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Abstract. Let S = {a, b, c, . . . } and Γ = {α, β, γ, . . . } be two nonempty sets. S is called

a Γ-semigroup if aαb ∈ S, for all α ∈ Γ and a, b ∈ S and (aαb)βc = aα(bβc), for all

a, b, c ∈ S and for all α, β ∈ Γ. An element e ∈ S is said to be an α-idempotent for

some α ∈ Γ if eαe = e. A Γ-semigroup S is called an E-inversive Γ-semigroup if for each

a ∈ S there exist x ∈ S and α ∈ Γ such that aαx is a β-idempotent for some β ∈ Γ. A

Γ-semigroup is called a right E- Γ-semigroup if for each α-idempotent e and β-idempotent

f , eαf is a β-idempotent. In this paper we investigate different properties of E-inversive

Γ-semigroup and right E-Γ-semigroup.

1. Introduction

Let S be a semigroup. According to Catino and Miccoli [1] S is E-inversive if for
every a ∈ S there exists x ∈ S such that ax is idempotent. They proved that S is
E-inversive if and only if W (a) 6= φ for all a ∈ S where W (a) = {x ∈ S : xax = x}.
The elements of W (a) are called weak inverse element of a. S is E-semigroup if the
set E(S) of idempotents of S forms a subsemigroup. Basic properties of E-inversive
semigroup and E-semigroups are studied by Catino and Miccoli [1], Mitsch [4],
Weipoltshammer [9]. In this paper we introduce this notion in Γ-semigroup and
study the structures. We now recall some definitions and results of Γ-semigroups.

Definition 1.1. Let S = {a, b, c, . . . } and Γ = {α, β, γ, . . . } be two nonempty sets.
S is called a Γ-semigroup, if

(i) aαb ∈ S, for all α ∈ Γ and a, b ∈ S and

(ii) (aαb)βc = aα(bβc), for all a, b, c ∈ S and for all α, β ∈ Γ.
S is said to be a Γ-semigroup with zero if there exists an element 0 ∈ S such that
0αa = aα0 = 0 for all α ∈ Γ.
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Let S be an arbitrary semigroup. Let 1 be a symbol not representing any element
of S. Let us extend the binary operation defined on S to S∪{1} by defining 11 = 1
and 1a = a1 for all a ∈ S. It can be shown that S∪{1} is a semigroup with identity
element 1. Let Γ = {1}. If we take ab = a1b, it can be shown that the semigroup
S is a Γ−semigroup where Γ = {1}. Thus a semigroup can be considered to be a
Γ-semigroup.

Let S be a Γ-semigroup and x be a fixed element of Γ. We define a.b = axb for
all a, b ∈ S. We can show that (S, .) is a semigroup and we denote this semigroup
by Sx.

Definition 1.2 ([7]). Let S be a Γ-semigroup. An element a ∈ S is said to be
regular, if a ∈ aΓSΓa, where aΓSΓa = {aαbβa : b ∈ S, α, β ∈ Γ}. S is said to be
regular if every element of S is regular. We now describe some examples of regular
Γ-semigroup.

Example 1.3. Let S be the set of all 3× 2 matrices and Γ be the set of all 2× 3
matrices over a field. Then for A,B ∈ S, the product AB can not be defined i.e., S
is not a semigroup under the usual matrix multiplication. But for all A,B,C ∈ S
and P,Q ∈ Γ we have APB ∈ S and since the matrix multiplication is associative,
we have (APB)QC = AP (BQC). Hence S is a Γ-semigroup. Moreover it is regular
shown in [7].

Example 1.4. Let A = {1, 2, 3} and B = {4, 5}. S denotes the set of all mappings
from A to B. Here members of S will be described by the images of the elements
1, 2, 3. For example the map 1 → 4, 2 → 5, 3 → 4 will be written as (4, 5, 4)
and (5, 5, 4) denotes the map 1 → 5, 2 → 5, 3 → 4. A map from B to A will be
described in the same fashion. For example (1, 2) denotes 4 → 1, 5 → 2. Now

S =
{

(4, 4, 4), (4, 4, 5), (4, 5, 4), (4, 5, 5), (5, 5, 5), (5, 4, 5), (5, 4, 4), (5, 5, 4)
}

and let

Γ = {(1, 1), (1, 2), (2, 3), (3, 1)}. Let f, g ∈ S and α ∈ Γ. We define fαg by

(fαg)(a) = fα
(
g(a)

)
for all a ∈ A. So fαg is a mapping from A to B and hence

fαg ∈ S and we can show that (fαg)βh = fα(gβh) for all f, g, h ∈ S and α, β ∈ Γ.
We can show that each element x of S is an α-idempotent for an α ∈ Γ and hence
each element is regular. Thus S is a regular Γ-semigroup.

Example 1.5. Let T be a semigroup, I,Λ be two index sets and Γ be the collection
of some Λ× I matrices over T . Then the set S = I × T × Λ is a Γ-semigroup with
respect to the multiplication (i, a, λ)P (j, b, µ) = (i, apλjb, µ) for (i, a, λ) , (j, b, µ) ∈ S
and P = (pλi) ∈ Γ. This Γ-semigroup is called the Rees matrix Γ-semigroup over T
with the set Γ of sandwich matrices and it is denoted by S =M(I, T,Λ,Γ). Let T 0

denote the semigroup T with a zero element adjoint. Let Γ be a set of some Λ× I
matrices over T 0. Then the set S = (I×T ×Λ)∪{0} is a Γ-semigroup with respect
to the multiplication

(i, a, λ)P (j, b, µ) =

{
(i, apλjb, µ) , if pλj 6= 0

0 , if pλj = 0
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and 0Γ(i, a, λ) = (i, a, λ)Γ0 = 0Γ0 = {0} for all (i, a, λ) , (j, b, µ) ∈ S and P =
(pλi) ∈ Γ. This Γ-semigroup is called the Rees matrix Γ-semigroup over T 0 with
the set Γ of sandwich matrices and we denote it by M0(I, T,Λ,Γ).

