KYUNGPOOK Math. J. 49(2009), 473-481

Entire Functions and Their Derivatives Share Two Finite Sets

Chao Meng*

Department of Mathematics, Shandong University, Jinan 250100, P. R. China e-mail: mengchaosdu@yahoo.com.cn and mengchao@mail.sdu.edu.cn

Pei-Chu Hu

Department of Mathematics, Shandong University, Jinan 250100, P. R. China e-mail: pchu@sdu.edu.cn

ABSTRACT. In this paper, we study the uniqueness of entire functions and prove the following theorem. Let $n(\geq 5)$, k be positive integers, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a_1, a_2, \dots, a_m\}$, where a_1, a_2, \dots, a_m are distinct nonzero constants. If two non-constant entire functions f and g satisfy $E_f(S_1, 2) = E_g(S_1, 2)$ and $E_{f^{(k)}}(S_2, \infty) = E_{g^{(k)}}(S_2, \infty)$, then one of the following cases must occur: (1) f = tg, $\{a_1, a_2, \dots, a_m\} = t\{a_1, a_2, \dots, a_m\}$, where t is a constant satisfying $t^n = 1$; (2) $f(z) = de^{cz}$, $g(z) = \frac{t}{d}e^{-cz}$, $\{a_1, a_2, \dots, a_m\} = (-1)^k c^{2k} t\{\frac{1}{a_1}, \dots, \frac{1}{a_m}\}$, where t, c, d are nonzero constants and $t^n = 1$. The results in this paper improve the result given by Fang (M.L. Fang, Entire functions and their derivatives share two finite sets, Bull. Malaysian Math. Sc. Soc. 24(2001), 7-16).

1. Introduction, definitions and results

Let f and g be two nonconstant meromorphic functions defined in the open complex plane C. If for some $a \in C \cup \{\infty\}$, f and g have the same set of a-points with the same multiplicities then we say that f and g share the value a CM (counting multiplicities). If we do not take the multiplicities into account, f and g are said to share the value a IM (ignoring multiplicities). We assume that the reader is familiar with the notations of Nevanlinna theory that can be found, for instance, in [5] or [9].

Let S be a set of distinct elements of $C \cup \{\infty\}$ and $E_f(S) = \bigcup_{a \in S} \{z : f(z) - a = 0\}$, where each zero is counted according to its multiplicity. If we do not count the multiplicity the set $\bigcup_{a \in S} \{z : f(z) - a = 0\}$ is denoted by $\overline{E}_f(S)$. If $E_f(S) = E_g(S)$ we say that f and g share the set S CM. On the other hand, if $\overline{E}_f(S) = \overline{E}_g(S)$, we say that f and g share the set S IM. Let m be a positive integer or infinity and $a \in C \cup \{\infty\}$. We denote by $E_m(a, f)$ the set of all a-points of f with multiplicities not exceeding m, where an a-point is counted according to its multiplicity. For a

^{*} Corresponding author.

Received March 23, 2008; accepted May 16, 2008.

²⁰⁰⁰ Mathematics Subject Classification: 30D35.

Key words and phrases: entire function, share set, uniqueness.

⁴⁷³

set S of distinct elements of C we define $E_m(S, f) = \bigcup_{a \in S} E_m(a, f)$. If for some $a \in C \cup \{\infty\}, E_{\infty}(a, f) = E_{\infty}(a, g)$, we say that f and g share the value a CM. We can define $\overline{E}_m(a, f)$ and $\overline{E}_m(S, f)$ similarly.

In 1977, Gross [4] posed the following question.

Question. Can one find two finite sets $S_j(j = 1, 2)$ such that any two nonconstant entire functions f and g satisfying $E_f(S_j) = E_g(S_j)$ for j = 1, 2 must be identical?

Yi [10] gave a positive answer to the question. He proved.

Theorem A([10]). Let f and g be two nonconstant entire functions, $n \ge 5$ a positive integer, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a\}$, where $a \ne 0$ is a constant satisfying $a^{2n} \ne 1$. If $E_f(S_j) = E_g(S_j)$ for j = 1, 2, then $f \equiv g$.

In 2001, Fang [3] investigated the question and proved the following theorems.

