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Abstract. In this paper, we study the uniqueness of entire functions and prove the

following theorem. Let n(≥ 5), k be positive integers, and let S1 = {z : zn = 1},
S2 = {a1, a2, · · · , am}, where a1, a2, · · · , am are distinct nonzero constants. If two non-

constant entire functions f and g satisfy Ef (S1, 2) = Eg(S1, 2) and Ef(k)(S2,∞) =

Eg(k)(S2,∞), then one of the following cases must occur: (1) f = tg, {a1, a2, · · · , am} =

t{a1, a2, · · · , am}, where t is a constant satisfying tn = 1; (2) f(z) = decz, g(z) = t
d
e−cz,

{a1, a2, · · · , am} = (−1)kc2kt{ 1
a1

, · · · , 1
am
}, where t, c, d are nonzero constants and tn = 1.

The results in this paper improve the result given by Fang (M.L. Fang, Entire functions

and their derivatives share two finite sets, Bull. Malaysian Math. Sc. Soc. 24(2001),

7-16).

1. Introduction, definitions and results

Let f and g be two nonconstant meromorphic functions defined in the open
complex plane C. If for some a ∈ C ∪ {∞}, f and g have the same set of a-points
with the same multiplicities then we say that f and g share the value a CM (count-
ing multiplicities). If we do not take the multiplicities into account, f and g are
said to share the value a IM (ignoring multiplicities). We assume that the reader
is familiar with the notations of Nevanlinna theory that can be found, for instance,
in [5] or [9].

Let S be a set of distinct elements of C∪{∞} and Ef (S) = ∪a∈S{z : f(z)−a =
0}, where each zero is counted according to its multiplicity. If we do not count the
multiplicity the set ∪a∈S{z : f(z)− a = 0} is denoted by Ef (S). If Ef (S) = Eg(S)
we say that f and g share the set S CM. On the other hand, if Ef (S) = Eg(S),
we say that f and g share the set S IM. Let m be a positive integer or infinity and
a ∈ C ∪{∞}. We denote by Em)(a, f) the set of all a-points of f with multiplicities
not exceeding m, where an a-point is counted according to its multiplicity. For a
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set S of distinct elements of C we define Em)(S, f) = ∪a∈SEm)(a, f). If for some
a ∈ C ∪ {∞}, E∞)(a, f) = E∞)(a, g), we say that f and g share the value a CM.

We can define Em)(a, f) and Em)(S, f) similarly.

In 1977, Gross [4]posed the following question.

Question. Can one find two finite sets Sj(j = 1, 2) such that any two non-
constant entire functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be
identical ?

Yi [10] gave a positive answer to the question. He proved.

Theorem A([10]). Let f and g be two nonconstant entire functions, n ≥ 5 a
positive integer, and let S1 = {z : zn = 1}, S2 = {a}, where a 6= 0 is a constant
satisfying a2n 6= 1. If Ef (Sj) = Eg(Sj) for j = 1, 2, then f ≡ g.

In 2001, Fang [3] investigated the question and proved the following theorems.

Theorem B([3]). Let f and g be two nonconstant entire functions, n ≥ 5, k two
positive integers, and let S1 = {z : zn = 1}, S2 = {a, b, c}, where a, b, c are nonzero
finite distinct constants satisfying a2 6= bc, b2 6= ac, c2 6= ab. If Ef (S1) = Eg(S1)
and Ef(k)(S2) = Eg(k)(S2), then f ≡ g.

Theorem C([3]). Let f and g be two nonconstant entire functions, n ≥ 5, k
two positive integers, and let S1 = {z : zn = 1}, S2 = {a, b}, where a, b are two
nonzero finite distinct constants. If Ef (S1) = Eg(S1) and Ef(k)(S2) = Eg(k)(S2),

then one of the following cases must occur: (1) f ≡ g; (2) b = −a, f = ecz+d,
g = te−cz−d, where c, d, t are three constants satisfying tn = 1 and (−1)ktc2k = a2;
(3) f = ecz+d, g = te−cz−d, where c, d, t are three constants satisfying tn = 1 and
(−1)ktc2k = ab; (4) b = −a, f ≡ −g.