In [8] author studied Rees matrix Γ-semigroup over a group.

Definition 1.6 ([8]). The set Γ of sandwich matrices is called regular, if for each
i ∈ I there exists a matrix P ∈ Γ and for each λ ∈ Λ there exists a matrix Q ∈ Γ
such that P has at least one nonzero entry in the i-th column and Q has at least
one nonzero entry in the λ-th row.

Theorem 1.7 ([8]). Rees I × Λ matrix Γ-semigroup M0(G, I,Λ,Γ) over G0, a
group with zero is regular if and only if Γ is regular.

Definition 1.8 ([7]). Let S be a Γ-semigroup and α ∈ Γ. Then e ∈ S is said to be
an α-idempotent, if eαe = e. The set of all α-idempotents is denoted by Eα and we

denote
⋃
α∈Γ

Eα by E(S). The elements of E(S) are called idempotent element of S.

Definition 1.9 ([7]). Let S be a Γ-semigroup and a, b ∈ S, α, β ∈ Γ. b is said to be
an (α, β)-inverse of a, if a = aαbβa and b = bβaαb . This is denoted by b ∈ V βα (a).

Definition 1.10 ([7]). A nonempty subset I of a Γ-semigroup S is called an Γ-
ideal, if IΓS ⊆ I and SΓI ⊆ I where for subsets U, V of S and Γ

1
of Γ, UΓ

1
V =

{uαv : u ∈ U, v ∈ V, α ∈ Γ
1
}.

In a Γ-semigroup S, the Green’s relations L,R,H,D,J on S are defined as
follows:

Definition 1.11 ([5]). Let S be a Γ-semigroup. For a, b ∈ S,

aLb if SΓa ∪ {a} = SΓb ∪ {b},
aRb if aΓS ∪ {a} = bΓS ∪ {b},
aHb if aLb and aRb,
aDb if aLc and cRb for some c ∈ S and

aJ b if aΓS ∪ SΓa ∪ SΓaΓS ∪ {a} = bΓS ∪ SΓb ∪ SΓbΓS ∪ {b}.

Theorem 1.12 ([5]). Let S be a Γ-semigroup and a ∈ S. Let Da denote the
D-class of S containing a. If a is regular, then every element of Da is regular.

2. E-inversive Γ-semigroup

We see that the Γ-semigroup given in example 1.4 is regular. We now take the
same set S and modify Γ as Γ = {(1, 1), (1, 2)}. Then S is a Γ-semigroup under
the same operation defined in the example but the elements (4, 4, 5) and (5, 5, 4)
are not regular. Thus S is not a regular Γ-semigroup. But in this example we see
that for each element a ∈ S there exist x ∈ S and α, β ∈ Γ such that aαx ∈ Eβ . In
this section we study such type of Γ-semigroups.
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Definition 2.1. Let S be a Γ-semigroup. An element a ∈ S is called E-inversive, if
there exist x ∈ S, α, β ∈ Γ such that aαx ∈ Eβ . S is called E-inversive Γ-semigroup,
if every a ∈ S is E-inversive.

Let us take an E-inversive element a ∈ S and let aαx ∈ Eβ for some x ∈
S and α, β ∈ Γ. If we take y = xβaαx then aαy = aαxβaαx = aαx ∈ Eβ
and (yβa)α(yβa) = xβaαxβaαxβaαxβa = xβ(aαxβaαxβaαx)βa = xβ(aαx)βa =
(xβaαx)βa = yβa. Hence yβa ∈ Eα. Hence we see that if a is an E-inversive
element of S then there exist y ∈ S and α, β ∈ Γ such that aαy ∈ Eβ and yβa ∈ Eα.

Definition 2.2. Let S be a Γ-semigroup with zero. A nonzero element a ∈ S is
called E∗-inversive, if there exist x ∈ S, α, β ∈ Γ such that 0 6= aαx ∈ Eβ . S is
called E∗-inversive Γ-semigroup if every nonzero element a ∈ S is E∗-inversive.

Example 2.3. Let I = {1, 2} and Λ = {1, 2, 3} be two index sets. Let us consider

the group G = {1, w, w2} and let Γ =
{ 0 0

w 0
1 w2

 ,

 0 0
w2 w
0 1

}. From the

Theorem 1.7 the Rees I ×Λ matrix Γ-semigroup S =M0(G, I,Λ,Γ) is not regular
since Γ is not regular. Let us now consider an arbitrary element (i, a, λ) of S. If
there exists a matrix P such that pλk = 0 then (i, a, λ)P (k, b, µ) = 0 which is P -
idempotent. If pλj 6= 0 for all j ∈ I then we have (i, a, λ)P (i, p−1

λi a
−1p−1

λi , λ) is
P -idempotent. Hence S is an E-inversive Γ-semigroup.

Clearly every regular Γ-semigroup is E-inversive Γ-semigroup but from the
above example we see that the converse is not true. In the introduction we have
pointed out that every semigroup can be considered as a Γ-semigroup. Hence every
E-inversive semigroup can be considered as an E-inversive Γ-semigroup. The aim
of this paper is to extend different interesting results of E-inversive semigroups to
E-inversive Γ-semigroups.

Definition 2.4. For a Γ-semigroup S, a ∈ S and α, β ∈ Γ the set W β
α (a) is defined

by W β
α (a) = {x ∈ S : xβaαx = x}. The elements of W β

α (a) are called weak inverse
element of a.

Theorem 2.5. An element a of a Γ-semigroup S is E-inversive if and only if
W β
α (a) 6= φ for some α, β ∈ Γ.

Proof. Let a be E-inversive. Hence we have x ∈ S and α, β ∈ Γ such that
aαx ∈ Eβ i.e, (aαx)β(aαx) = aαx which implies that (aαx)β(aαx)β(aαx) = aαx
i.e, xβ(aαxβaαxβaαx) = xβaαx. This shows that (xβaαx)βaα(xβaαx) = xβaαx.
Thus xβaαx ∈W β

α (a) and hence W β
α (a) 6= φ.