Theorem B([3]). Let f and g be two nonconstant entire functions, $n \ge 5$, k two positive integers, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a, b, c\}$, where a, b, c are nonzero finite distinct constants satisfying $a^2 \ne bc$, $b^2 \ne ac$, $c^2 \ne ab$. If $E_f(S_1) = E_g(S_1)$ and $E_{f^{(k)}}(S_2) = E_{q^{(k)}}(S_2)$, then $f \equiv g$.

Theorem C([3]). Let f and g be two nonconstant entire functions, $n \ge 5$, k two positive integers, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a, b\}$, where a, b are two nonzero finite distinct constants. If $E_f(S_1) = E_g(S_1)$ and $E_{f^{(k)}}(S_2) = E_{g^{(k)}}(S_2)$, then one of the following cases must occur: (1) $f \equiv g$; (2) b = -a, $f = e^{cz+d}$, $g = te^{-cz-d}$, where c, d, t are three constants satisfying $t^n = 1$ and $(-1)^k tc^{2k} = a^2$; (3) $f = e^{cz+d}$, $g = te^{-cz-d}$, where c, d, t are three constants satisfying $t^n = 1$ and $(-1)^k tc^{2k} = ab$; (4) b = -a, $f \equiv -g$.

Theorem D([3]). Let f and g be two nonconstant entire functions, $n \ge 5$, k two positive integers, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a\}$, where $a \ne 0, \infty$. If $E_f(S_1) = E_g(S_1)$ and $E_{f^{(k)}}(S_2) = E_{g^{(k)}}(S_2)$, then one of the following cases must occur: (1) $f \equiv g$; (2) $f = e^{cz+d}$, $g = te^{-cz-d}$, where c, d, t are three constants satisfying $t^n = 1$ and $(-1)^k tc^{2k} = a^2$.

In this paper, we consider the more general sets $S_1 = \{z : z^n = 1\}$, $S_2 = \{a_1, a_2, \dots, a_m\}$, where a_1, a_2, \dots, a_m are distinct nonzero constants. To state the main results of this paper, we require the following notion of weighted sharing which was introduced by I. Lahiri [6], [7].

Definition 1([6]). For a complex number $a \in C \cup \{\infty\}$, we denote by $E_k(a, f)$ the set of all *a*-points of f where an *a*-point with mutiplicity m is counted m times if $m \leq k$ and k + 1 times if m > k. For a complex number $a \in C \cup \{\infty\}$, such that $E_k(a, f) = E_k(a, g)$, then we say that f and g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z_0 is a zero of f - a with multiplicity $m (\leq k)$ if and only if it is a zero of g - a with multiplicity

 $m(\leq k)$ and z_0 is a zero of f - a with multiplicity m(>k) if and only if it is a zero of g - a with multiplicity n(>k), where m is not necessarily equal to n. We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integer $p, 0 \leq p < k$. Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a, ∞) respectively.

Definition 2([6]). Let S be a set of distinct elements of $C \cup \{\infty\}$ and k a nonnegative integer or ∞ . We denote by $E_f(S,k)$ the set $\bigcup_{a \in S} E_k(a, f)$. Clearly $E_f(S) = E_f(S, \infty)$ and $\overline{E}_f(S) = E_f(S, 0)$.

With the notion of weighted sharing of sets we prove the following results which improve Theorem B, Theorem C and Theorem D.

Theorem 1. Let $n(\geq 5)$, k be positive integers, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a_1, a_2, \cdots, a_m\}$, where a_1, a_2, \cdots, a_m are distinct nonzero constants. If two nonconstant entire functions f and g satisfy $E_f(S_1, 2) = E_g(S_1, 2)$ and $E_{f^{(k)}}(S_2, \infty) = E_{g^{(k)}}(S_2, \infty)$, then one of the following cases must occur: (1) f = tg, $\{a_1, a_2, \cdots, a_m\} = t\{a_1, a_2, \cdots, a_m\}$, where t is a constant satisfying $t^n = 1$; (2) $f(z) = de^{cz}$, $g(z) = \frac{t}{d}e^{-cz}$, $\{a_1, a_2, \cdots, a_m\} = (-1)^k c^{2k} t\{\frac{1}{a_1}, \cdots, \frac{1}{a_m}\}$, where t, c, d are nonzero constants and $t^n = 1$.

