KYUNGPOOK Math. J. 49(2009), 457-471

E-Inversive Γ -Semigroups

MRIDUL KANTI SEN

Department of Pure Mathematics, University of Calcutta, Kolkata-700019, India e-mail: senmk6@eth.net

Sumanta Chattopadhyay*

Sri Ramkrishna Sarada Vidyamahapitha, Kamarpukur, Hooghly -712612, India e-mail: chatterjees04@yahoo.co.in

ABSTRACT. Let $S = \{a, b, c, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be two nonempty sets. S is called a Γ -semigroup if $a\alpha b \in S$, for all $\alpha \in \Gamma$ and $a, b \in S$ and $(a\alpha b)\beta c = a\alpha(b\beta c)$, for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$. An element $e \in S$ is said to be an α -idempotent for some $\alpha \in \Gamma$ if $e\alpha e = e$. A Γ -semigroup S is called an E-inversive Γ -semigroup if for each $a \in S$ there exist $x \in S$ and $\alpha \in \Gamma$ such that $a\alpha x$ is a β -idempotent for some $\beta \in \Gamma$. A Γ -semigroup is called a right E- Γ -semigroup if for each α -idempotent e and β -idempotent $f, e\alpha f$ is a β -idempotent. In this paper we investigate different properties of E-inversive Γ -semigroup and right E- Γ -semigroup.

1. Introduction

Let S be a semigroup. According to Catino and Miccoli [1] S is E-inversive if for every $a \in S$ there exists $x \in S$ such that ax is idempotent. They proved that S is E-inversive if and only if $W(a) \neq \phi$ for all $a \in S$ where $W(a) = \{x \in S : xax = x\}$. The elements of W(a) are called weak inverse element of a. S is E-semigroup if the set E(S) of idempotents of S forms a subsemigroup. Basic properties of E-inversive semigroup and E-semigroups are studied by Catino and Miccoli [1], Mitsch [4], Weipoltshammer [9]. In this paper we introduce this notion in Γ -semigroup and study the structures. We now recall some definitions and results of Γ -semigroups.

Definition 1.1. Let $S = \{a, b, c, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be two nonempty sets. S is called a Γ -semigroup, if

(i) $a\alpha b \in S$, for all $\alpha \in \Gamma$ and $a, b \in S$ and

(ii) $(a\alpha b)\beta c = a\alpha(b\beta c)$, for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$.

S is said to be a Γ -semigroup with zero if there exists an element $0 \in S$ such that $0\alpha a = a\alpha 0 = 0$ for all $\alpha \in \Gamma$.

* Corresponding author.

Received March 4, 2008; accepted June 9, 2008.

2000 Mathematics Subject Classification: 20M17.

Key words and phrases: E-inversive Γ -semigroup, Right E- Γ -semigroup, semidirect product.

Let S be an arbitrary semigroup. Let 1 be a symbol not representing any element of S. Let us extend the binary operation defined on S to $S \cup \{1\}$ by defining 11 = 1and 1a = a1 for all $a \in S$. It can be shown that $S \cup \{1\}$ is a semigroup with identity element 1. Let $\Gamma = \{1\}$. If we take ab = a1b, it can be shown that the semigroup S is a Γ -semigroup where $\Gamma = \{1\}$. Thus a semigroup can be considered to be a Γ -semigroup.

Let S be a Γ -semigroup and x be a fixed element of Γ . We define a.b = axb for all $a, b \in S$. We can show that (S, .) is a semigroup and we denote this semigroup by S_x .

Definition 1.2 ([7]). Let S be a Γ -semigroup. An element $a \in S$ is said to be regular, if $a \in a\Gamma S\Gamma a$, where $a\Gamma S\Gamma a = \{a\alpha b\beta a : b \in S, \alpha, \beta \in \Gamma\}$. S is said to be regular if every element of S is regular. We now describe some examples of regular Γ -semigroup.

Example 1.3. Let S be the set of all 3×2 matrices and Γ be the set of all 2×3 matrices over a field. Then for $A, B \in S$, the product AB can not be defined i.e., S is not a semigroup under the usual matrix multiplication. But for all $A, B, C \in S$ and $P, Q \in \Gamma$ we have $APB \in S$ and since the matrix multiplication is associative, we have (APB)QC = AP(BQC). Hence S is a Γ -semigroup. Moreover it is regular shown in [7].

Example 1.4. Let $A = \{1, 2, 3\}$ and $B = \{4, 5\}$. S denotes the set of all mappings from A to B. Here members of S will be described by the images of the elements 1, 2, 3. For example the map $1 \rightarrow 4, 2 \rightarrow 5, 3 \rightarrow 4$ will be written as (4, 5, 4)and (5, 5, 4) denotes the map $1 \rightarrow 5, 2 \rightarrow 5, 3 \rightarrow 4$. A map from B to A will be described in the same fashion. For example (1, 2) denotes $4 \rightarrow 1, 5 \rightarrow 2$. Now $S = \{(4, 4, 4), (4, 4, 5), (4, 5, 4), (4, 5, 5), (5, 5, 5), (5, 4, 5), (5, 4, 4), (5, 5, 4)\}$ and let $\Gamma = \{(1, 1), (1, 2), (2, 3), (3, 1)\}$. Let $f, g \in S$ and $\alpha \in \Gamma$. We define $f\alpha g$ by $(f\alpha g)(a) = f\alpha(g(a))$ for all $a \in A$. So $f\alpha g$ is a mapping from A to B and hence $f\alpha g \in S$ and we can show that $(f\alpha g)\beta h = f\alpha(g\beta h)$ for all $f, g, h \in S$ and $\alpha, \beta \in \Gamma$. We can show that each element x of S is an α -idempotent for an $\alpha \in \Gamma$ and hence each element is regular. Thus S is a regular Γ -semigroup.