Conversely let W β
α (a) 6= φ for some α, β ∈ Γ and let x ∈W β

α (a). Then xβaαx =
x. Now (aαx)β(aαx) = aα(xβaαx) = aαx i.e, aαx ∈ Eβ . Hence a is E-inversive.
�

From the above theorem we can conclude that a Γ-semigroup is E-inversive if
and only if for a ∈ S, W β

α (a) 6= φ for some α, β ∈ Γ.
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Theorem 2.6. The set I of all non E-inversive elements of a Γ-semigroup S is
either empty or an Γ-ideal.

Proof. Suppose I 6= φ. Let a ∈ I, b ∈ S and α ∈ Γ. If possible let aαb be an
E-inversive element. Then there exist β ∈ Γ and x ∈ S such that (aαb)βx is γ-
idempotent for some γ ∈ Γ. Thus we have aα(bβx) ∈ Eγ , and then a is E-inversive.
This is a contradiction. Again if bαa is E-inversive then by Theorem 2.5, there exist
γ, δ ∈ Γ and y ∈ S such that y ∈ W δ

γ (bαa). Thus aγyδb ∈ Eα. Which implies a is
E-inversive, which is also a contradiction. Thus the result follows. �

Theorem 2.7. In a Γ-semigroup S the following conditions are equivalent:

(i) for two E-inversive elements a, b ∈ S, aαb is E-inversive element for some

α ∈ Γ,

(ii) for e, f ∈ E(S), eα1f is an E-inversive element of S for some α1 ∈ Γ.

Proof. Clearly (i) implies (ii) since every idempotent element is E-inversive. Con-
versely suppose that (ii) holds. Let x and y be two E-inversive elements of
S. Then there exist x′, y′ ∈ S and α, β, γ, δ ∈ Γ such that x′ ∈ W β

α (x) and
y′ ∈ W δ

γ (y). Thus x′βx ∈ Eα and yγy′ ∈ Eδ. Thus by (ii) (x′βx)α
1
(yγy′)

is E-inversive for some α1 ∈ Γ. i.e, there exist z ∈ S and p, q ∈ Γ such
that z ∈ W q

p ((x′βx)α1(yγy′)). Let w = y′pzqx′. Then wβ(xα1y)γw =
(y′pzqx′)β(xα1y)γ(y′pzqx′) = y′p(zq(x′βx)α1(yγy′)pz)qx′ = y′pzqx′ = w. This
shows that W β

γ (xα
1
y) 6= φ. i.e., xα

1
y is E-inversive. Hence the proof. �

The following theorem shows that E-inversive property of Rees matrix Γ-
semigroup over a semigroup T 0 depends not only on the semigroup T but also
on the set of sandwich matrices.

Theorem 2.8. Let T be a semigroup without zero. Then S = M0(I, T,Λ,Γ) is
E∗- inversive Γ-semigroup if and only if T is E-inversive and Γ is regular.

Proof. Let T be an E-inversive semigroup, Γ be regular and (i, a, λ) ∈ S. Then
there exist matrices P = (pνk) and Q = (qνk) such that pλj 6= 0 and qµi 6= 0. Hence
0 6= pλjaqµi ∈ T . Since T is E-inversive, there exists x ∈ T such that x(pλjaqµi)x =
x. Thus we have ((i, a, λ)P (j, x, µ))Q((i, a, λ)P (j, x, µ)) = (i, apλjxqµiapλjx, µ) =
(i, apλjx, µ) = (i, a, λ)P (j, x, µ). Hence 0 6= (i, a, λ)P (j, x, µ) is Q-idempotent.
Thus S is E∗-inversive.

Conversely let S be E∗-inversive. Let i ∈ I, λ ∈ Λ and a ∈ T . Now (i, a, λ) ∈ S.
Since S is E∗-inversive, there exist (j, x, µ) ∈ S, P = (pνk), Q = (qνk) ∈ Γ
such that 0 6= (i, a, λ)P (j, x, µ) = (i, apλjx, µ) is Q-idempotent. Hence P has
nonzero entry in the λ-th row and 0 6= (i, apλjx, µ) = (i, apλjx, µ)Q(i, apλjx, µ)
shows that Q has nonzero entry in the i-th column. Hence Γ is regular.
Also from ((i, a, λ)P (j, x, µ))Q((i, a, λ)P (j, x, µ)) = (i, a, λ)P (j, x, µ) we find that
(i, apλjxqµiapλjx, µ) = (i, apλjx, µ) and then (a(pλjxqµi))(a(pλjxqµi)) = (a(pλjxqµi))
and then apλjxqµi is an idempotent element in T for a ∈ T . Thus it follows that T
is E-inversive. �

The following example shows that in a Γ-semigroup S,
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(i) for some α ∈ Γ, Sα may be E∗-inversive semigroup but there may exist β ∈ Γ
such that Sβ is not an E∗-inversive semigroup and
(ii) Sα may not be an E∗-inversive semigroup for some α ∈ Γ, but S may be an
E∗-inversive Γ-semigroup.

Example 2.9. Let us consider a Rees matrix semigroup S = M0(I, T,Λ,Γ) over
the semigroup T = {e, a, f, b, } with Cayley table

e a f b
e e a f b
a a e b f
f f b f b
b b f b f

where I = {1, 2} and Λ = {1, 2, 3} and Γ = {α, β} where α =

 0 0
a e
b f

 and

β =

 b e
f b
a a

. Now we see that T is an E-inversive semigroup and Γ is regular.

Hence by Theorem 2.8 S is E∗-inversive. It is to be noted here that Sβ is E∗-
inversive but Sα is not E∗-inversive since for (1, a, 1) there is no (i, b, λ) such that
(1, a, 1)α(i, b, λ) 6= 0.

3. Right E-Γ-semigroup

In this section we study some particular type of Γ-semigroup which is a gener-
alization of right orthodox Γ-semigroup.

