Riccati Equation and Positivity of Operator Matrices

Jun Ichi Fujii
Department of Information Sciences, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan
e-mail: fujii@@cc.osaka-kyoiku.ac.jp

Masatoshi Fujii*
Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan
e-mail: mfujii@@cc.osaka-kyoiku.ac.jp
Ritsuo Nakamoto
Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
e-mail: nakamoto@@base.ibaraki.ac.jp
Abstract. We show that for an algebraic Riccati equation $X^{*} B^{-1} X-T^{*} X-X^{*} T=C$, its solutions are given by $X=W+B T$ for some solution W of $X^{*} B^{-1} X=C+T^{*} B T$. To generalize this, we give an equivalent condition for $\left(\begin{array}{cc}B & W \\ W^{*} & A\end{array}\right) \geq 0$ for given positive operators B and A, by which it can be regarded as Riccati inequality $X^{*} B^{-1} X \leq A$. As an application, the harmonic mean $B!C$ is explicitly written even if B and C are noninvertible.

1. Introduction

The following equation is said to be the algebraic Riccati equation:

$$
\begin{equation*}
X^{*} B^{-1} X-T^{*} X-X^{*} T=C \tag{1}
\end{equation*}
$$

for positive definite matrices B, C and arbitrary T. The simple case $T=0$ in (1)

$$
\begin{equation*}
X^{*} B^{-1} X=C \tag{2}
\end{equation*}
$$

is called the Riccati equation by several authors. It is known that the geometric mean $B \sharp C$ is the unique positive definite solution of (2), see [6] and [4]. Recall Ando's definition of it in terms of operator matrix [2]; for positive operators B, C

* Corresponding author.

Received April 5, 2009; accepted May 4, 2009.
2000 Mathematics Subject Classification: 47A63, 47A64, 47B15.
Key words and phrases: Riccati equation, operator matrix, geometric mean and harmonic mean.
on a Hilbert space,

$$
B \sharp C=\max \left\{X \geq 0 ;\left(\begin{array}{ll}
B & X \tag{3}\\
X & C
\end{array}\right) \geq 0\right\} .
$$

If B is invertible, it is expressed by

$$
\begin{equation*}
B \sharp C=B^{\frac{1}{2}}\left(B^{-\frac{1}{2}} C B^{-\frac{1}{2}}\right)^{\frac{1}{2}} B^{\frac{1}{2}} . \tag{4}
\end{equation*}
$$

Very recently, Izumino and Nakamura [5] gave some interesting consideration to weakly positive operators introduced by Wigner [12]. An operator T is weakly positive if $T=S C S^{-1}$ for some $S, C>0$, where $X>0$ means it is positive and invertible. It is equivalent to be of form $T=A B$ for some $A, B>0$. (Take $A=S^{2}$ and $B=S^{-1} C S^{-1}$.) They pointed out that the square root $T^{\frac{1}{2}}$ of a weakly positive operator $T=S C S^{-1}=A B$ can be defined by $T^{\frac{1}{2}}=S C^{\frac{1}{2}} S^{-1}=$ $A^{\frac{1}{2}}\left(A^{\frac{1}{2}} B A^{\frac{1}{2}}\right)^{\frac{1}{2}} A^{-\frac{1}{2}}$, and

$$
A^{-1} \sharp B=A^{-1}(A B)^{\frac{1}{2}} .
$$

As an easy consequence, $A^{-1} \sharp B$ is a (unique) positive solution of Riccati equation $X A X=B$ for given $A, B>0$.

In this note, we discuss a relation between solutions of (1) and (2), and give their solutions. We show that every solution of (1) is given by $X=W+B T$ for some solution W of $X^{*} B^{-1} X=C+T^{*} B T$. To generalize this, we next investigate an operator W satisfying $\left(\begin{array}{cc}B & W \\ W^{*} & A\end{array}\right) \geq 0$ for given positive operators B and A, by which W can be regarded as a solution of Riccati inequality $X^{*} B^{-1} X \leq A$ if B is invertible. Precisely, we show that $\left(\begin{array}{cc}B & W \\ W^{*} & A\end{array}\right) \geq 0$ if and only if $W=B^{\frac{1}{2}} X$ for some operator X and $A \geq X^{*} X$. As an application, the harmonic mean $B!C$ is explicitly written even if B and C are noninvertible.