Example 1.5. Let T be a semigroup, I, Λ be two index sets and Γ be the collection of some $\Lambda \times I$ matrices over T. Then the set $S = I \times T \times \Lambda$ is a Γ -semigroup with respect to the multiplication $(i, a, \lambda)P(j, b, \mu) = (i, ap_{\lambda j}b, \mu)$ for $(i, a, \lambda), (j, b, \mu) \in S$ and $P = (p_{\lambda i}) \in \Gamma$. This Γ -semigroup is called the Rees matrix Γ -semigroup over Twith the set Γ of sandwich matrices and it is denoted by $S = \mathcal{M}(I, T, \Lambda, \Gamma)$. Let T^0 denote the semigroup T with a zero element adjoint. Let Γ be a set of some $\Lambda \times I$ matrices over T^0 . Then the set $S = (I \times T \times \Lambda) \cup \{0\}$ is a Γ -semigroup with respect to the multiplication

$$(i, a, \lambda)P(j, b, \mu) = \begin{cases} (i, ap_{\lambda j}b, \mu) , & \text{if } p_{\lambda j} \neq 0\\ 0 , & \text{if } p_{\lambda j} = 0 \end{cases}$$

and $0\Gamma(i, a, \lambda) = (i, a, \lambda)\Gamma 0 = 0\Gamma 0 = \{0\}$ for all $(i, a, \lambda), (j, b, \mu) \in S$ and $P = (p_{\lambda i}) \in \Gamma$. This Γ -semigroup is called the Rees matrix Γ -semigroup over T^0 with the set Γ of sandwich matrices and we denote it by $\mathcal{M}^0(I, T, \Lambda, \Gamma)$.

In [8] author studied Rees matrix Γ -semigroup over a group.

Definition 1.6 ([8]). The set Γ of sandwich matrices is called *regular*, if for each $i \in I$ there exists a matrix $P \in \Gamma$ and for each $\lambda \in \Lambda$ there exists a matrix $Q \in \Gamma$ such that P has at least one nonzero entry in the *i*-th column and Q has at least one nonzero entry in the λ -th row.

Theorem 1.7 ([8]). Rees $I \times \Lambda$ matrix Γ -semigroup $\mathcal{M}^0(G, I, \Lambda, \Gamma)$ over G^0 , a group with zero is regular if and only if Γ is regular.

Definition 1.8 ([7]). Let S be a Γ -semigroup and $\alpha \in \Gamma$. Then $e \in S$ is said to be an α -idempotent, if $e\alpha e = e$. The set of all α -idempotents is denoted by E_{α} and we denote $\bigcup_{\alpha \in \Gamma} E_{\alpha}$ by E(S). The elements of E(S) are called idempotent element of S.

Definition 1.9 ([7]). Let S be a Γ -semigroup and $a, b \in S, \alpha, \beta \in \Gamma$. b is said to be an (α, β) -inverse of a, if $a = a\alpha b\beta a$ and $b = b\beta a\alpha b$. This is denoted by $b \in V_{\alpha}^{\beta}(a)$.

Definition 1.10 ([7]). A nonempty subset I of a Γ -semigroup S is called an Γ *ideal*, if $I\Gamma S \subseteq I$ and $S\Gamma I \subseteq I$ where for subsets U, V of S and Γ_1 of Γ , $U\Gamma_1 V = \{u\alpha v : u \in U, v \in V, \alpha \in \Gamma_1\}$.

In a Γ -semigroup S, the Green's relations $\mathcal{L}, \mathcal{R}, \mathcal{H}, \mathcal{D}, \mathcal{J}$ on S are defined as follows:

Definition 1.11 ([5]). Let S be a Γ -semigroup. For $a, b \in S$,

 $a\mathcal{L}b \text{ if } S\Gamma a \cup \{a\} = S\Gamma b \cup \{b\},$ $a\mathcal{R}b \text{ if } a\Gamma S \cup \{a\} = b\Gamma S \cup \{b\},$ $a\mathcal{H}b \text{ if } a\mathcal{L}b \text{ and } a\mathcal{R}b,$ $a\mathcal{D}b \text{ if } a\mathcal{L}c \text{ and } c\mathcal{R}b \text{ for some } c \in S \text{ and}$ $a\mathcal{J}b \text{ if } a\Gamma S \cup S\Gamma a \cup S\Gamma a \Gamma S \cup \{a\} = b\Gamma S \cup S\Gamma b \cup S\Gamma b\Gamma S \cup \{b\}.$

Theorem 1.12 ([5]). Let S be a Γ -semigroup and $a \in S$. Let D_a denote the \mathcal{D} -class of S containing a. If a is regular, then every element of D_a is regular.

2. *E*-inversive Γ -semigroup

We see that the Γ -semigroup given in example 1.4 is regular. We now take the same set S and modify Γ as $\Gamma = \{(1,1), (1,2)\}$. Then S is a Γ -semigroup under the same operation defined in the example but the elements (4,4,5) and (5,5,4) are not regular. Thus S is not a regular Γ -semigroup. But in this example we see that for each element $a \in S$ there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a\alpha x \in E_{\beta}$. In this section we study such type of Γ -semigroups.

Definition 2.1. Let S be a Γ -semigroup. An element $a \in S$ is called *E-inversive*, if there exist $x \in S, \alpha, \beta \in \Gamma$ such that $a\alpha x \in E_{\beta}$. S is called *E-inversive* Γ -semigroup, if every $a \in S$ is *E*-inversive.

Let us take an *E*-inversive element $a \in S$ and let $a\alpha x \in E_{\beta}$ for some $x \in S$ and $\alpha, \beta \in \Gamma$. If we take $y = x\beta a\alpha x$ then $a\alpha y = a\alpha x\beta a\alpha x = a\alpha x \in E_{\beta}$ and $(y\beta a)\alpha(y\beta a) = x\beta a\alpha x\beta a\alpha x\beta a\alpha x\beta a = x\beta(a\alpha x\beta a\alpha x\beta a\alpha x)\beta a = x\beta(a\alpha x)\beta a = (x\beta a\alpha x)\beta a = y\beta a$. Hence $y\beta a \in E_{\alpha}$. Hence we see that if *a* is an *E*-inversive element of *S* then there exist $y \in S$ and $\alpha, \beta \in \Gamma$ such that $a\alpha y \in E_{\beta}$ and $y\beta a \in E_{\alpha}$.