Definition 3.1. Let S be a Γ-semigroup. S is called a right (resp. left) E-Γ-
semigroup, if for any α-idempotent e and β-idempotent f of S, eαf (resp. fαe) is
a β-idempotent in S.

Proceeding as in the proof of Proposition 5.2([9]), we prove the following result
in Γ-semigroups.

Theorem 3.2. Let T be a semigroup without zero. Then S =M0(I, T,Λ,Γ) is right
E- Γ-semigroup if and only if for all i, j ∈ I, λ, µ ∈ Λ : W (pλi)pλjW (qµj) ⊆W (qµi).

Proof. Let S =M0(T, I,Λ,Γ) andW (t) denote the set of all weak inverses of t in T 0.
Let P ∈ Γ and (i, a, λ) be a nonzero P -idempotent in S. Then we have (i, apλia, λ) =
(i, a, λ). Since (i, a, λ) is nonzero we have pλi 6= 0 and a ∈W (pλi). Hence EP (S) ⊆
{(i, p′λi, λ) ∈ S : pλi 6= 0, p′λi ∈W (pλi)}∪{0}. Again for i ∈ I, λ ∈ Λ with pλi 6= 0,
(i, p′λi, λ) is P -idempotent for p′λi ∈W (pλi). Since the zero element is P -idempotent
we can conclude that EP (S) = {(i, p′λi, λ) ∈ S : pλi 6= 0, p′λi ∈W (pλi)}∪{0}. Let S
be a right E-Γ-semigroup. Now for i, j ∈ I, λ, µ ∈ Λ, p′λi ∈ W (pλi), q

′
µj ∈ W (qµj).

If one of p′λi, pλj , q
′
µj is the zero in T 0, then p′λipλjq

′
µj = 0 ∈ W (qµi). Suppose
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none of p′λi, pλj , q
′
µj is zero. Then (i, p′λi, λ) ∈ EP , (j, q′µj , µ) ∈ EQ. Since S is

right E-Γ-semigroup, (i, p′λipλjq
′
µj , µ) = (i, p′λi, λ)P (j, q′µj , µ) ∈ EQ. This implies

p′λipλjq
′
µj ∈W (qµi) i.e, W (pλi)pλjW (qµj) ⊆W (qµi).

Conversely, let the condition hold. Suppose (i, a, λ) be a nonzero P -idempotent
and (j, b, µ) be a nonzero Q-idempotent for P,Q ∈ Γ. Then a ∈ W (pλi) and
b ∈W (qµj). If pλj = 0, then (i, a, λ)P (j, b, µ) = 0 ∈ EQ. Let pλj 6= 0. Then by the
given condition apλjb ∈W (qµi). i.e., we get (i, a, λ)P (j, b, µ) = (i, apλjb, µ) ∈ EQ.
Again since for P1 ∈ Γ, 0P1(i, a, λ) = (i, a, λ)P0 = 0 ∈ EQ1 for all Q1 ∈ Γ we
conclude that S is a right E- Γ-semigroup. �

Definition 3.3. Let S be a Γ-semigroup. A nonempty subset P of S is said to be
partial Γ-subsemigroup, if for a, b ∈ P , there exists α ∈ Γ such that aαb ∈ P .

Theorem 3.4. Let S be a Γ-semigroup and E(S) 6= φ. Then the regular elements
form a partial Γ-subsemigroup if and only if for e, f ∈ E(S), eα1f is regular for
some α1 ∈ Γ.

Proof. Let the regular elements of S form a partial Γ - subsemigroup. Since every
idempotent element is regular, the condition holds.

Conversely let the given condition hold. Let a, b be two regular elements of S and
a′ ∈ V βα (a), b′ ∈ V δγ (b). Then a′βa, bγb′ ∈ E(S). By the given condition there exists
µ ∈ Γ such that (a′βa)µ(bγb′) is regular. i.e., there exist x ∈ S and µ1 , µ2 ∈ Γ such
that (a′βa)µ(bγb′) = (a′βaµbγb′)µ

1
xµ

2
(a′βaµbγb′). Now aµb = aαa′βaµbγb′δb =

aα((a′βa)µ(bγb′))δb = aα((a′βaµ bγb′)µ
1
xµ

2
(a′βaµbγb′))δb. Thus we have aµb =

(aµb)γ (b′µ
1
xµ

2
a′)β(aµb) and hence aµb is a regular element of S. Hence the proof.

�

We now recall Rees congruence on a Γ-semigroup which has been introduced
in [3]. Let I be an ideal of a Γ-semigroup S. Let ρI = (I × I) ∪ 1S where 1S
is the equality relation. Thus for x, y ∈ S, (x, y) ∈ ρ

I
if and only if either x = y

or x and y both belong to I. It is clear that ρ
I

is an equivalence relation. Now
let (x, y) ∈ ρ

I
, z ∈ S and α ∈ Γ. Then there are two possibilities. If x = y

then (xαz, yαz) ∈ ρ
I

and (zαx, zαy) ∈ ρ
I

and if x, y both belong to I then also
xαz, yαz ∈ I and zαx, zαy ∈ I i.e, (xαz, yαz) ∈ ρ

I
and (zαx, zαy) ∈ ρI . Hence

ρ
I

is a Γ-congruence on S. We call this Γ-congruence Rees Γ-congruence on the
Γ-semigroup S and denote the Γ-semigroup of all such classes of the elements of
Γ-semigroup S by S/ρ

I
or simply by S/I and we have S/I = {I} ∪ {{x} : x 6∈ I}.

Definition 3.5. If I is a Γ-ideal of a Γ-semigroup S, then S is called an ideal
extension of I by the Rees quotient Γ-semigroup S/I.

Definition 3.6. Let S be a Γ-semigroup with zero. Then a nonzero element a ∈ S
is said to be divisor of zero if there exist an element α ∈ Γ and a nonzero element
b ∈ S such that aαb = 0.