2. Riccati equation

In this section, we discuss a relation between solutions of Riccati equations (1) and (2), by which solutions of (1) can be given. The following lemma says that (2) is substantial in a mathematical sense.

Lemma 1. Let B be positive invertible, C positive and T arbitrary operators on a Hilbert space. Then W is a solution of Riccati equation

$$
W^{*} B^{-1} W=C+T^{*} B T
$$

if and only if $X=W+B T$ is a solution of an algebraic Riccati equation

$$
X^{*} B^{-1} X-T^{*} X-X^{*} T=C
$$

Proof. Put $X=W+B T$. Since

$$
X^{*} B^{-1} X-T^{*} X-X^{*} T=W^{*} B^{-1} W-T^{*} B T
$$

we have the conclusion immediately.
Next we determine solutions of Riccati equation (2):
Lemma 2. Let B be positive invertible and A positive. Then W is a solution of Riccati equation

$$
\begin{equation*}
W^{*} B^{-1} W=A \tag{5}
\end{equation*}
$$

if and only if W is of form $W=B^{\frac{1}{2}} U A^{\frac{1}{2}}$ for some partial isometry U whose initial space contains ran $A^{\frac{1}{2}}$.
Proof. If W is a solution, then $\left\|B^{-\frac{1}{2}} W x\right\|=\left\|A^{\frac{1}{2}} x\right\|$ for all vectors x. It ensures the existence of a partial isometry U such that $B^{-\frac{1}{2}} W=U A^{\frac{1}{2}}$, i.e., $W=B^{\frac{1}{2}} U A^{\frac{1}{2}}$.

Consequently, we have solutions of an algebraic Riccati equation (1).
Theorem 3. The solutions of an algebraic Riccati equation (1)

$$
X^{*} B^{-1} X-T^{*} X-X^{*} T=C
$$

is given by $X=B^{\frac{1}{2}} U\left(C+T^{*} B T\right)^{\frac{1}{2}}+B T$ for some partial isometry U whose initial space contains ran $\left(C+T^{*} B T\right)^{\frac{1}{2}}$.

In addition, the following result due to Trapp [11] is obtained by Lemma 1.
Corollary 4. Under the assumption that BT is selfadjoint, the selfadjoint solution of an algebraic Riccati equation (1) is of form

$$
X=\left(T^{*} B T+C\right) \sharp B+B T .
$$

Proof. The uniqueness of solution follows from the fact that $A \sharp B$ is the unique positive solution of $X B^{-1} X=A$.

3. Riccati inequality

In this section, we will generalize Riccati equation, say Riccati inequality. Actually it is realized as the positivity of an operator matrix $\left(\begin{array}{cc}B & W \\ W^{*} & A\end{array}\right) \geq 0$ for given positive operators B and A. Roughly speaking, it is regarded as an operator inequality $W^{*} B^{-1} W \leq A$. As a matter of fact, it is correct if B is invertible.

Lemma 5. Let A be a positive operator. Then

$$
\left(\begin{array}{cc}
1 & X \\
X^{*} & A
\end{array}\right) \geq 0 \text { if and only if } A \geq X^{*} X
$$

Proof. Since

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & A-X^{*} X
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-X^{*} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & X \\
X^{*} & A
\end{array}\right)\left(\begin{array}{cc}
1 & -X \\
0 & 1
\end{array}\right)
$$

it follows that

$$
\left(\begin{array}{cc}
1 & X \\
X^{*} & A
\end{array}\right) \geq 0 \quad \text { if and only if } \quad A \geq X^{*} X
$$

Lemma 6. Let A and B be positive operators. Then

$$
\left(\begin{array}{cc}
B & W \\
W^{*} & A
\end{array}\right) \geq 0 \quad \text { implies } \quad \text { ran } W \subseteq \operatorname{ran} B^{\frac{1}{2}}
$$

and so $X=B^{-\frac{1}{2}} W$ is well-defined as a mapping.
Proof. Let $S=\left(\begin{array}{cc}a & b \\ b^{*} & d\end{array}\right)$ be the square root of $R=\left(\begin{array}{cc}B & W \\ W^{*} & A\end{array}\right)$. Then

$$
R=S^{2}=\left(\begin{array}{cc}
a^{2}+b b^{*} & a b+b d \\
b^{*} a+d b^{*} & b^{*} b+d^{2}
\end{array}\right)
$$

that is,

$$
B=a^{2}+b b^{*} \text { and } W=a b+b d
$$

Since ran $B^{\frac{1}{2}}$ contains both ran a and ran b by Douglas' majorization theorem [3], it contains ran $a+\operatorname{ran} b$. Moreover ran W is contained in ran $a+\operatorname{ran} b$ by $W=a b+b d$.