Definition 2.2. Let S be a Γ -semigroup with zero. A nonzero element $a \in S$ is called E^* -inversive, if there exist $x \in S, \alpha, \beta \in \Gamma$ such that $0 \neq a\alpha x \in E_{\beta}$. S is called E^* -inversive Γ -semigroup if every nonzero element $a \in S$ is E^* -inversive.

Example 2.3. Let $I = \{1, 2\}$ and $\Lambda = \{1, 2, 3\}$ be two index sets. Let us consider the group $G = \{1, w, w^2\}$ and let $\Gamma = \left\{ \begin{pmatrix} 0 & 0 \\ w & 0 \\ 1 & w^2 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ w^2 & w \\ 0 & 1 \end{pmatrix} \right\}$. From the

Theorem 1.7 the Rees $I \times \Lambda$ matrix Γ -semigroup $S = \mathcal{M}^0(G, I, \Lambda, \Gamma)$ is not regular since Γ is not regular. Let us now consider an arbitrary element (i, a, λ) of S. If there exists a matrix P such that $p_{\lambda k} = 0$ then $(i, a, \lambda)P(k, b, \mu) = 0$ which is Pidempotent. If $p_{\lambda j} \neq 0$ for all $j \in I$ then we have $(i, a, \lambda)P(i, p_{\lambda i}^{-1}a^{-1}p_{\lambda i}^{-1}, \lambda)$ is P-idempotent. Hence S is an E-inversive Γ -semigroup.

Clearly every regular Γ -semigroup is E-inversive Γ -semigroup but from the above example we see that the converse is not true. In the introduction we have pointed out that every semigroup can be considered as a Γ -semigroup. Hence every E-inversive semigroup can be considered as an E-inversive Γ -semigroup. The aim of this paper is to extend different interesting results of E-inversive semigroups to E-inversive Γ -semigroups.

Definition 2.4. For a Γ -semigroup $S, a \in S$ and $\alpha, \beta \in \Gamma$ the set $W_{\alpha}^{\beta}(a)$ is defined by $W_{\alpha}^{\beta}(a) = \{x \in S : x\beta a\alpha x = x\}$. The elements of $W_{\alpha}^{\beta}(a)$ are called *weak inverse* element of a.

Theorem 2.5. An element a of a Γ -semigroup S is E-inversive if and only if $W^{\beta}_{\alpha}(a) \neq \phi$ for some $\alpha, \beta \in \Gamma$.

Proof. Let a be *E*-inversive. Hence we have $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a\alpha x \in E_{\beta}$ i.e, $(a\alpha x)\beta(a\alpha x) = a\alpha x$ which implies that $(a\alpha x)\beta(a\alpha x)\beta(a\alpha x) = a\alpha x$ i.e, $x\beta(a\alpha x\beta a\alpha x\beta a\alpha x) = x\beta a\alpha x$. This shows that $(x\beta a\alpha x)\beta a\alpha(x\beta a\alpha x) = x\beta a\alpha x$. Thus $x\beta a\alpha x \in W^{\beta}_{\alpha}(a)$ and hence $W^{\beta}_{\alpha}(a) \neq \phi$.

Conversely let $W^{\beta}_{\alpha}(a) \neq \phi$ for some $\alpha, \beta \in \Gamma$ and let $x \in W^{\beta}_{\alpha}(a)$. Then $x\beta a\alpha x = x$. Now $(a\alpha x)\beta(a\alpha x) = a\alpha(x\beta a\alpha x) = a\alpha x$ i.e, $a\alpha x \in E_{\beta}$. Hence *a* is *E*-inversive. \Box

From the above theorem we can conclude that a Γ -semigroup is *E*-inversive if and only if for $a \in S$, $W^{\beta}_{\alpha}(a) \neq \phi$ for some $\alpha, \beta \in \Gamma$. **Theorem 2.6.** The set I of all non E-inversive elements of a Γ -semigroup S is either empty or an Γ -ideal.

Proof. Suppose $I \neq \phi$. Let $a \in I$, $b \in S$ and $\alpha \in \Gamma$. If possible let $a\alpha b$ be an E-inversive element. Then there exist $\beta \in \Gamma$ and $x \in S$ such that $(a\alpha b)\beta x$ is γ -idempotent for some $\gamma \in \Gamma$. Thus we have $a\alpha(b\beta x) \in E_{\gamma}$, and then a is E-inversive. This is a contradiction. Again if $b\alpha a$ is E-inversive then by Theorem 2.5, there exist $\gamma, \delta \in \Gamma$ and $y \in S$ such that $y \in W^{\delta}_{\gamma}(b\alpha a)$. Thus $a\gamma y\delta b \in E_{\alpha}$. Which implies a is E-inversive, which is also a contradiction. Thus the result follows. \Box

Theorem 2.7. In a Γ -semigroup S the following conditions are equivalent:

- (i) for two E-inversive elements a, b ∈ S, aαb is E-inversive element for some α ∈ Γ,
- (ii) for $e, f \in E(S)$, $e\alpha_1 f$ is an *E*-inversive element of *S* for some $\alpha_1 \in \Gamma$.

Proof. Clearly (i) implies (ii) since every idempotent element is *E*-inversive. Conversely suppose that (ii) holds. Let x and y be two *E*-inversive elements of S. Then there exist $x', y' \in S$ and $\alpha, \beta, \gamma, \delta \in \Gamma$ such that $x' \in W^{\beta}_{\alpha}(x)$ and $y' \in W^{\delta}_{\gamma}(y)$. Thus $x'\beta x \in E_{\alpha}$ and $y\gamma y' \in E_{\delta}$. Thus by (ii) $(x'\beta x)\alpha_1(y\gamma y')$ is *E*-inversive for some $\alpha_1 \in \Gamma$. i.e, there exist $z \in S$ and $p, q \in \Gamma$ such that $z \in W^q_p((x'\beta x)\alpha_1(y\gamma y'))$. Let w = y'pzqx'. Then $w\beta(x\alpha_1 y)\gamma w = (y'pzqx')\beta(x\alpha_1 y)\gamma(y'pzqx') = y'p(zq(x'\beta x)\alpha_1(y\gamma y')pz)qx' = y'pzqx' = w$. This shows that $W^{\beta}_{\gamma}(x\alpha_1 y) \neq \phi$. i.e., $x\alpha_1 y$ is *E*-inversive. Hence the proof.