Theorem 2. Let $n(\geq 5)$, k be positive integers, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a_1, a_2, \cdots, a_m\}$, where a_1, a_2, \cdots, a_m are distinct nonzero constants. If two nonconstant entire functions f and g satisfy $E_f(S_1, 1) = E_g(S_1, 1)$ and $E_{f^{(k)}}(S_2, \infty) = E_{g^{(k)}}(S_2, \infty)$, then one of the following cases must occur: (1) f = tg, $\{a_1, a_2, \cdots, a_m\} = t\{a_1, a_2, \cdots, a_m\}$, where t is a constant satisfying $t^n = 1$; (2) $f(z) = de^{cz}, g(z) = \frac{t}{d}e^{-cz}, \{a_1, a_2, \cdots, a_m\} = (-1)^k c^{2k} t\{\frac{1}{a_1}, \cdots, \frac{1}{a_m}\}$, where t, c, d are nonzero constants and $t^n = 1$.

Theorem 3. Let $n(\geq 8)$, k be positive integers, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a_1, a_2, \cdots, a_m\}$, where a_1, a_2, \cdots, a_m are distinct nonzero constants. If two nonconstant entire functions f and g satisfy $E_f(S_1, 0) = E_g(S_1, 0)$ and $E_{f^{(k)}}(S_2, \infty) = E_{g^{(k)}}(S_2, \infty)$, then one of the following cases must occur: (1) f = tg, $\{a_1, a_2, \cdots, a_m\} = t\{a_1, a_2, \cdots, a_m\}$, where t is a constant satisfying $t^n = 1$; (2) $f(z) = de^{cz}$, $g(z) = \frac{t}{d}e^{-cz}$, $\{a_1, a_2, \cdots, a_m\} = (-1)^k c^{2k} t\{\frac{1}{a_1}, \cdots, \frac{1}{a_m}\}$, where t, c, d are nonzero constants and $t^n = 1$.

Without the notion of weighted sharing of sets we prove the following theorem which also improves Theorem B, Theorem C and Theorem D.

Theorem 4. Let $n(\geq 5)$, k be positive integers, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a_1, a_2, \cdots, a_m\}$, where a_1, a_2, \cdots, a_m are distinct nonzero constants. If two nonconstant entire functions f and g satisfy $\overline{E}_{4}(S_1, f) = \overline{E}_{4}(S_1, g)$, $E_{2}(S_1, f) = E_{2}(S_1, g)$ and $E_{f^{(k)}}(S_2, \infty) = E_{g^{(k)}}(S_2, \infty)$, then one of the following cases must occur: (1) f = tg, $\{a_1, a_2, \cdots, a_m\} = t\{a_1, a_2, \cdots, a_m\}$, where t is a con-

stant satisfying $t^n = 1$; (2) $f(z) = de^{cz}$, $g(z) = \frac{t}{d}e^{-cz}$, $\{a_1, a_2, \cdots, a_m\} = (-1)^k c^{2k} t\{\frac{1}{a_1}, \cdots, \frac{1}{a_m}\}$, where t, c, d are nonzero constants and $t^n = 1$.

2. Some lemmas

In this section, we present some lemmas which will be needed in the sequel. We will denote by H the following function:

$$H = \left(\frac{F''}{F'} - \frac{2F'}{F-1}\right) - \left(\frac{G''}{G'} - \frac{2G'}{G-1}\right) \,.$$

Lemma 1([8]). Let f be a nonconstant meromorphic function, and let $a_0, a_1, a_2, \dots, a_n$ be finite complex numbers, $a_n \neq 0$. Then

$$T(r, a_n f^n + \dots + a_2 f^2 + a_1 f + a_0) = nT(r, f) + S(r, f).$$

Lemma 2([7]). Let H be defined as above. If F and G share (1,2) and $H \neq 0$, then

$$T(r,F) \le N_2(r,\frac{1}{F}) + N_2(r,\frac{1}{G}) + N_2(r,F) + N_2(r,G) + S(r,F) + S(r,G),$$

the same inequality holds for T(r, G).

Lemma 3([2]). Let H be defined as above. If F and G share (1,1) and $H \neq 0$, then

$$T(r,F) \le N_2(r,\frac{1}{F}) + N_2(r,F) + N_2(r,\frac{1}{G}) + N_2(r,G) + \frac{1}{2}\overline{N}(r,\frac{1}{F}) + \frac{1}{2}\overline{N}(r,F) + S(r,F) + S(r,G),$$

the same inequality holds for T(r, G).