Theorem D([3]). Let f and g be two nonconstant entire functions, n ≥ 5, k
two positive integers, and let S1 = {z : zn = 1}, S2 = {a}, where a 6= 0,∞. If
Ef (S1) = Eg(S1) and Ef(k)(S2) = Eg(k)(S2), then one of the following cases must

occur: (1) f ≡ g; (2) f = ecz+d, g = te−cz−d, where c, d, t are three constants
satisfying tn = 1 and (−1)ktc2k = a2.

In this paper, we consider the more general sets S1 = {z : zn = 1}, S2 =
{a1, a2, · · · , am}, where a1, a2, · · · , am are distinct nonzero constants. To state the
main results of this paper, we require the following notion of weighted sharing which
was introduced by I. Lahiri [6], [7].

Definition 1([6]). For a complex number a ∈ C ∪{∞}, we denote by Ek(a, f) the
set of all a-points of f where an a-point with mutiplicity m is counted m times if
m ≤ k and k + 1 times if m > k. For a complex number a ∈ C ∪ {∞}, such that
Ek(a, f) = Ek(a, g), then we say that f and g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is a zero
of f −a with multiplicity m(≤ k) if and only if it is a zero of g−a with multiplicity
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m(≤ k) and z0 is a zero of f − a with multiplicity m(> k) if and only if it is a zero
of g − a with multiplicity n(> k), where m is not necessarily equal to n. We write
f , g share (a, k) to mean that f , g share the value a with weight k. Clearly if f , g
share (a, k) then f , g share (a, p) for all integer p, 0 ≤ p < k. Also we note that f ,
g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞) respectively.

Definition 2([6]). Let S be a set of distinct elements of C ∪ {∞} and k a non-
negative integer or ∞. We denote by Ef (S, k) the set ∪a∈SEk(a, f). Clearly
Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

With the notion of weighted sharing of sets we prove the following results which
improve Theorem B, Theorem C and Theorem D.

Theorem 1. Let n(≥ 5), k be positive integers, and let S1 = {z : zn = 1},
S2 = {a1, a2, · · · , am}, where a1, a2, · · · , am are distinct nonzero constants. If
two nonconstant entire functions f and g satisfy Ef (S1, 2) = Eg(S1, 2) and
Ef(k)(S2,∞) = Eg(k)(S2,∞), then one of the following cases must occur: (1) f = tg,
{a1, a2, · · · , am} = t{a1, a2, · · · , am}, where t is a constant satisfying tn = 1; (2)

f(z) = decz, g(z) =
t

d
e−cz, {a1, a2, · · · , am} = (−1)kc2kt{ 1

a1
, · · · , 1

am
}, where t, c,

d are nonzero constants and tn = 1.

Theorem 2. Let n(≥ 5), k be positive integers, and let S1 = {z : zn = 1},
S2 = {a1, a2, · · · , am}, where a1, a2, · · · , am are distinct nonzero constants. If
two nonconstant entire functions f and g satisfy Ef (S1, 1) = Eg(S1, 1) and
Ef(k)(S2,∞) = Eg(k)(S2,∞), then one of the following cases must occur: (1) f = tg,
{a1, a2, · · · , am} = t{a1, a2, · · · , am}, where t is a constant satisfying tn = 1; (2)

f(z) = decz, g(z) =
t

d
e−cz, {a1, a2, · · · , am} = (−1)kc2kt{ 1

a1
, · · · , 1

am
}, where t, c,

d are nonzero constants and tn = 1.