Theorem 3.7. Let S be a Γ-semigroup with E(S) 6= φ. Then S is either E-
inversive or an ideal extension of an idempotent free Γ-semigroup by an E∗-inversive
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Γ-semigroup. If S is a right E- Γ-semigroup, then S is either E-inversive or an
ideal extension of an idempotent free Γ-semigroup by an E∗-inversive Γ-semigroup
which contains no proper zero divisor.

Proof. Let S be not E-inversive Γ-semigroup. Let T be the set of all non E-inversive
elements of S. Then by Theorem 2.6, T is a Γ-ideal of S. Since every idempotent
element is E-inversive, T is idempotent free. Let A be a nonzero element of S/T ,
Rees quotient Γ-semigroup. Then A = {a} for an E-inversive element a ∈ S. Since
a is E-inversive, there exist x ∈ S, α ∈ Γ such that aαx = e ∈ Eβ for some β ∈ Γ.
Clearly e is E-inversive. Hence {e} ∈ S/T is different from the zero element {T}
of S/T . Hence Aα{x} = {e} ∈ Eβ(S/T ) where {e} is nonzero. Thus A is an
E∗-inversive element of S/T . �

Let us suppose now that S is a right E-Γ-semigroup and {a}, {b} be two nonzero
elements of S/T . Then a, b ∈ S and they are E-inversive elements. Hence by
Theorem 2.7, aαb is E-inversive for some α ∈ Γ. This implies that aαb 6∈ T i.e.,
{a}α{b} 6= {T} and hence S/T contains no proper zero divisor.

Theorem 3.8. Let S be a Γ-semigroup and D be a D class of S. If an element of
D is E-inversive then every element of D is E-inversive.

Proof. Suppose a is an E-inversive element of D. Let aDb. We show that there
exist γ, δ ∈ Γ such that W δ

γ (b) 6= φ. Since a is E-inversive there exist a′ ∈ S and

α, β ∈ Γ such that a′ ∈ W β
α (a). Now a′Laαa′ and there exists c ∈ S such that

aLc and cRb. Again since L is right congruence, we have cαa′Laαa′La′. Now since
L ⊆ D we have cαa′ ∈ Da′ . Since a′ is a regular element, by Theorem 1.12, cαa′

is a regular element. Thus there exist z ∈ S and µ, ν ∈ Γ such that z ∈ V νµ (cαa′).
Let c′ = a′µz. Now c′νcαc′ = a′µzνcαa′µz = a′µzν(cαa′)µz = a′µz = c′. Thus
c′ ∈ W ν

α(c). Since R is a left congruence, from cRb we have c′νbRc′νcRc′. Since
R ⊆ D, we have c′νb ∈ Dc′ . Applying Theorem 1.12 we see that c′νb is a regular
element since c′ is a regular element. Thus there exists w ∈ V qp (c′νb) for some
p, q ∈ Γ. Let b′ = wqc′. Now b′νbpb′ = wqc′νbpwqc′ = wqc′ = b′ and hence
b′ ∈W ν

p (b). This completes the proof. �

Theorem 3.9. Let S be a Γ-semigroup with E(S) 6= φ. Then the following are
equivalent:

(i) S is right E- Γ-semigroup,
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Hence the proof.
(ii)⇒(i) Let e be an α-idempotent and f be a β-idempotent i.e, e ∈ V αα (e) and

f ∈ V ββ (f). Then by the given condition eαf ∈ V βα (fβe) i.e, eαfβfβeαeαf = eαf
which implies (eαf)β(eαf) = eαf i.e, eαf is a β-idempotent. Thus (i) holds.
(i) ⇒ (iii) is similar to (i) ⇒ (ii).
(iii)⇒ (i) Let e be an α-idempotent and f be a β-idempotent. Then e ∈Wα

α (e) and

f ∈ W β
β (f). Now by (iii) we have eαf ∈ W β

α (fβe) i.e, (eαf)β(fβe)α(eαf) = eαf
which implies (eαf)β(eαf) = eαf . Thus (i) holds since eαf is a β-idempotent. �
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From the above two theorems the following corollary follows.

Corollary 3.11. For any Γ-semigroup S with E(S) 6= φ, S is a right E- Γ-
semigroup if and only if W β

α (a)βW γ
β (b) = W γ

α (bβa).
The following theorem extends the results of Proposition 3.4([9]) in the right

E-Γ-semigroup.

Theorem 3.12. Let S be a right E- Γ-semigroup. Then
(i) V βα (e) ⊆W β

α (e) ⊆ Eβ for all e ∈ Eα,
(ii) a′βeγa ∈ Eα and aαeγa′ ∈ Eβ for all a ∈ S, a′ ∈W β

α (a), e ∈ Eγ ,
(iii) V βα

1
(a) ∩ V βα (b) 6= φ for some α

1
, α, β ∈ Γ implies V δα

1
(a) = V δα (b) for all

δ ∈ Γ and for all a, b ∈ S,
(iv) Wα

β (eαf) = Wα
α (fβe) for all e ∈ Eα, f ∈ Eβ.

Proof. (i) It is obvious that V βα (e) ⊆ W β
α (e). Let a ∈ W β

α (e). Then aβeαa = a.
Now a = aβeαa = (aβe)α(eαa). Again (aβe)α(aβe) = aβe and eαaβeαa = eαa
i.e, aβe ∈ Eα and eαa ∈ Eβ . Since S is right E- Γ-semigroup, a = (aβe)α(eαa) is
a β-idempotent.
(ii) Let a ∈ S, a′ ∈W β

α (a), e ∈ Eγ . Now
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(a′βeγa)α(a′βeγa) = (a′βaαa′βeγaαa′βeγa)
= a′β(((aαa′)βe)γ((aαa′)βe))γa
= a′βaαa′βeγa
= a′βeγa.

and

(aαeγa′)β(aαeγa′) = aαeγa′βaαeγa′βaαa′

= aα((eγa′βa)α(eγa′βa))αa′

= aαeγa′βaαa′

= aαeγa′.