Lemma 4([11]). Let H be defined as above. If $H \equiv 0$ and

$$\limsup_{r \to \infty} \frac{\overline{N}(r, \frac{1}{F}) + \overline{N}(r, \frac{1}{G}) + \overline{N}(r, F) + \overline{N}(r, G)}{T(r)} < 1 \,, r \in I,$$

where I is a set with infinite linear measure and $T(r) = \max\{T(r, F), T(r, G)\}$, then $FG \equiv 1$ or $F \equiv G$.

Lemma 5([2]). Let F, G be two nonconstant meromorphic functions such that

they share (1,0), and $H \not\equiv 0$. Then

$$T(r,F) \le N_2(r,\frac{1}{F}) + N_2(r,F) + N_2(r,\frac{1}{G}) + N_2(r,G) + 2\overline{N}(r,\frac{1}{F}) + 2\overline{N}(r,F) + \overline{N}(r,\frac{1}{G}) + \overline{N}(r,G) + S(r,F) + S(r,G),$$

the same inequality holds for T(r, G).

Lemma 6([1]). Let F, G be two nonconstant meromorphic functions such that $\overline{E}_{4)}(1,F) = \overline{E}_{4)}(1,G)$ and $E_{2)}(1,F) = E_{2)}(1,G)$, then one of the following cases holds $(1)T(r,F)+T(r,G) \leq 2\{N_2(r,\frac{1}{F})+N_2(r,\frac{1}{G})+N_2(r,F)+N_2(r,G)\}+S(r,F)+S(r,G)$; $(2)F \equiv G$; $(3)FG \equiv 1$.

Lemma 7([5]). Let f be a nonconstant meromorphic function, n be a positive integer, and let Ψ be a function of the form $\Psi = f^n + Q$, where Q is a differential polynomial of f with degree $\leq n - 1$. If

$$N(r, f) + N\left(r, \frac{1}{\Psi}\right) = S(r, f),$$

then $\Psi = (f + \alpha)^n$, where α is a meromorphic function with $T(r, \alpha) = S(r, f)$, determined by the term of degree n - 1 in Q.

3. Proof of theorem 1

Set $F = f^n$, $G = g^n$. From $E_f(S_1, 2) = E_g(S_1, 2)$, we deduce F and G share (1, 2). By Lemma 1, we have

(1)
$$T(r,F) = nT(r,f) + S(r,f), \quad T(r,G) = nT(r,g) + S(r,g).$$

Assume $H \not\equiv 0$. By Lemma 2, we have

(2)
$$T(r,F) = nT(r,f) + S(r,f)$$
$$\leq N_2(r,\frac{1}{F}) + N_2(r,\frac{1}{G}) + S(r,F) + S(r,G)$$
$$\leq 2T(r,f) + 2T(r,g) + S(r,f) + S(r,g) .$$

Similarly, we have

(3)
$$T(r,G) = nT(r,g) + S(r,f)$$
$$\leq N_2(r,\frac{1}{F}) + N_2(r,\frac{1}{G}) + S(r,F) + S(r,G)$$
$$\leq 2T(r,f) + 2T(r,g) + S(r,f) + S(r,g).$$

Combining (2) and (3) together we have

(4)
$$(n-4)T(r,f) + (n-4)T(r,g) \le S(r,f) + S(r,g),$$

which contradicts $n \ge 5$. Thus $H \equiv 0$. By Lemma 4, we have $FG \equiv 1$ or $F \equiv G$, that is f = tg or fg = t where t is a constant and $t^n = 1$. Next we consider the following two cases:

Case 1. f = tg. Then $f^{(k)} = tg^{(k)}$. By $E_{f^{(k)}}(S_2, \infty) = E_{g^{(k)}}(S_2, \infty)$, we get $\{a_1, a_2, \cdots, a_m\} = t\{a_1, a_2, \cdots, a_m\}$.