Theorem 3. Let n(≥ 8), k be positive integers, and let S1 = {z : zn = 1},
S2 = {a1, a2, · · · , am}, where a1, a2, · · · , am are distinct nonzero constants. If
two nonconstant entire functions f and g satisfy Ef (S1, 0) = Eg(S1, 0) and
Ef(k)(S2,∞) = Eg(k)(S2,∞), then one of the following cases must occur: (1) f = tg,
{a1, a2, · · · , am} = t{a1, a2, · · · , am}, where t is a constant satisfying tn = 1; (2)

f(z) = decz, g(z) =
t

d
e−cz, {a1, a2, · · · , am} = (−1)kc2kt{ 1

a1
, · · · , 1

am
}, where t, c,

d are nonzero constants and tn = 1.

Without the notion of weighted sharing of sets we prove the following theorem
which also improves Theorem B, Theorem C and Theorem D.

Theorem 4. Let n(≥ 5), k be positive integers, and let S1 = {z : zn = 1},
S2 = {a1, a2, · · · , am}, where a1, a2, · · · , am are distinct nonzero constants. If two
nonconstant entire functions f and g satisfy E4)(S1, f) = E4)(S1, g), E2)(S1, f) =
E2)(S1, g) and Ef(k)(S2,∞) = Eg(k)(S2,∞), then one of the following cases must
occur: (1) f = tg, {a1, a2, · · · , am} = t{a1, a2, · · · , am}, where t is a con-
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stant satisfying tn = 1; (2) f(z) = decz, g(z) =
t

d
e−cz, {a1, a2, · · · , am} =

(−1)kc2kt{ 1

a1
, · · · , 1

am
}, where t, c, d are nonzero constants and tn = 1.

2. Some lemmas

In this section, we present some lemmas which will be needed in the sequel. We
will denote by H the following function:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
.

Lemma 1([8]). Let f be a nonconstant meromorphic function, and let a0, a1, a2, · · · , an
be finite complex numbers, an 6= 0. Then

T (r, anf
n + · · ·+ a2f

2 + a1f + a0) = nT (r, f) + S(r, f) .

Lemma 2([7]). Let H be defined as above. If F and G share (1, 2) and H 6≡ 0,
then

T (r, F ) ≤ N2(r,
1

F
) +N2(r,

1

G
) +N2(r, F ) +N2(r,G) + S(r, F ) + S(r,G) ,

the same inequality holds for T (r,G).

Lemma 3([2]). Let H be defined as above. If F and G share (1, 1) and H 6≡ 0,
then

T (r, F ) ≤ N2(r,
1

F
) +N2(r, F ) +N2(r,

1

G
) +N2(r,G)

+
1

2
N(r,

1

F
) +

1

2
N(r, F ) + S(r, F ) + S(r,G) ,

the same inequality holds for T (r,G).

Lemma 4([11]). Let H be defined as above. If H ≡ 0 and

lim sup
r→∞

N(r,
1

F
) +N(r,

1

G
) +N(r, F ) +N(r,G)

T (r)
< 1 , r ∈ I,

where I is a set with infinite linear measure and T (r) = max{T (r, F ), T (r,G)},
then FG ≡ 1 or F ≡ G.

Lemma 5([2]). Let F , G be two nonconstant meromorphic functions such that
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they share (1, 0), and H 6≡ 0. Then

T (r, F ) ≤ N2(r,
1

F
) +N2(r, F ) +N2(r,

1

G
) +N2(r,G) + 2N(r,

1

F
) + 2N(r, F )

+N(r,
1

G
) +N(r,G) + S(r, F ) + S(r,G) ,

the same inequality holds for T (r,G).

Lemma 6([1]). Let F , G be two nonconstant meromorphic functions such that
E4)(1, F ) = E4)(1, G) and E2)(1, F ) = E2)(1, G), then one of the following cases

holds (1)T (r, F )+T (r,G) ≤ 2{N2(r,
1

F
)+N2(r,

1

G
)+N2(r, F )+N2(r,G)}+S(r, F )+

S(r,G) ; (2)F ≡ G; (3)FG ≡ 1.