(iii) Assume that a′ ∈ V βα1
(a) ∩ V βα (b) and a∗ ∈ V δα1

(a). Then we have a′βaα1a
′ =

a′, aα
1
a′βa = a, a′βbαa′ = a′, bαa′βb = b, a∗δaα

1
a∗ = a∗ and aα

1
a∗δa = a. Now

proceeding as in the proof of Theorem 3.9 [2] we can show that bαa∗δb = b and
a∗δbαa∗ = a∗. Thus a∗ ∈ V δα (b) i.e., V δα1

(a) ⊆ V δα (b). Similarly we can show that

V δα (b) ⊆ V δα1
(a). Therefore we have V δα1

(a) = V δα (b) for all δ ∈ Γ.

(iv) Let e ∈ Eα, f ∈ Eβ and x ∈ Wα
β (eαf) i.e, xαeαfβx = x. Since eαf ∈ Eβ , by

(i) we have x ∈ Eα. Therefore xαeαx = xαeα(xαeαfβx) = (xαe)α(xαe)α(fβx) =
xαeαfβx = x and

xαfβx = (xαeαfβx)α(fβx) = xαeα((fβx)α(fβx))
= (xαe)α(fβx) = xα(eαf)βx
= x.

Hence

xα(fβe)αx = (xαeαx)α(fβe)α(xαfβx)
= xα((eαxαf)β(eαxαf))βx
= xα(eαxαf)βx( Since S is right E-Γ-semigroup)
= (xαeαx)αfβx = xαfβx= x.

Hence x ∈Wα
α (fβe) i.e, Wα

β (eαf) ⊆Wα
α (fβe).

Conversely, let y ∈ Wα
α (fβe). Then yαfβeαy = y and by (i) y is

an α-idempotent. Now yαeαy = (yαfβeαy)α(eαy) = (yαf)β(eαy)α(eαy) =
(yαf)β(eαy) = y and yαfβy = (yαf)β(yαfβeαy) = (yαf)β(yαf)β(eαy) =
(yαf)β(eαy) = y. Now yα(eαf)βy = (yαfβy) α(eαf)β(yαeαy) = yα((fβyαe)α(fβyαe))αy
= yα(fβyαe)αy = (yαfβy)αeαy = yαeαy = y. Hence y ∈ Wα

β (eαy). Thus (iv)
holds. �

Definition 3.13. Let S be a Γ-semigroup, a ∈ S and α, β ∈ Γ. The set Iβα(a) is
defined by Iβα(a) = {x ∈ S : xβa ∈ Eα, aαx ∈ Eβ}.

Theorem 3.14. Let S be a Γ-semigroup. Then the following are equivalent:
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(ii) aαeγa′ ∈ Eβ for all a ∈ S, a′ ∈ Iβα(a), e ∈ Eγ ,
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(iii) a′βeγa ∈ Eα for all a ∈ S, a′ ∈ Iβα(a), e ∈ Eγ .
Proof. (i)⇒ (ii): Let a ∈ S, a′ ∈ V βα (a) and e ∈ Eγ . Since e ∈ Iγγ (e) and a′ ∈ Iβα(a),

from (i) we have eγa′ ∈ Iβγ (aαe). Now aαeγa′ = (aαe)γ(eγa′) ∈ Eβ .
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b). Thus (i) is proved. It can be shown (ii)⇔ (iii). �

Theorem 3.15. Let S be a right E- Γ-semigroup and a ∈ S. If a′ ∈ W β
α (a), e ∈

Eγ , f ∈ Eδ, then eγa′ ∈W β
α (a), a′βf ∈W δ

α(a) and eγa′βf ∈W δ
α(a).

Proof. Let a′ ∈W β
α (a), e ∈ Eγ , f ∈ Eδ. Now eγa′βaαeγa′ = (eγ(a′βa)αe)γa′βaαa′

= (eγ(a′βa))α(eγ(a′βa))αa′= (eγ(a′βa))αa′ (Since eγ(a′βa) ∈ Eα) = eγa′. Hence
eγa′ ∈W β

α (a). Again

(a′βf)δaα(a′βf) = a′βaαa′βfδaαa′βf
= a′β((aαa′)βf)δ((aαa′)βf)
= a′β((aαa′)βf)( Since (aαa′)βf ∈ Eδ)
= a′βf .

Hence a′βf ∈ W δ
α(a). Again from eγa′ ∈ W β

α (a) and f ∈ Eδ it follows that
eγa′βf ∈W δ

α(a) � .

Theorem 3.16. Let S be a right E- Γ-semigroup and a be a regular element of S
such that a′ ∈ V βα (a). Then W δ

α(a) = Eααa
′βEδ.

Proof. By the Theorem 3.15 we have Eααa
′βEδ ⊆ W δ

α(a). Now let a∗ ∈ W δ
α(a),

then a∗ = a∗δaαa∗ = a∗δaαa′βaαa∗ = (a∗δa)αa′β(aαa∗) ⊆ Eααa
′βEδ. Hence the

proof. �

Theorem 3.17. Let S be a right E- Γ-semigroup. Then the following are equiva-
lent:

(i) for e ∈ Eα, f ∈ Eβ , eαfβe = eαf ,

(ii) for every a ∈ S, if a′ ∈ V β1
α

1
(a) and a′′ ∈ V β2

α
2

(a) then aα
1
a′ = aα

2
a′′,

(iii) every R- class contains at most one idempotent,

(iv) if for some α, β, δ ∈ Γ, a′ ∈W β
α (a) and a∗ ∈W δ

α(a) with a′Ra∗ then
a′ = a∗,

(v) (for all e ∈ Eα, e′ ∈ V βα (e)) e′βe = e′.