Case 2. fg = t. Then there exists an entire function h such that $f = e^h$ and $g = te^{-h}$. Therefore

(5)
$$f^{(i)} = \alpha_i f, g^{(i)} = \beta_i g, i = 1, 2, \cdots,$$

where $\alpha_1 = h'$, $\beta_1 = -h'$, and α_i , β_i satisfy the following recurrence formulas, respectively.

(6)
$$\alpha_{i+1} = \alpha'_i + \alpha_i^2, \beta_{i+1} = \beta'_i + \beta_i^2, i = 1, 2, \cdots,$$

Without loss of the generality, we assume that a_1 is not an exceptional value of $f^{(k)}$. Suppose $f^{(k)}(z_0) = a_1$. Then $\frac{t}{a_1} \alpha_k(z_0) \beta_k(z_0) = g^{(k)}(z_0) \in S_2$. Therefore,

(7)
$$\prod_{j=1}^{m} \left(\frac{t}{a_1} \alpha_k(z_0) \beta_k(z_0) - a_j\right) = 0$$

Note that $\overline{N}(r, 1/(f^{(k)} - a_1)) \neq S(r, f)$. We get

(8)
$$\prod_{j=1}^{m} \left(\frac{t}{a_1} \alpha_k \beta_k - a_j\right) = 0,$$

which implies that $\alpha_k \beta_k$ is a nonzero constant. And thus α_k and β_k have no zeros. The recurrence formulas in (6) show that

(9)
$$\alpha_k = \alpha_1^k + P(\alpha_1), \beta_k = \beta_1^k + Q(\beta_1),$$

where $P(\alpha_1)$ is a differential polynomial in α_1 of degree k - 1, and $Q(\beta_1)$ is a differential polynomial in β_1 of degree k - 1. If α_1 and β_1 are not constants, then by Lemma 7, we have

(10)
$$\alpha_k = \left(\alpha_1 + \frac{\gamma_1}{k}\right)^k, \beta_k = \left(\beta_1 + \frac{\gamma_2}{k}\right)^k,$$

where γ_1 , γ_2 are small functions of α_1 and β_1 , respectively. Note that $\alpha_1 = -\beta_1 = h'$. We conclude that $\alpha_k \beta_k$ can not be constant, which is a contradiction. Hence one of α_1 and β_1 is constant. Thus h is a linear function. Therefore, $f(z) = de^{cz}$ and $g(z) = \frac{t}{d}e^{-cz}$, where c, d are nonzero constants. Now from $E_{f^{(k)}}(S_2, \infty) =$

 $E_{g^{(k)}}(S_2,\infty)$, we get $\{a_1,a_2,\cdots,a_m\} = (-1)^k c^{2k} t\{\frac{1}{a_1},\cdots,\frac{1}{a_m}\}$, which completes the proof of Theorem 1.

4. Proof of theorem 2

Set $F = f^n$, $G = g^n$. From $E_f(S_1, 1) = E_g(S_1, 1)$, we deduce F and G share (1, 1). By Lemma 1, we have

(11)
$$T(r,F) = nT(r,f) + S(r,f), \quad T(r,G) = nT(r,g) + S(r,g).$$

Assume $H \not\equiv 0$. By Lemma 3, we have

(12)
$$T(r,F) = nT(r,f) + S(r,f)$$

$$\leq N_2(r,\frac{1}{F}) + N_2(r,\frac{1}{G}) + \frac{1}{2}\overline{N}(r,\frac{1}{F}) + S(r,F) + S(r,G)$$

$$\leq \frac{5}{2}T(r,f) + 2T(r,g) + S(r,f) + S(r,g).$$

Similarly, we have

(13)
$$T(r,G) = nT(r,g) + S(r,g)$$

$$\leq N_2(r,\frac{1}{F}) + N_2(r,\frac{1}{G}) + \frac{1}{2}\overline{N}(r,\frac{1}{G}) + S(r,F) + S(r,G)$$

$$\leq 2T(r,f) + \frac{5}{2}T(r,g) + S(r,f) + S(r,g).$$

Combining (12) and (13) together we have

(14)
$$(n - \frac{9}{2})T(r, f) + (n - \frac{9}{2})T(r, g) \le S(r, f) + S(r, g)$$

which contradicts $n \ge 5$. Thus $H \equiv 0$. By Lemma 4, we have $FG \equiv 1$ or $F \equiv G$, that is f = tg or fg = t where t is a constant and $t^n = 1$. Proceeding as in the proof of Theorem 1, we get the conclusion of Theorem 2. This completes the proof of Theorem 2.