The following theorem shows that *E*-inversive property of Rees matrix Γ semigroup over a semigroup T^0 depends not only on the semigroup *T* but also
on the set of sandwich matrices.

Theorem 2.8. Let T be a semigroup without zero. Then $S = \mathcal{M}^0(I, T, \Lambda, \Gamma)$ is E^* - inversive Γ -semigroup if and only if T is E-inversive and Γ is regular.

Proof. Let T be an E-inversive semigroup, Γ be regular and $(i, a, \lambda) \in S$. Then there exist matrices $P = (p_{\nu k})$ and $Q = (q_{\nu k})$ such that $p_{\lambda j} \neq 0$ and $q_{\mu i} \neq 0$. Hence $0 \neq p_{\lambda j} a q_{\mu i} \in T$. Since T is E-inversive, there exists $x \in T$ such that $x(p_{\lambda j} a q_{\mu i})x =$ x. Thus we have $((i, a, \lambda)P(j, x, \mu))Q((i, a, \lambda)P(j, x, \mu)) = (i, a p_{\lambda j} x q_{\mu i} a p_{\lambda j} x, \mu) =$ $(i, a p_{\lambda j} x, \mu) = (i, a, \lambda)P(j, x, \mu)$. Hence $0 \neq (i, a, \lambda)P(j, x, \mu)$ is Q-idempotent. Thus S is E^{*}-inversive.

Conversely let S be E^* -inversive. Let $i \in I$, $\lambda \in \Lambda$ and $a \in T$. Now $(i, a, \lambda) \in S$. Since S is E^* -inversive, there exist $(j, x, \mu) \in S$, $P = (p_{\nu k})$, $Q = (q_{\nu k}) \in \Gamma$ such that $0 \neq (i, a, \lambda)P(j, x, \mu) = (i, ap_{\lambda j}x, \mu)$ is Q-idempotent. Hence P has nonzero entry in the λ -th row and $0 \neq (i, ap_{\lambda j}x, \mu) = (i, ap_{\lambda j}x, \mu)Q(i, ap_{\lambda j}x, \mu)$ shows that Q has nonzero entry in the *i*-th column. Hence Γ is regular. Also from $((i, a, \lambda)P(j, x, \mu))Q((i, a, \lambda)P(j, x, \mu)) = (i, a, \lambda)P(j, x, \mu)$ we find that $(i, ap_{\lambda j}xq_{\mu i}ap_{\lambda j}x, \mu) = (i, ap_{\lambda j}x, \mu)$ and then $(a(p_{\lambda j}xq_{\mu i}))(a(p_{\lambda j}xq_{\mu i})) = (a(p_{\lambda j}xq_{\mu i}))$ and then $ap_{\lambda j}xq_{\mu i}$ is an idempotent element in T for $a \in T$. Thus it follows that T is E-inversive. \Box

The following example shows that in a Γ -semigroup S,

(i) for some $\alpha \in \Gamma$, S_{α} may be E^* -inversive semigroup but there may exist $\beta \in \Gamma$ such that S_{β} is not an E^* -inversive semigroup and

(ii) S_{α} may not be an E^* -inversive semigroup for some $\alpha \in \Gamma$, but S may be an E^* -inversive Γ -semigroup.

Example 2.9. Let us consider a Rees matrix semigroup $S = \mathcal{M}^0(I, T, \Lambda, \Gamma)$ over the semigroup $T = \{e, a, f, b, \}$ with Cayley table

	e	\mathbf{a}	f	b
е	e	a	f	b
a	a	e	b	f
a f	f	\mathbf{b}	f	\mathbf{b}
b	b	f	b	f

b | b f b f where $I = \{1, 2\}$ and $\Lambda = \{1, 2, 3\}$ and $\Gamma = \{\alpha, \beta\}$ where $\alpha = \begin{pmatrix} 0 & 0 \\ a & e \\ b & f \end{pmatrix}$ and $\beta = \begin{pmatrix} b & e \\ f & b \\ a & a \end{pmatrix}$. Now we see that T is an E-inversive semigroup and Γ is regular.

Hence by Theorem 2.8 S is E^* -inversive. It is to be noted here that S_β is E^* inversive but S_{α} is not E^* -inversive since for (1, a, 1) there is no (i, b, λ) such that $(1, a, 1)\alpha(i, b, \lambda) \neq 0.$

3. Right E- Γ -semigroup

In this section we study some particular type of Γ -semigroup which is a generalization of right orthodox Γ -semigroup.

Definition 3.1. Let S be a Γ -semigroup. S is called a right (resp. left) E- Γ semigroup, if for any α -idempotent e and β -idempotent f of S, $e\alpha f$ (resp. $f\alpha e$) is a β -idempotent in S.

Proceeding as in the proof of Proposition 5.2([9]), we prove the following result in Γ -semigroups.