Proof. (i) ⇒ (v) From Theorem 3.12(i) we have e′ ∈ Eβ . Now from (i) e′ =
e′βeαe′ = e′βe.
(v) ⇒ (iv) : Let a′ ∈ W β

α (a) and a∗ ∈ W δ
α(a) such that a′Ra∗. Then we have

a′βaRa′Ra∗Ra∗δa. Since (a′βa)αx = (a∗δa)αx = x for all x ∈ Ra′βa = Ra∗δa, we
have



468 M. K. Sen and S. Chattopadhyay

(aαa∗)δ(aαa′)β(aαa∗) = aα((a∗δa)α(a′βa))αa∗

= aα(a′βa)αa∗

= aα((a′βa)αa∗)= aαa∗.

i.e, aαa∗ ∈W δ
β (aαa′). Hence by (v) we have

a′ = (a∗δa)αa′ = (a∗δa)α(a∗δa)αa′ = a∗δ((aαa∗)δ(aαa′)) = a∗δ(aαa∗) = a∗.

(iv)⇒ (iii) : Let e ∈ Eα and f ∈ Eβ with eRf , then we have eαf = f and fβe = e.
Now fβeαf = f and hence we get f ∈ W β

α (e). Again e ∈ V αα (e) and by (iv) we
have e = f .

(iii)⇒ (ii) : Let a′ ∈ V β1
α

1
(a), a′′ ∈ V β2

α
2

(a). Then aα
1
a′R aR aα

2
a′′. Hence by (iii)

we have aα
1
a′ = aα

2
a′′.

(ii) ⇒ (i) : Let e ∈ Eα and f ∈ Eβ . Now (eαf)β(fβe)α(eαf) = eαfβeαf = eαf
and (fβe)α(eαf)β(fβe) = fβeαfβe = fβe. Hence fβe ∈ V αβ (eαf). Again eαf ∈
V ββ (eαf). Hence by (ii) we have (eαf)β(fβe) = (eαf)β(eαf). Thus eαfβe = eαf .
�

Theorem 3.18. Let S be an E-inversive Γ-semigroup. Then the following are
equivalent:

(i) for e ∈ Eα and f ∈ Eβ , eαfβe = e,
(ii) for e ∈ Eα, f ∈ Eβ and g ∈ Eγ , eαfβg = eαg,
(iii) (for all e ∈ Eα) W β

α (e) = Eβ(S),
(iv) (for all a, b ∈ S) W β

α
1
(a) ∩W β

α
2
(b) 6= φ for some α

1
, α

2
, β ∈ Γ implies

W δ
α

1
(a) = W δ

α
2
(b) for all δ ∈ Γ,

(v) (for e ∈ Eα, f ∈ Eβ) if W γ
α (e) ∩W γ

β (f) 6= φ for some γ ∈ Γ then W δ
α(e)

= W δ
β (f) for all δ ∈ Γ,

(vi) for e ∈ Eα and f ∈ Eβ, eαf ∈ Eβ and W β
α (a) = V βα (a) for all α, β ∈ Γ

and for all regular elements a ∈ S.
Proof. (i) ⇒ (ii) : Let e ∈ Eα, f ∈ Eβ and g ∈ Eγ . Then (eαg)γ(eαg) =
(eαgγe)αg = eαg. Thus eαg is γ-idempotent. Now eαfβe = e and gγfβg = g.
Thus

eαg = (eαfβe)α(gγfβg) = eα(fβ(eαg)γf)βg = eαfβg.

Hence (ii) follows.
(ii)⇒ (i) is obvious.
(i) ⇒ (iii) : Let a ∈ W β

α (e). Then aβe ∈ Eα and eαa ∈ Eβ . Now
aβa = (aβeαa)β(aβeαa) = (aβe)α(eαa)β(aβe)α(eαa) = (aβe)α(eαa) = a. Hence
W β
α (e) ⊆ Eβ . Again if f ∈ Eβ then by (i) fβeαf = f i.e, f ∈ W β

α (e). Hence (iii)
holds.
(iii)⇒ (i) is obvious.
(i) ⇒ (iv) : Let x ∈ W β

α
1
(a) ∩W β

α
2
(b) and let a′ ∈ W δ

α
1
(a). Then a′δa ∈ Eα

1
and

aα1a
′ ∈ Eδ. Again by (i) we can show that S is a right E-Γ-semigroup and by

Theorem 3.12(ii) bα2a
′δaα1x ∈ Eβ . Now
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a′ = (a′δa)α
1
a′
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1
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′) (Since (i) ⇒ (ii))
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2
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1
a′ = a′δbα
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Thus we have a′ ∈ W δ
α2

(b). Hence W δ
α1

(a) ⊆ W δ
α2

(b). Similarly we can show that

W δ
α2

(b) ⊆W δ
α1

(a). Thus W δ
α2

(b) = W δ
α1

(a).

(iv)⇒ (v) is trivial.
(v) ⇒ (i) : Let e be an α-idempotent and f be a β-idempotent and since S is
E-inversive, we find an x ∈ Wµ

γ (eαf) for some γ, µ ∈ Γ such that xµeαfγx =
x. Now (fγxµe)αfβ(fγxµe) = fγxµ(eαf)γxµe = fγxµe = fγxµ(eαf)γxµe =
(fγxµe)αeα(fγxµe). Which implies that fγxµe ∈Wα

α (e) ∩Wα
β (f). Hence by (v),

W δ
α(e) = W δ

β (f) for all δ ∈ Γ. Since e ∈ Wα
α (e) we have e ∈ Wα

β (f) and hence (i)
follows.
(i)⇒ (vi) : Let e ∈ Eα and f ∈ Eβ . Then (eαf)β(eαf) = (eαfβe)αf = eαf . Thus
eαf ∈ Eβ . For a ∈ S we see that V βα (a) ⊆ W β

α (a) for some α, β ∈ Γ. Now let a′ ∈
W β
α (a) i.e, a′βaαa′ = a′ and aαa′ ∈ Eβ . Since a is regular, there exists a∗ ∈ V δγ (a)

for some γ, δ ∈ Γ. i.e, aγa∗ ∈ Eδ. Now a = aγa∗δa = (aγa∗)δ(aαa′)β(aγa∗)δa =
aαa′βa. Thus a′ ∈ V βα (a) and hence we have W β