Theorem 7. Let A and B be positive operators on K and H respectively, and W be an operator from K to H. Then $\left(\begin{array}{cc}B & W \\ W^{*} & A\end{array}\right) \geq 0$ if and only if $W=B^{\frac{1}{2}} X$ for some operator X from K to H and $A \geq X^{*} X$.
Proof. Suppose that $\left(\begin{array}{cc}B & W \\ W^{*} & A\end{array}\right) \geq 0$. Since ran $W \subseteq \operatorname{ran} B^{\frac{1}{2}}$ by Lemma 6, Douglas' majorization theorem [3] says that $W=B^{\frac{1}{2}} X$ for some operator X. Moreover we restrict X by $P_{B} X=X$, where P_{B} is the range projection of B. Noting that $y \in$ ran B if and only if $y=B^{\frac{1}{2}} x$ for some $x \in \operatorname{ran} B^{\frac{1}{2}}$, the assumption implies that

$$
\left(\left(\begin{array}{cc}
P_{B} & X \\
X^{*} & A
\end{array}\right)\binom{y}{z},\binom{y}{z}\right)=\left(\left(\begin{array}{cc}
B & W \\
W^{*} & A
\end{array}\right)\binom{x}{z},\binom{x}{z}\right) \geq 0
$$

for all $y \in \operatorname{ran} B$ and $z \in K$. This means that $\left(\begin{array}{ll}P_{B} & X \\ X^{*} & A\end{array}\right) \geq 0$, and so

$$
\left(\begin{array}{cc}
P_{B} & 0 \\
0 & A-X^{*} X
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-X^{*} & A
\end{array}\right)\left(\begin{array}{cc}
P_{B} & X \\
X^{*} & A
\end{array}\right)\left(\begin{array}{cc}
1 & -X \\
0 & 1
\end{array}\right) \geq 0
$$

that is, $A \geq X^{*} X$, as required. The converse is easily checked.
The above theorem was essentially shown in Šmul'jan [10, Theorem 1.7]. The following factorization theorem due to Ando [2] is led by Theorem 7.
Theorem 8. Let A and B be positive operators. Then $\left(\begin{array}{cc}B & W \\ W^{*} & A\end{array}\right) \geq 0$ if and only if $W=B^{\frac{1}{2}} V A^{\frac{1}{2}}$ for some contraction V.
Proof. Suppose that $\left(\begin{array}{cc}B & W \\ W^{*} & A\end{array}\right) \geq 0$. Then it follows from Theorem 7 that $W=$ $B^{\frac{1}{2}} X$ for some bounded X satisfying $A \geq X^{*} X$. Hence we can find a contraction V with $X=V A^{\frac{1}{2}}$ by [3], so that $W=B^{\frac{1}{2}} V A^{\frac{1}{2}}$ is shown.

The converse is proved by Lemma 5 as follows:

$$
\left(\begin{array}{cc}
B & W \\
W^{*} & A
\end{array}\right)=\left(\begin{array}{cc}
B & B^{\frac{1}{2}} V A^{\frac{1}{2}} \\
A^{\frac{1}{2}} V^{*} B^{\frac{1}{2}} & A
\end{array}\right)=\left(\begin{array}{cc}
B^{\frac{1}{2}} & 0 \\
0 & A^{\frac{1}{2}}
\end{array}\right)\left(\begin{array}{cc}
1 & V \\
V^{*} & 1
\end{array}\right)\left(\begin{array}{cc}
B^{\frac{1}{2}} & 0 \\
0 & A^{\frac{1}{2}}
\end{array}\right) \geq 0 .
$$

4. The geometric mean and harmonic mean

Finally we consider the geometric mean and the harmonic one, as an application of the preceding section. The former is defined by

$$
B \sharp C=\max \left\{X \geq 0 ;\left(\begin{array}{cc}
B & X \\
X & C
\end{array}\right) \geq 0\right\} .
$$

If B is invertible, then Theorem 7 says that $\left(\begin{array}{ll}B & X \\ X & C\end{array}\right) \geq 0$ if and only if $C \geq$ $X^{*} B^{-1} X$.