Theorem 3.2. Let T be a semigroup without zero. Then $S = \mathcal{M}^0(I, T, \Lambda, \Gamma)$ is right *E*- Γ -semigroup if and only if for all $i, j \in I, \lambda, \mu \in \Lambda : W(p_{\lambda i}) p_{\lambda j} W(q_{\mu j}) \subseteq W(q_{\mu i}).$

Proof. Let $S = \mathcal{M}^0(T, I, \Lambda, \Gamma)$ and W(t) denote the set of all weak inverses of t in T^0 . Let $P \in \Gamma$ and (i, a, λ) be a nonzero P-idempotent in S. Then we have $(i, ap_{\lambda i}a, \lambda) =$ (i, a, λ) . Since (i, a, λ) is nonzero we have $p_{\lambda i} \neq 0$ and $a \in W(p_{\lambda i})$. Hence $E_P(S) \subseteq C$ $\{(i, p'_{\lambda i}, \lambda) \in S : p_{\lambda i} \neq 0, p'_{\lambda i} \in W(p_{\lambda i})\} \cup \{0\}.$ Again for $i \in I, \lambda \in \Lambda$ with $p_{\lambda i} \neq 0$, $(i, p'_{\lambda_i}, \lambda) \text{ is } P \text{-idempotent for } p'_{\lambda_i} \in W(p_{\lambda_i}). \text{ Since the zero element is } P \text{-idempotent we can conclude that } E_P(S) = \{(i, p'_{\lambda_i}, \lambda) \in S : p_{\lambda_i} \neq 0, p'_{\lambda_i} \in W(p_{\lambda_i})\} \cup \{0\}. \text{ Let } S \text{ be a right } E \text{-} \text{-semigroup. Now for } i, j \in I, \lambda, \mu \in \Lambda, p'_{\lambda_i} \in W(p_{\lambda_i}), q'_{\mu_j} \in W(q_{\mu_j}).$ If one of $p'_{\lambda i}, p_{\lambda j}, q'_{\mu j}$ is the zero in T^0 , then $p'_{\lambda i} p_{\lambda j} q'_{\mu j} = 0 \in W(q_{\mu i})$. Suppose

none of $p'_{\lambda i}, p_{\lambda j}, q'_{\mu j}$ is zero. Then $(i, p'_{\lambda i}, \lambda) \in E_P, (j, q'_{\mu j}, \mu) \in E_Q$. Since S is right E-Γ-semigroup, $(i, p'_{\lambda i} p_{\lambda j} q'_{\mu j}, \mu) = (i, p'_{\lambda i}, \lambda) P(j, q'_{\mu j}, \mu) \in E_Q$. This implies $p'_{\lambda i} p_{\lambda j} q'_{\mu j} \in W(q_{\mu i})$ i.e. $W(p_{\lambda i}) p_{\lambda j} W(q_{\mu j}) \subseteq W(q_{\mu i})$.

Conversely, let the condition hold. Suppose (i, a, λ) be a nonzero P-idempotent and (j, b, μ) be a nonzero Q-idempotent for $P, Q \in \Gamma$. Then $a \in W(p_{\lambda i})$ and $b \in W(q_{\mu j})$. If $p_{\lambda j} = 0$, then $(i, a, \lambda)P(j, b, \mu) = 0 \in E_Q$. Let $p_{\lambda j} \neq 0$. Then by the given condition $ap_{\lambda j}b \in W(q_{\mu i})$. i.e., we get $(i, a, \lambda)P(j, b, \mu) = (i, ap_{\lambda j}b, \mu) \in E_Q$. Again since for $P_1 \in \Gamma$, $0P_1(i, a, \lambda) = (i, a, \lambda)P_0 = 0 \in E_{Q_1}$ for all $Q_1 \in \Gamma$ we conclude that S is a right E- Γ -semigroup. \Box

Definition 3.3. Let S be a Γ -semigroup. A nonempty subset P of S is said to be partial Γ -subsemigroup, if for $a, b \in P$, there exists $\alpha \in \Gamma$ such that $a\alpha b \in P$.

Theorem 3.4. Let S be a Γ -semigroup and $E(S) \neq \phi$. Then the regular elements form a partial Γ -subsemigroup if and only if for $e, f \in E(S)$, $e\alpha_1 f$ is regular for some $\alpha_1 \in \Gamma$.

Proof. Let the regular elements of S form a partial Γ - subsemigroup. Since every idempotent element is regular, the condition holds.

Conversely let the given condition hold. Let a, b be two regular elements of S and $a' \in V_{\alpha}^{\beta}(a), b' \in V_{\gamma}^{\delta}(b)$. Then $a'\beta a, b\gamma b' \in E(S)$. By the given condition there exists $\mu \in \Gamma$ such that $(a'\beta a)\mu(b\gamma b')$ is regular. i.e., there exist $x \in S$ and $\mu_1, \mu_2 \in \Gamma$ such that $(a'\beta a)\mu(b\gamma b') = (a'\beta a\mu b\gamma b')\mu_1 x\mu_2(a'\beta a\mu b\gamma b')$. Now $a\mu b = a\alpha a'\beta a\mu b\gamma b'\delta b = a\alpha((a'\beta a)\mu(b\gamma b'))\delta b = a\alpha((a'\beta a\mu b\gamma b')\mu_1 x\mu_2 (a'\beta a\mu b\gamma b'))\delta b$. Thus we have $a\mu b = (a\mu b)\gamma (b'\mu_1 x\mu_2 a')\beta(a\mu b)$ and hence $a\mu b$ is a regular element of S. Hence the proof. \Box

We now recall Rees congruence on a Γ -semigroup which has been introduced in [3]. Let I be an ideal of a Γ -semigroup S. Let $\rho_I = (I \times I) \cup 1_S$ where 1_S is the equality relation. Thus for $x, y \in S, (x, y) \in \rho_I$ if and only if either x = yor x and y both belong to I. It is clear that ρ_I is an equivalence relation. Now let $(x, y) \in \rho_I, z \in S$ and $\alpha \in \Gamma$. Then there are two possibilities. If x = ythen $(x\alpha z, y\alpha z) \in \rho_I$ and $(z\alpha x, z\alpha y) \in \rho_I$ and if x, y both belong to I then also $x\alpha z, y\alpha z \in I$ and $z\alpha x, z\alpha y \in I$ i.e, $(x\alpha z, y\alpha z) \in \rho_I$ and $(z\alpha x, z\alpha y) \in \rho_I$. Hence ρ_I is a Γ -congruence on S. We call this Γ -congruence Rees Γ -congruence on the Γ -semigroup S and denote the Γ -semigroup of all such classes of the elements of Γ -semigroup S by S/ρ_I or simply by S/I and we have $S/I = \{I\} \cup \{\{x\} : x \notin I\}$.