α (a) = V βα (a).
(vi) ⇒ (i) : Let e ∈ Eα and f ∈ Eβ . Then (eαf)βeα(eαf) = (eαf)β(eαf) = eαf
and hence eαf ∈ W β

α (e) = V βα (e). Thus we have eαfβe = eα(eαf)βe = e. Hence
the proof. �

4. Semidirect product of a semigroup and a Γ-semigroup

Let S be a semigroup and T be a Γ-semigroup. Let End(T ) denote the set
of all endomorphisms on T i.e., the set of all mappings f : T → T satisfying
f(aαb) = f(a)αf(b) for all a, b ∈ T , α ∈ Γ. Clearly End(T ) is a semigroup. Let
φ : S 6→ End(T ) be a given antimorphism i.e, φ(sr) = φ(r)φ(s) for all r, s ∈
S. If s ∈ S and t ∈ T , we write ts for (φ(s))(t) and T s = {ts : t ∈ T}. Let
S ×φ T = {(s, t) : s ∈ S, t ∈ T}. We define (s

1
, t

1
)α(s

2
, t

2
) = (s

1
s
2
, t

s2

1
αt

2
) for all

(si, ti) ∈ S ×φ T and α ∈ Γ. Then S ×φ T is a Γ-semigroup. This Γ-semigroup
S ×φ T is called the semidirect product of the semigroup S and the Γ-semigroup
T . In [6] we have studied such type of semidirect product. We recall the following
lemmas from [6].

Lemma 4.1. Let S×φT be a semidirect product of a semigroup S and a Γ-semigroup
T . Then

(i) (tαu)s = tsαus for all s ∈ S, t, u ∈ T and α ∈ Γ.
(ii) (ts)r = (t)sr for all s, r ∈ S and t ∈ T .

Lemma 4.2. Let S×φT be a semidirect product of a semigroup S and a Γ-semigroup
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T . Then T x is a Γ-semigroup for all x ∈ S.
We now give the following characterization.

Theorem 4.3. Let S ×φ T be a semidirect product of a semigroup S and a Γ-
semigroup T . Then S ×φ T is E-inversive if and only if for all s ∈ S, t ∈ T

there exists s′ ∈ W (s) such that ts
′s is an E-inversive element of a Γ-semigroup

T s
′s = {ts′s : t ∈ T}. If S is an E-inversive semigroup and T is an E-inversive

Γ-semigroup, then every semidirect product of S and T is E-inversive Γ-semigroup.

Proof. Let S ×φ T be E-inversive Γ-semigroup. Let s ∈ S and t ∈ T . Then (s, t) ∈
S×φT . Since S×φT is E-inversive, W β

α ((s, t)) 6= φ for some α, β ∈ Γ. Let (s′, t′) ∈
W β
α ((s, t)). Then (s′, t′)β(s, t)α(s′, t′) = (s′, t′). i.e, (s′ss′, t′ss

′
βts
′
αt′) = (s′, t′).

Thus s′ss′ = s′ and (t′)ss
′
βts
′
αt′ = t′. Thus s′ ∈ W (s) and hence S is E-inversive

semigroup. Now since (t′)ss
′
βts
′
αt′ = t′, we have ((t′)ss

′
βts
′
αt′)ss

′s = (t′)ss
′s i.e,

(t′)ss
′sβts

′sα(t′)ss
′s = (t′)ss

′s which implies (t′s)s
′sβ(t)s

′sα(t′s)s
′s = (t′s)s

′s. Hence
ts
′s is an E-inversive element of the Γ-semigroup T s

′s = {ts′s : t ∈ T}.
Conversely let the given condition hold. Let (s, t) ∈ S ×φ T . Then by the

given condition we have x ∈ W (s) and uxs ∈ W β
α (txs) for some x ∈ S and uxs ∈

T xs. Now (x, ux)β(s, t)α(x, ux) = (xsx, uxsxβtxαux) = (x, uxsxβtxsxαuxsx) =
(x, (uxsβtxsαuxs)x) = (x, uxsx) = (x, ux) Hence (x, ux) ∈W β

α ((s, t)). Hence S×φ T
is E-inversive Γ-semigroup.

Again let S be an E-inversive semigroup and T be an E-inversive Γ-semigroup.
Let tx ∈ T x. Since T is E-inversive there exist u ∈ T, α, β ∈ Γ such that u ∈W β

α (t).
i,e., uβtαu = u which implies uxβtxαux = ux. Hence T x is an E-inversive Γ-
semigroup for all x ∈ S. Hence if S is an E-inversive semigroup and T be an
E-inversive Γ-semigroup then for all s ∈ S, t ∈ T there exists s′ ∈ W (s) such that

ts
′s is an E-inversive element of a Γ-semigroup T s

′s = {ts′s : t ∈ T} and hence we
conclude that S ×φ T is E-inversive Γ-semigroup. �

Theorem 4.4. Let S ×φ T be a semidirect product of a semigroup S and a Γ-
semigroup T . Then S×φT is right E-Γ-semigroup if and only if S is an E-semigroup
and e, f ∈ E(S), t, u ∈ T and α, β ∈ Γ such that teαt = t, ufβu = u imply that
tfefαuefβtfαu = tfαu.

Proof. Let S ×φ T be a right E-Γ-semigroup and let (s, t) ∈ S ×φ T . Again let
e, f ∈ E(S), t, u ∈ T and α, β ∈ Γ such that teαt = t, ufβu = u. Then (e, t) is an
α-idempotent and (f, u) is an β-idempotent. Since S ×φ T is right E-Γ-semigroup
we have (e, t)α(f, u) ∈ Eβ and hence (e, t)α(f, u)β(e, t)α(f, u) = (e, t)α(f, u) i.e,
(efef, tfefαuefβtf ) = (ef, tfαu). Thus ef ∈ E(S), i.e., S is an E-semigroup and
tfefαuefβtf = tfαu. Reversing the argument the converse follows. �
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