By the way, we can directly obtain the desired inequality $C \geq X^{*} B^{-1} X$ by the following identity:

$$
\left(\begin{array}{cc}
1 & 0 \\
-X^{*} B^{-1} & 1
\end{array}\right)\left(\begin{array}{cc}
B & X \\
X^{*} & C
\end{array}\right)\left(\begin{array}{cc}
1 & -B^{-1} X \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
B & 0 \\
0 & C-X^{*} B^{-1} X
\end{array}\right)
$$

Anyway the maximum is given by

$$
B \sharp C=B^{\frac{1}{2}}\left(B^{-\frac{1}{2}} C B^{-\frac{1}{2}}\right)^{\frac{1}{2}} B^{\frac{1}{2}} .
$$

Next we review a work of Pedersen and Takesaki [8]. They proved that if B and C are positive operators and B is nonsingular, then there exists a positive solution X of $X B X=C$ if and only if $\left(B^{\frac{1}{2}} C B^{\frac{1}{2}}\right)^{\frac{1}{2}} \leq k B$ holds for some $k>0$.

From the viewpoint of Riccati inequality, we add another equivalent condition to Pedersen-Takesaki theorem:

Theorem 9. Let B and C be positive operators and B be nonsingular. Then the following statements are mutually equivalent:
(1) Riccati equation $X B X=C$ has a positive solution.
(2) $\left(B^{\frac{1}{2}} C B^{\frac{1}{2}}\right)^{\frac{1}{2}} \leq k B$ for some $k>0$.
(3) There exists the minimum of $\{X \geq 0 ; C \leq X B X\}$.
(3') There exists the minimum of $\left\{X \geq 0 ;\left(\begin{array}{cc}1 & C^{\frac{1}{2}} \\ C^{\frac{1}{2}} & X B X\end{array}\right) \geq 0\right\}$.
Proof. We first note that (3) and (3') are equivalent by Lemma 5.
Now we suppose (1), i.e., $X_{0} B X_{0}=C$ for some $X_{0} \geq 0$. If $X \geq 0$ satisfies $C \leq X B X$, then

$$
\left(B^{\frac{1}{2}} X_{0} B^{\frac{1}{2}}\right)^{2}=B^{\frac{1}{2}} C B^{\frac{1}{2}} \leq\left(B^{\frac{1}{2}} X B^{\frac{1}{2}}\right)^{2}
$$

and so

$$
B^{\frac{1}{2}} X_{0} B^{\frac{1}{2}} \leq B^{\frac{1}{2}} X B^{\frac{1}{2}}
$$

Since B is nonsingular, we have $X_{0} \leq X$, namely (3) is proved.
Next we suppose (3). Since $C \leq X B X$ for some X, we have

$$
B^{\frac{1}{2}} C B^{\frac{1}{2}} \leq\left(B^{\frac{1}{2}} X B^{\frac{1}{2}}\right)^{2}
$$

and so

$$
\left(B^{\frac{1}{2}} C B^{\frac{1}{2}}\right)^{\frac{1}{2}} \leq B^{\frac{1}{2}} X B^{\frac{1}{2}} \leq\|X\| B
$$

which shows (2).
The implication (2) \rightarrow (1) has been shown by Pedersen-Takesaki [8] and Nakamoto [7], but we sketch it for convenience. By Douglas' majorization theorem [3], we have

$$
\left(B^{\frac{1}{2}} C B^{\frac{1}{2}}\right)^{\frac{1}{4}}=Z B^{\frac{1}{2}}
$$

for some Z, so that

$$
\left(B^{\frac{1}{2}} C B^{\frac{1}{2}}\right)^{\frac{1}{2}}=B^{\frac{1}{2}} Z^{*} Z B^{\frac{1}{2}} \quad \text { and } \quad B^{\frac{1}{2}} C B^{\frac{1}{2}}=B^{\frac{1}{2}}\left(Z^{*} Z B Z^{*} Z\right) B^{\frac{1}{2}}
$$