Definition 3.5. If I is a Γ -ideal of a Γ -semigroup S, then S is called an *ideal* extension of I by the Rees quotient Γ -semigroup S/I.

Definition 3.6. Let S be a Γ -semigroup with zero. Then a nonzero element $a \in S$ is said to be *divisor of zero* if there exist an element $\alpha \in \Gamma$ and a nonzero element $b \in S$ such that $a\alpha b = 0$.

Theorem 3.7. Let S be a Γ -semigroup with $E(S) \neq \phi$. Then S is either Einversive or an ideal extension of an idempotent free Γ -semigroup by an E^{*}-inversive Γ -semigroup. If S is a right E- Γ -semigroup, then S is either E-inversive or an ideal extension of an idempotent free Γ -semigroup by an E^{*}-inversive Γ -semigroup which contains no proper zero divisor.

Proof. Let S be not E-inversive Γ-semigroup. Let T be the set of all non E-inversive elements of S. Then by Theorem 2.6, T is a Γ-ideal of S. Since every idempotent element is E-inversive, T is idempotent free. Let A be a nonzero element of S/T, Rees quotient Γ-semigroup. Then $A = \{a\}$ for an E-inversive element $a \in S$. Since a is E-inversive, there exist $x \in S$, $\alpha \in \Gamma$ such that $a\alpha x = e \in E_{\beta}$ for some $\beta \in \Gamma$. Clearly e is E-inversive. Hence $\{e\} \in S/T$ is different from the zero element $\{T\}$ of S/T. Hence $A\alpha\{x\} = \{e\} \in E_{\beta}(S/T)$ where $\{e\}$ is nonzero. Thus A is an E*-inversive element of S/T.

Let us suppose now that S is a right E- Γ -semigroup and $\{a\}, \{b\}$ be two nonzero elements of S/T. Then $a, b \in S$ and they are E-inversive elements. Hence by Theorem 2.7, $a\alpha b$ is E-inversive for some $\alpha \in \Gamma$. This implies that $a\alpha b \notin T$ i.e., $\{a\}\alpha\{b\} \neq \{T\}$ and hence S/T contains no proper zero divisor.

Theorem 3.8. Let S be a Γ -semigroup and D be a \mathcal{D} class of S. If an element of D is E-inversive then every element of D is E-inversive.

Proof. Suppose a is an E-inversive element of D. Let $a\mathcal{D}b$. We show that there exist $\gamma, \delta \in \Gamma$ such that $W^{\delta}_{\gamma}(b) \neq \phi$. Since a is E-inversive there exist $a' \in S$ and $\alpha, \beta \in \Gamma$ such that $a' \in W^{\beta}_{\alpha}(a)$. Now $a'\mathcal{L}a\alpha a'$ and there exists $c \in S$ such that $a\mathcal{L}c$ and $c\mathcal{R}b$. Again since \mathcal{L} is right congruence, we have $c\alpha a'\mathcal{L}a\alpha a'\mathcal{L}a'$. Now since $\mathcal{L} \subseteq \mathcal{D}$ we have $c\alpha a' \in D_{a'}$. Since a' is a regular element, by Theorem 1.12, $c\alpha a'$ is a regular element. Thus there exist $z \in S$ and $\mu, \nu \in \Gamma$ such that $z \in V^{\nu}_{\mu}(c\alpha a')$. Let $c' = a'\mu z$. Now $c'\nu c\alpha c' = a'\mu z\nu c\alpha a'\mu z = a'\mu z\nu (c\alpha a')\mu z = a'\mu z = c'$. Thus $c' \in W^{\nu}_{\alpha}(c)$. Since \mathcal{R} is a left congruence, from $c\mathcal{R}b$ we have $c'\nu b\mathcal{R}c'\nu c\mathcal{R}c'$. Since $\mathcal{R} \subseteq \mathcal{D}$, we have $c'\nu b \in D_{c'}$. Applying Theorem 1.12 we see that $c'\nu b$ is a regular element since c' is a regular element. Thus there exists $w \in V^q_p(c'\nu b)$ for some $p, q \in \Gamma$. Let b' = wqc'. Now $b'\nu bpb' = wqc'\nu bpwqc' = wqc' = b'$ and hence $b' \in W^{\nu}_p(b)$. This completes the proof.

Theorem 3.9. Let S be a Γ -semigroup with $E(S) \neq \phi$. Then the following are equivalent:

- (i) S is right E- Γ -semigroup,
- (ii) $V_{\beta_1}^{\beta_2}(b)\beta_2 V_{\alpha_1}^{\alpha_2}(a) \subseteq V_{\beta_1}^{\alpha_2}(a\alpha_1 b)$ for all $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \Gamma$ and $a, b \in S$,
- (iii) $W_{\beta_1}^{\beta_2}(b)\beta_2 W_{\alpha_1}^{\alpha_2}(a) \subseteq W_{\beta_1}^{\alpha_2}(a\alpha_1 b)$ for all $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \Gamma$ and $a, b \in S$.

Proof. (i) \Rightarrow (ii) Let $a' \in V_{\alpha_1}^{\alpha_2}(a), b' \in V_{\beta_1}^{\beta_2}(b)$. We show that $b'\beta_2 a' \in V_{\beta_1}^{\alpha_2}(a\alpha_1 b)$. Now E-Inversive Γ -Semigroups

and

$$\begin{aligned} a\alpha_{1}b\beta_{1}b'\beta_{2}a'\alpha_{2}a\alpha_{1}b &= a\alpha_{1}a'\alpha_{2}a\alpha_{1}b\beta_{1}b'\beta_{2}a'\alpha_{2}a\alpha_{1}b\beta_{1}b'\beta_{2}b \\ &= a\alpha_{1}(a'\alpha_{2}a\alpha_{1}b\beta_{1}b')\beta_{2}(a'\alpha_{2}a\alpha_{1}b\beta_{1}b')\beta_{2}b \\ &= a\alpha_{1}(a'\alpha_{2}a\alpha_{1}b\beta_{1}b')\beta_{2}b \text{ (Since } (a'\alpha_{2}a)\alpha_{1}(b\beta_{1}b') \in E_{\beta_{2}}) \\ &= a\alpha_{1}b. \end{aligned}$$

Hence the proof.

