemma 2.7 we obtain from (3.8)

T (r, L(f)) = m (r, L(f)) +N (r,∞;L(f)) = S(r, f).

Using Lemma 2.6 from (3.5) we get T (r,G) = T (r, F ) + S(r, f). Since a is a small
function it follows from (3.7) that

T (r, f) = T (r, L(f)) + S(r, f) = S(r, f),

which is absurd. Hence D = 0 and so from (3.5) we get G − 1 ≡ C (F − 1). If
C ̸= 1, then

F ≡ G

C
+ 1− 1

C

and N(r, 0;F ) = N (r, 1− C;G) . By the second fundamental theorem, Lemma 2.3
for p = 1 and noting that N(r,∞;F ) = S(r, f) we get

2T (r, f)

≤ 2 T (r,G) + S(r, f)

≤ N(r,∞;G) +N(r, 0;G) +N(r, 1;G) +N (r, 1− C;G) + S(r, f)

≤ N(r, 0;G) +N(r,∞; f) +N(r, 1;G) +N(r, 0;F ) + S(r, f)

≤ N(r, 0; f) +N1+k(r, 0; f) +N3(r, 1;G) + S(r, f).

Hence

(3.9) Θ(0; f) + δ1+k(0; f) + δ3(a; f) ≤ 1.

So we have

δ2+k(0; f) + δ2(0; f) + δ1+k(0; f) + δ3(a; f)

≤ δ2+k(0; f) + Θ(0; f) + δ1+k(0; f) + δ3(a; f) ≤ 2.

This contradicts (3.6). Hence C = 1 and so F ≡ G, that is f ≡ L(f). This
completes the proof of the theorem. �

Proof of theorem 1.2. Let F and G be defined as in Theorem 1.3.
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It follows that F = L(
f

a
) and G =

f

a
share “(1, l)”. Clearly the counting function of

the 1-points of G with multiplicity greater than k is S(r, f). Since l(≥ k) it follows
that F and G practically share “(1,∞)”. Hence NL(r, 1;F )+NL(r, 1;G) = S(r, f).
Case 1 Let H ̸≡ 0. Since

N(r, 1;F ) +N(r, 1;G)

≤ NE(r, 1;F,G |≤ 1) +N(r, 1;F |≥ 2) +N(r, 1;G) + S(r, f)

≤ N(r,∞;H) +N2(r, 1 : G) + S(r, f),

(3.3) changes to

T (r, F ) + T (r,G) ≤ 3N(r,∞; f) +N2(r, 0 : F ) +N2(r, 0 : G) +N2(r, 1;G) + S(r, f),

which with the help of Lemmas 2.3-2.4 yields

3Θ(∞; f) + δ2+k(0; f) + δ2(0; f) + δ2(a; f) ≤ 4.

The above expression contradicts (1.19).
Case 2 Let H ≡ 0. Integrating (2.1) we get (3.5). If z0 be a pole of f with
multiplicity p, then z0 is the pole of F with multiplicity p + k and the pole of G
with multiplicity p. This contradicts (3.5). It follows that F and G have no pole
and so F and G are entire functions here. From (1.19) we know

(3.10) δ2+k(0; f) + δ2(0; f) + δ2(a; f) > 1.

Now using the same argument as used in the proof of Theorem 1.3 we can obtain
from (3.5) that D = 0. Again assuming C ̸= 1 and following the same method in
the proof of Theorem 1.3 we can obtain

Θ(0; f) + δ1+k(0; f) + δ2(a; f) ≤ 1,(3.11)

which together with (3.10) leads to a contradiction. Hence C = 1 and so F ≡ G,
that is f ≡ L(f). This completes the proof of the theorem. �

Proof of theorem 1.1. Let F and G be defined as in Theorem 1.3.
It follows that F − 1 and G− 1 share “(0, l)” and hence F , G share “(1, l)” except
the zeros and poles of a(z).
Case 1 Let H ̸≡ 0.
Subcase 1.1 l = 2. We first note that here (3.4) changes to

2NL(r, 1;F ) + 2NL(r, 1;G) +N
(2

E (r, 1;F ) +N(r, 1;G)(3.12)

≤ N3(r, 1;G) + S(r, f).