Since B is nonsingular, $Z^{*} Z$ is a solution of $X B X=C$.
In adition, we consider an operator matrix $M_{B, C}(X)=\left(\begin{array}{cc}1 & B^{\frac{1}{2}} X \\ X B^{\frac{1}{2}} & C\end{array}\right)$ for $B, C, X \geq 0$. We know that $M_{B, C}(X) \geq 0$ if and only if $C \geq X B X$ by Lemma 5. We remark that there exists the maximum of $\left\{X \geq 0 ; M_{B, C}(X) \geq 0\right\}$ if (1) in Theorem 9 holds. As a matter of fact, if $X_{0} B X_{0}=C$ for some $X_{0} \geq 0$, then it follows from Lemma 5 that

$$
X_{0} B X_{0}=C \geq X B X \quad \text { and so } \quad B^{\frac{1}{2}} X_{0} B^{\frac{1}{2}} \geq B^{\frac{1}{2}} X B^{\frac{1}{2}}
$$

for $X \geq 0$ with $M_{B, C}(X) \geq 0$. Finally the nonsingularity of B implies $X_{0} \geq X$, as desired.

On the other hand, the harmonic mean is defined by

$$
B!C=\max \left\{X \geq 0 ;\left(\begin{array}{cc}
2 B & 0 \\
0 & 2 C
\end{array}\right) \geq\left(\begin{array}{cc}
X & X \\
X & X
\end{array}\right)\right\}
$$

To obtain the exact expression of the harmonic mean, we need the following lemma which is more explicit than Theorem 7.
Lemma 10. If $\left(\begin{array}{cc}B & W \\ W^{*} & A\end{array}\right) \geq 0$, then $X=B^{-\frac{1}{2}} W$ is bounded and $A \geq X^{*} X$.
Proof. For a fixed vector x, we put $x_{1}=B^{-\frac{1}{2}} W x$. Since $B^{\frac{1}{2}} x_{1}=W x$, we may assume $x_{1} \in\left(\operatorname{ker} B^{\frac{1}{2}}\right)^{\perp}$. So it follows that

$$
\begin{aligned}
\left\|B^{-\frac{1}{2}} W x\right\| & =\sup \left\{\left|\left(B^{-\frac{1}{2}} W x, v\right)\right| ;\|v\|=1\right\} \\
& =\sup \left\{\left|\left(B^{-\frac{1}{2}} W x, B^{\frac{1}{2}} u\right)\right| ;\left\|B^{\frac{1}{2}} u\right\|=1\right\} \\
& =\sup \{|(W x, u)| ;(B u, u)=1\}
\end{aligned}
$$

On the other hand, since

$$
\left(\left(\begin{array}{cc}
B & W \\
W^{*} & A
\end{array}\right)\binom{u}{t x},\binom{u}{t x}\right)=|t|^{2}(A x, x)+2 \operatorname{Re} t(W x, u)+(B u, u) \geq 0
$$

for all scalars t, we have

$$
|(W x, u)|^{2} \leq(A x, x)(B u, u)
$$

Hence it follows that

$$
\left\|B^{-\frac{1}{2}} W x\right\|^{2}=\sup \left\{|(W x, u)|^{2} ;(B u, u)=1\right\} \leq(A x, x)
$$

which implies that $X=B^{-\frac{1}{2}} W$ is bounded and $A \geq X^{*} X$.
Theorem 11. Let B, C be positive operators. Then

$$
B!C=2\left(B-\left[(B+C)^{-\frac{1}{2}} B\right]^{*}\left[(B+C)^{-\frac{1}{2}} B\right]\right)
$$

In particular, if $B+C$ is invertible, then

$$
B!C=2\left(B-B(B+C)^{-1} B\right)=2 B(B+C)^{-1} C
$$

Proof. First of all, the inequality $\left(\begin{array}{cc}2 B & 0 \\ 0 & 2 C\end{array}\right) \geq\left(\begin{array}{cc}X & X \\ X & X\end{array}\right)$ is equivalent to

$$
\left(\begin{array}{cc}
2(B+C) & -2 B \\
-2 B & 2 B-X
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
2 B-X & -X \\
-X & 2 C-X
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right) \geq 0
$$