(ii) \Rightarrow (i) Let e be an α -idempotent and f be a β -idempotent i.e, $e \in V^{\alpha}_{\alpha}(e)$ and $f \in V_{\beta}^{\beta}(f)$. Then by the given condition $e\alpha f \in V_{\alpha}^{\beta}(f\beta e)$ i.e. $e\alpha f\beta f\beta e\alpha e\alpha f = e\alpha f$ which implies $(e\alpha f)\beta(e\alpha f) = e\alpha f$ i.e. $e\alpha f$ is a β -idempotent. Thus (i) holds. (i) \Rightarrow (iii) is similar to (i) \Rightarrow (ii).

(iii) \Rightarrow (i) Let e be an α -idempotent and f be a β -idempotent. Then $e \in W^{\alpha}_{\alpha}(e)$ and $f \in W^{\beta}_{\beta}(f)$. Now by (iii) we have $e\alpha f \in W^{\beta}_{\alpha}(f\beta e)$ i.e, $(e\alpha f)\beta(f\beta e)\alpha(e\alpha f) = e\alpha f$ which implies $(e\alpha f)\beta(e\alpha f) = e\alpha f$. Thus (i) holds since $e\alpha f$ is a β -idempotent. \Box

Theorem 3.10. Let S be a Γ -semigroup. Then $W_{\beta_1}^{\alpha_2}(a\alpha_1 b) \subseteq W_{\beta_1}^{\alpha_1}(b)\alpha_1 W_{\alpha_1}^{\alpha_2}(a)$ for all $a, b \in S$ and $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \Gamma$.

 $\textit{Proof. Let } x \in W^{\alpha_2}_{\beta_1}(a\alpha_1 b). \textit{ Then } x = x\alpha_2 a\alpha_1 b\beta_1 x. \textit{ So } (x\alpha_2 a)\alpha_1 b\beta_1(x\alpha_2 a) = x\alpha_2 a\alpha_2 a\alpha_2 b\beta_1(x\alpha_2 a) = x\alpha_2 a\alpha_2 a\alpha_2 b\beta_1(x\alpha_2 a) = x\alpha_2 b\beta_1(x\alpha_2 a) = x\alpha_2 b\beta_1(x\alpha_2 a) = x\alpha_2 b\beta_1(x\alpha_2 a) = x\alpha_2 b\beta_1(x\alpha_2 b) = x\alpha_2 b\beta_1(x\alpha_2 a) =$ and $(b\beta_1 x)\alpha_2 a\alpha_1(b\beta_1 x) = b\beta_1 x$ i.e, $x\alpha_2 a \in W^{\alpha_1}_{\beta_1}(b)$ and $b\beta_1 x \in W^{\alpha_2}_{\alpha_1}(a)$. Again since $x = (x\alpha_2 a)\alpha_1(b\beta_1 x)$ we have $W^{\alpha_2}_{\beta_1}(a\alpha_1 b) \subseteq W^{\alpha_1}_{\beta_1}(b)\alpha_1 W^{\alpha_2}_{\alpha_1}(a)$.

From the above two theorems the following corollary follows.

Corollary 3.11. For any Γ -semigroup S with $E(S) \neq \phi$, S is a right E- Γ semigroup if and only if $W^{\beta}_{\alpha}(a)\beta W^{\gamma}_{\beta}(b) = W^{\gamma}_{\alpha}(b\beta a)$.

The following theorem extends the results of Proposition 3.4([9]) in the right E- Γ -semigroup.

Theorem 3.12. Let S be a right E- Γ -semigroup. Then

- (i) $V_{\alpha}^{\beta}(e) \subseteq W_{\alpha}^{\beta}(e) \subseteq E_{\beta}$ for all $e \in E_{\alpha}$, (ii) $a'\beta e\gamma a \in E_{\alpha}$ and $a\alpha e\gamma a' \in E_{\beta}$ for all $a \in S, a' \in W_{\alpha}^{\beta}(a), e \in E_{\gamma}$, (iii) $V_{\alpha_{1}}^{\beta}(a) \cap V_{\alpha}^{\beta}(b) \neq \phi$ for some $\alpha_{1}, \alpha, \beta \in \Gamma$ implies $V_{\alpha_{1}}^{\delta}(a) = V_{\alpha}^{\delta}(b)$ for all $\delta \in \Gamma$ and for all $a, b \in S$,
- (iv) $W^{\alpha}_{\beta}(e\alpha f) = W^{\alpha}_{\alpha}(f\beta e)$ for all $e \in E_{\alpha}, f \in E_{\beta}$.

Proof. (i) It is obvious that $V^{\beta}_{\alpha}(e) \subseteq W^{\beta}_{\alpha}(e)$. Let $a \in W^{\beta}_{\alpha}(e)$. Then $a\beta e\alpha a = a$. Now $a = a\beta e\alpha a = (a\beta e)\alpha(e\alpha a)$. Again $(a\beta e)\alpha(a\beta e) = a\beta e$ and $e\alpha a\beta e\alpha a = e\alpha a$ i.e., $a\beta e \in E_{\alpha}$ and $e\alpha a \in E_{\beta}$. Since S is right E- Γ -semigroup, $a = (a\beta e)\alpha(e\alpha a)$ is a β -idempotent.