Lemma 7([5]). Let f be a nonconstant meromorphic function, n be a positive
integer, and let Ψ be a function of the form Ψ = fn +Q, where Q is a differential
polynomial of f with degree ≤ n− 1. If

N(r, f) +N

(
r,

1

Ψ

)
= S(r, f) ,

then Ψ = (f + α)n, where α is a meromorphic function with T (r, α) = S(r, f),
determined by the term of degree n− 1 in Q.

3. Proof of theorem 1

Set F = fn, G = gn. From Ef (S1, 2) = Eg(S1, 2), we deduce F and G share
(1, 2). By Lemma 1, we have

T (r, F ) = nT (r, f) + S(r, f), T (r,G) = nT (r, g) + S(r, g) .(1)

Assume H 6≡ 0. By Lemma 2, we have

T (r, F ) = nT (r, f) + S(r, f)(2)

≤ N2(r,
1

F
) +N2(r,

1

G
) + S(r, F ) + S(r,G)

≤ 2T (r, f) + 2T (r, g) + S(r, f) + S(r, g) .

Similarly, we have

T (r,G) = nT (r, g) + S(r, f)(3)

≤ N2(r,
1

F
) +N2(r,

1

G
) + S(r, F ) + S(r,G)

≤ 2T (r, f) + 2T (r, g) + S(r, f) + S(r, g) .

Combining (2) and (3) together we have

(n− 4)T (r, f) + (n− 4)T (r, g) ≤ S(r, f) + S(r, g) ,(4)
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which contradicts n ≥ 5. Thus H ≡ 0. By Lemma 4, we have FG ≡ 1 or F ≡ G,
that is f = tg or fg = t where t is a constant and tn = 1. Next we consider the
following two cases:

Case 1. f = tg. Then f (k) = tg(k). By Ef(k)(S2,∞) = Eg(k)(S2,∞), we get
{a1, a2, · · · , am} = t{a1, a2, · · · , am}.

Case 2. fg = t. Then there exists an entire function h such that f = eh and
g = te−h. Therefore

f (i) = αif, g
(i) = βig, i = 1, 2, · · · ,(5)

where α1 = h′, β1 = −h′, and αi, βi satisfy the following recurrence formulas,
respectively.

αi+1 = α′i + α2
i , βi+1 = β′i + β2

i , i = 1, 2, · · · ,(6)

Without loss of the generality, we assume that a1 is not an exceptional value of

f (k). Suppose f (k)(z0) = a1. Then
t

a1
αk(z0)βk(z0) = g(k)(z0) ∈ S2. Therefore,

m∏
j=1

(
t

a1
αk(z0)βk(z0)− aj) = 0 .(7)

Note that N(r, 1/(f (k) − a1)) 6= S(r, f). We get

m∏
j=1

(
t

a1
αkβk − aj) = 0 ,(8)

which implies that αkβk is a nonzero constant. And thus αk and βk have no zeros.
The recurrence formulas in (6) show that

αk = αk
1 + P (α1), βk = βk

1 +Q(β1) ,(9)

where P (α1) is a differential polynomial in α1 of degree k − 1, and Q(β1) is a
differential polynomial in β1 of degree k − 1. If α1 and β1 are not constants, then
by Lemma 7, we have

αk =
(
α1 +

γ1
k

)k
, βk =

(
β1 +

γ2
k

)k
,(10)

where γ1, γ2 are small functions of α1 and β1, respectively. Note that α1 = −β1 =
h′. We conclude that αkβk can not be constant, which is a contradiction. Hence
one of α1 and β1 is constant. Thus h is a linear function. Therefore, f(z) = decz

and g(z) =
t

d
e−cz, where c, d are nonzero constants. Now from Ef(k)(S2,∞) =
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Eg(k)(S2,∞), we get {a1, a2, · · · , am} = (−1)kc2kt{ 1

a1
, · · · , 1

am
}, which completes

the proof of Theorem 1.