5. Proof of theorem 3

Set $F = f^n$, $G = g^n$. From $E_f(S_1, 0) = E_g(S_1, 0)$, we deduce F and G share (1,0). By Lemma 1, we have

(15)
$$T(r,F) = nT(r,f) + S(r,f), \quad T(r,G) = nT(r,g) + S(r,g).$$

Assume $H \not\equiv 0$. By Lemma 5, we have

(16)
$$T(r,F) = nT(r,f) + S(r,f)$$

$$\leq N_2(r,\frac{1}{F}) + N_2(r,\frac{1}{G}) + 2\overline{N}(r,\frac{1}{F}) + \overline{N}(r,\frac{1}{G}) + S(r,F) + S(r,G)$$

$$\leq 4T(r,f) + 3T(r,g) + S(r,f) + S(r,g).$$

Similarly, we have

(17)
$$T(r,G) = nT(r,g) + S(r,g) \\ \leq 3T(r,f) + 4T(r,g) + S(r,f) + S(r,g) \,.$$

Combining (16) and (17) together we have

(18)
$$(n-7)T(r,f) + (n-7)T(r,g) \le S(r,f) + S(r,g),$$

which contradicts $n \ge 8$. Thus $H \equiv 0$. By Lemma 4, we have $FG \equiv 1$ or $F \equiv G$, that is f = tg or fg = t where t is a constant and $t^n = 1$. Proceeding as in the proof of Theorem 1, we get the conclusion of Theorem 3. This completes the proof of Theorem 3.

6. Proof of theorem 4

Set $F = f^n$, $G = g^n$. By Lemma 1, we have

(19)
$$T(r,F) = nT(r,f) + S(r,f), \quad T(r,G) = nT(r,g) + S(r,g).$$

From $\overline{E}_{4)}(S_1, f) = \overline{E}_{4)}(S_1, g)$, $E_{2)}(S_1, f) = E_{2)}(S_1, g)$, we deduce $\overline{E}_{4)}(1, F) = \overline{E}_{4)}(1, G)$, $E_{2)}(1, F) = E_{2)}(1, G)$. Then F and G satisfy the condition of Lemma 6. We assume Case (1) in Lemma 6 holds, that is,

(20)
$$T(r,F) + T(r,G) \le 2\{N_2(r,\frac{1}{F}) + N_2(r,\frac{1}{G})\} + S(r,F) + S(r,G) \le 4T(r,f) + 4T(r,g) + S(r,f) + S(r,g).$$

Combining (19) and (20) together we have

(21)
$$(n-4)T(r,f) + (n-4)T(r,g) \le S(r,f) + S(r,g),$$

which contradicts $n \ge 5$. Thus by Lemma 6, we get $F \equiv G$ or $FG \equiv 1$, that is, f = tg or fg = t where t is a constant and $t^n = 1$. Proceeding as in the proof of Theorem 1, we get the conclusion of Theorem 4. This completes the proof of Theorem 4.

References

- A. Banerjee, On uniqueness of meromorphic functions when two differential monomials share one value, Bull. Korean Math. Soc., 44(2007), 607-622.
- [2] A. Banerjee, Meromorphic functions sharing one value, Int. J. Math. Math. Sci., 22(2005), 3587-3598.
- [3] M. L. Fang, Entire functions and their derivatives share two finite sets, Bull. Malaysian Math. Sc. Soc., 24(2001), 7-16.
- [4] F. Gross, Factorization of meromorphic functions and some open problems, Lecture Notes in Math. 599, Springer, Berlin, 1977.
- [5] W. K. Hayman, Meromorphic Functions, Clarendon, Oxford, 1964.
- [6] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161(2001), 193-206.
- [7] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Variables Theory Appl., 46(2001), 241-253.
- [8] C. C. Yang, On deficiencies of differential polynomials, Math. Z., 125(1972), 107-112.
- [9] L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993.
- [10] H. X. Yi, On the uniqueness of meromorphic functions and a problem of Gross, Science in China, 24(1994), 457-466.
- [11] H. X. Yi, Meromorphic functions that share one or two values, Complex Variables Theory Appl., 28(1995), 1-11.