Then it follows from Lemma 5 that $D=[2(B+C)]^{-\frac{1}{2}}(-2 B)$ is bounded and $D^{*} D \leq 2 B-X$. Therefore we have the explicit expression of $B!C$ even if both B and C are non-inbertible:

$$
B!C=\max \left\{X \geq 0 ; D^{*} D \leq 2 B-X\right\}=2 B-D^{*} D
$$

In particular, if $B+C$ is invertible, then

$$
B!C=2 B-D^{*} D=2\left(B-B(B+C)^{-1} B\right)=2 B(B+C)^{-1} C
$$

5. Riccati inequality for projections

Finally we consider the set

$$
\mathcal{F}_{E}=\left\{X \in B(H) ; X^{*} E X \leq E\right\}
$$

for a projection E, where $B(H)$ is the set of all bounded linear operators on H.
Lemma 12. Let E be a projection. Then

$$
\mathcal{F}_{E}=\left\{\left(\begin{array}{cc}
X_{11} & 0 \\
X_{21} & X_{22}
\end{array}\right) \text { on } E H \oplus(1-E) H ;\left\|X_{11}\right\| \leq 1\right\} .
$$

Proof. If $X \in \mathcal{F}_{E}$, then $E X^{*} E X E \leq E$ and so $E X E$ is a contraction. On the other hand, since $(1-E) X^{*} E X(1-E)=0$, we have $E X(1-E)=0$.

Conversely suppose that

$$
X=\left(\begin{array}{cc}
X_{11} & 0 \\
X_{21} & X_{22}
\end{array}\right) \text { on } E H \oplus(1-E) H \text { and }\left\|X_{11}\right\| \leq 1
$$

Then

$$
X^{*} E X=\left(\begin{array}{cc}
X_{11} & 0 \\
0 & 0
\end{array}\right) \leq\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)=E .
$$

Consequently we have the following:
Theorem 13. Let E be a projection. Then
(1) A positive operator X belongs to \mathcal{F}_{E} if and only if $X=X_{1} \oplus X_{2}$ on $E H \oplus$ $(1-E) H$ and $X_{1} \leq 1$.
(2) A projection F belongs to \mathcal{F}_{E} if and only if F commutes with E.
(3) A projection F satisfies $F E F=E$ if and only if $F \leq E$.

Proof. (1) follows from the preceding lemma, and (2) does from (1). For (3), first suppose that a projection F satisfies $F E F$. Then F commutes with E by (2), so that $F E=F E F=E$. The converse is clear.

Acknowledgment. The authors would like to express their thanks to Professor J.

Tomiyama for his valuable comment on Theorem 7 and to Professor H.Kosaki who informed that Schmitt's paper [9] is related to our discussion.

References

[1] W. N. Anderson, Jr. and G. E. Trapp, Operator means and electrical networks, Proc. 1980 IEEE International Symposium on Circuits and systems, 1980, 523-527.
[2] T. Ando, Topics on Operator Inequalities, Lecture Note, Sapporo, 1978.
[3] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17(1966), 413-415.
[4] J. I. Fujii and M. Fujii, Some remarks on operator means, Math. Japon., 24(1979), 335-339.
[5] S. Izumino and M. Nakamura, Wigner's weakly positive operators, Sci. Math. Japon., 65(2007), 61-67.
[6] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246(1980), 205-224.
[7] R. Nakamoto, On the operator equation $T H T=K$, Math. Japon., 24(1973), 251-252.
[8] G. K. Pedersen and M. Takesaki, The operator equation $T H T=K$, Proc. Amer. Math. Soc., 36(1972), 311-312.
[9] L. M. Schmitt, The Radon-Nikodym theorem for L^{p}-sapces of W^{*}-algebras, Publ. RIMS, Kyoto Univ., 22(1986), 1025-1034.
[10] Ju. L. Šmul'jan, An operator Hellinger integral, Mat. Sb., 91(1959), 381-430. (English translation: A Hellinger operator integral, Amer. Math. Soc. Translations, Ser. 2, 22(1962), 289-338.)
[11] G. E. Trapp, Hermitian semidefinite matrix means and related matrix inequalities An introduction, Linear Multilinear Alg., 16(1984), 113-123.
[12] E. P. Wigner, On weakly positive operators, Canadian J. Math., 15(1965), 313-317.