So using (3.12), Lemmas 2.3-2.5 we get from (3.3) that

3Θ(∞; f) + δ2+k(0; f) + δ2(0; f) + δ3(a; f) ≤ 4,
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which contradicts (1.13).
Subcase 1.2 l = 1. Here (3.4) changes to

2NL(r, 1;F ) + 2NL(r, 1;G) +N
(2

E (r, 1;F ) +N(r, 1;G)(3.13)

≤ N3(r, 1;G) +NF≥3(r, 1;G |= 2) + S(r, f).

Using Lemma 2.2 we note that

NF≥3(r, 1;G |= 2) ≤ N(r, 1;F |≥ 3) + S(r, f)

≤ 1

2
N2(r, 0;F

′
| F ̸= 0) + S(r, f)

≤ 1

2

(
N(r, 0;F ) +N(r,∞;F )

)
+ S(r, f).

So using (3.13), Lemmas 2.3-2.5 and the above inequality we again get from
(3.3) that

7 + k

2
Θ(∞; f) + δ2+k(0; f) +

1

2
δ1+k(0; f) + δ2(0; f) + δ3(a; f) ≤ 5 +

k

2
,

which contradicts (1.14).
Subcase 1.3 l = 0. So (3.4) changes to

2NL(r, 1;F ) + 2NL(r, 1;G) +N
(2

E (r, 1;F ) +N(r, 1;G)(3.14)

≤ N2(r, 1;G) + 2NL(r, 1;F ) +NL(r, 1;G) + S(r, f).

Also using Lemma 2.2 for p = 1 we obtain

2 NL(r, 1;F ) +NL(r, 1;G)(3.15)

≤ 2N(r, 1;F |≥ 2) +N(r, 1;G |≥ 2) + S(r, f)

≤ 2 N(r, 1;F
′
| F ̸= 0) +N(r, 1;G

′
| G ̸= 0) + S(r, f)

≤ 2N(r, 0;F ) + 3 N(r,∞; f) +N(r, 0;G) + S(r, f).

Using (3.14), (3.15) and Lemmas 2.3-2.5 we get from (3.3)

T (r, L(f)) + T (r, f) ≤ (6 + 2k) N(r,∞; f) + T (r, L(f))− T (r, f) +N2+k(r, 0; f)

+2N1+k(r, 0; f) +N(r, 0; f) +N2(r, 0; f)

+N2(r, a; f) + S(r, f).

Hence it follows that

(6+ 2k)Θ(∞; f) + δ2+k(0; f) + 2δ1+k(0; f) + δ2(0; f) +Θ(0; f) + δ2(a; f) ≤ 2k+10,

which contradicts (1.15).
Case 2 Let H ≡ 0. Integrating (2.1) we get (3.5). In this case also proceeding in
the same way as done in the proof of Theorem 1.3 we can obtain

Θ(∞; f) = 1.



Uniqueness of Meromorphic Functions Sharing a Small Function 665

So (1.13)-(1.15) respectively reduces to

(3.16) δ2+k(0; f) + δ2(0; f) + δ3(a, f) > 1,

(3.17) δ2+k(0; f) +
1

2
δ1+k(0; f) + δ2(0; f) + δ3(a, f) >

3

2

and

(3.18) δ2+k(0; f) + 2δ1+k(0; f) + δ2(0; f) + Θ(0; f) + δ2(a, f) > 4.

Now again proceeding in the same way as done in Theorem 1.3, from (3.5) we can
obtain D = 0. Next supposing C ̸= 1 and following the same procedure as done in
the proof of Theorem 1.3 we can get (3.11), which together with (3.16)-(3.18) leads
to contradictions. Hence C = 1. So from (3.5) we have f = L(f). This completes
the proof of the theorem. �
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