4. Proof of theorem 2

Set F = fn, G = gn. From Ef (S1, 1) = Eg(S1, 1), we deduce F and G share
(1, 1). By Lemma 1, we have

T (r, F ) = nT (r, f) + S(r, f), T (r,G) = nT (r, g) + S(r, g) .(11)

Assume H 6≡ 0. By Lemma 3, we have

T (r, F ) = nT (r, f) + S(r, f)(12)

≤ N2(r,
1

F
) +N2(r,

1

G
) +

1

2
N(r,

1

F
) + S(r, F ) + S(r,G)

≤ 5

2
T (r, f) + 2T (r, g) + S(r, f) + S(r, g) .

Similarly, we have

T (r,G) = nT (r, g) + S(r, g)(13)

≤ N2(r,
1

F
) +N2(r,

1

G
) +

1

2
N(r,

1

G
) + S(r, F ) + S(r,G)

≤ 2T (r, f) +
5

2
T (r, g) + S(r, f) + S(r, g) .

Combining (12) and (13) together we have

(n− 9

2
)T (r, f) + (n− 9

2
)T (r, g) ≤ S(r, f) + S(r, g) ,(14)

which contradicts n ≥ 5. Thus H ≡ 0. By Lemma 4, we have FG ≡ 1 or F ≡ G,
that is f = tg or fg = t where t is a constant and tn = 1. Proceeding as in the
proof of Theorem 1, we get the conclusion of Theorem 2. This completes the proof
of Theorem 2.

5. Proof of theorem 3

Set F = fn, G = gn. From Ef (S1, 0) = Eg(S1, 0), we deduce F and G share
(1, 0). By Lemma 1, we have

T (r, F ) = nT (r, f) + S(r, f), T (r,G) = nT (r, g) + S(r, g) .(15)
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Assume H 6≡ 0. By Lemma 5, we have

T (r, F ) = nT (r, f) + S(r, f)(16)

≤ N2(r,
1

F
) +N2(r,

1

G
) + 2N(r,

1

F
) +N(r,

1

G
) + S(r, F ) + S(r,G)

≤ 4T (r, f) + 3T (r, g) + S(r, f) + S(r, g) .

Similarly, we have

T (r,G) = nT (r, g) + S(r, g)(17)

≤ 3T (r, f) + 4T (r, g) + S(r, f) + S(r, g) .

Combining (16) and (17) together we have

(n− 7)T (r, f) + (n− 7)T (r, g) ≤ S(r, f) + S(r, g) ,(18)

which contradicts n ≥ 8. Thus H ≡ 0. By Lemma 4, we have FG ≡ 1 or F ≡ G,
that is f = tg or fg = t where t is a constant and tn = 1. Proceeding as in the
proof of Theorem 1, we get the conclusion of Theorem 3. This completes the proof
of Theorem 3.

6. Proof of theorem 4

Set F = fn, G = gn. By Lemma 1, we have

T (r, F ) = nT (r, f) + S(r, f), T (r,G) = nT (r, g) + S(r, g) .(19)

From E4)(S1, f) = E4)(S1, g), E2)(S1, f) = E2)(S1, g), we deduce E4)(1, F ) =

E4)(1, G), E2)(1, F ) = E2)(1, G). Then F and G satisfy the condition of Lemma 6.
We assume Case (1) in Lemma 6 holds, that is,

T (r, F ) + T (r,G) ≤ 2{N2(r,
1

F
) +N2(r,

1

G
)}+ S(r, F ) + S(r,G)(20)

≤ 4T (r, f) + 4T (r, g) + S(r, f) + S(r, g).

Combining (19) and (20) together we have

(n− 4)T (r, f) + (n− 4)T (r, g) ≤ S(r, f) + S(r, g) ,(21)

which contradicts n ≥ 5. Thus by Lemma 6, we get F ≡ G or FG ≡ 1, that is,
f = tg or fg = t where t is a constant and tn = 1. Proceeding as in the proof
of Theorem 1, we get the conclusion of Theorem 4. This completes the proof of
Theorem 4.
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