(ii) Let $a \in S, a' \in W^{\beta}_{\alpha}(a), e \in E_{\gamma}$. Now

M. K. Sen and S. Chattopadhyay

$$\begin{aligned} (a'\beta e\gamma a)\alpha(a'\beta e\gamma a) &= (a'\beta a\alpha a'\beta e\gamma a\alpha a'\beta e\gamma a) \\ &= a'\beta(((a\alpha a')\beta e)\gamma((a\alpha a')\beta e))\gamma a \\ &= a'\beta a\alpha a'\beta e\gamma a \\ &= a'\beta e\gamma a. \end{aligned}$$

and

$$\begin{aligned} (a\alpha e\gamma a')\beta(a\alpha e\gamma a') &= a\alpha e\gamma a'\beta a\alpha e\gamma a'\beta a\alpha a' \\ &= a\alpha((e\gamma a'\beta a)\alpha(e\gamma a'\beta a))\alpha a' \\ &= a\alpha e\gamma a'\beta a\alpha a' \\ &= a\alpha e\gamma a'. \end{aligned}$$

(iii) Assume that $a' \in V_{\alpha_1}^{\beta}(a) \cap V_{\alpha}^{\beta}(b)$ and $a^* \in V_{\alpha_1}^{\delta}(a)$. Then we have $a'\beta a\alpha_1 a' = a'$, $a\alpha_1 a'\beta a = a$, $a'\beta b\alpha a' = a'$, $b\alpha a'\beta b = b$, $a^*\delta a\alpha_1 a^* = a^*$ and $a\alpha_1 a^*\delta a = a$. Now proceeding as in the proof of Theorem 3.9 [2] we can show that $b\alpha a^*\delta b = b$ and $a^*\delta b\alpha a^* = a^*$. Thus $a^* \in V_{\alpha}^{\delta}(b)$ i.e., $V_{\alpha_1}^{\delta}(a) \subseteq V_{\alpha}^{\delta}(b)$. Similarly we can show that $V_{\alpha}^{\delta}(b) \subseteq V_{\alpha}^{\delta}(a)$. Therefore we have $V_{\alpha_1}^{\delta}(a) = V_{\alpha}^{\delta}(b)$ for all $\delta \in \Gamma$. (iv) Let $e \in E_{\alpha}$, $f \in E_{\beta}$ and $x \in W_{\beta}^{\alpha}(e\alpha f)$ i.e., $x ae\alpha f \beta x = x$. Since $e\alpha f \in E_{\beta}$, by (i) are here $a \in \Gamma$.

(iv) Let $e \in E_{\alpha}$, $f \in E_{\beta}$ and $x \in W_{\beta}^{\alpha}(e\alpha f)$ i.e, $x\alpha e\alpha f\beta x = x$. Since $e\alpha f \in E_{\beta}$, by (i) we have $x \in E_{\alpha}$. Therefore $x\alpha e\alpha x = x\alpha e\alpha(x\alpha e\alpha f\beta x) = (x\alpha e)\alpha(x\alpha e)\alpha(f\beta x) = x\alpha e\alpha f\beta x = x$ and

$$x\alpha f\beta x = (x\alpha e\alpha f\beta x)\alpha(f\beta x) = x\alpha e\alpha((f\beta x)\alpha(f\beta x))$$

= $(x\alpha e)\alpha(f\beta x) = x\alpha(e\alpha f)\beta x$
= x .

Hence

$$\begin{aligned} x\alpha(f\beta e)\alpha x &= (x\alpha e\alpha x)\alpha(f\beta e)\alpha(x\alpha f\beta x) \\ &= x\alpha((e\alpha x\alpha f)\beta(e\alpha x\alpha f))\beta x \\ &= x\alpha(e\alpha x\alpha f)\beta x(\text{ Since } S \text{ is right } E\text{-}\Gamma\text{-semigroup}) \\ &= (x\alpha e\alpha x)\alpha f\beta x = x\alpha f\beta x = x. \end{aligned}$$

Hence $x \in W^{\alpha}_{\alpha}(f\beta e)$ i.e, $W^{\alpha}_{\beta}(e\alpha f) \subseteq W^{\alpha}_{\alpha}(f\beta e)$.

Conversely, let $y \in W^{\alpha}_{\alpha}(f\beta e)$. Then $y\alpha f\beta e\alpha y = y$ and by (i) y is an α -idempotent. Now $y\alpha e\alpha y = (y\alpha f\beta e\alpha y)\alpha(e\alpha y) = (y\alpha f)\beta(e\alpha y)\alpha(e\alpha y) =$ $(y\alpha f)\beta(e\alpha y) = y$ and $y\alpha f\beta y = (y\alpha f)\beta(y\alpha f\beta e\alpha y) = (y\alpha f)\beta(y\alpha f)\beta(e\alpha y) =$ $(y\alpha f)\beta(e\alpha y) = y$. Now $y\alpha(e\alpha f)\beta y = (y\alpha f\beta y)\alpha(e\alpha f)\beta(y\alpha e\alpha y) = y\alpha((f\beta y\alpha e)\alpha(f\beta y\alpha e))\alpha y$ $= y\alpha(f\beta y\alpha e)\alpha y = (y\alpha f\beta y)\alpha e\alpha y = y\alpha e\alpha y = y$. Hence $y \in W^{\alpha}_{\beta}(e\alpha y)$. Thus (iv) holds. \Box

Definition 3.13. Let S be a Γ -semigroup, $a \in S$ and $\alpha, \beta \in \Gamma$. The set $I_{\alpha}^{\beta}(a)$ is defined by $I_{\alpha}^{\beta}(a) = \{x \in S : x\beta a \in E_{\alpha}, a\alpha x \in E_{\beta}\}.$

Theorem 3.14. Let S be a Γ -semigroup. Then the following are equivalent: (i) $I_{\beta_1}^{\beta_2}(b)\beta_2I_{\alpha_1}^{\alpha_2}(a) \subseteq I_{\beta_1}^{\alpha_2}(a\alpha_1b)$ for $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \Gamma$ and $a, b \in S$, (ii) $a\alpha e\gamma a' \in E_\beta$ for all $a \in S, a' \in I_\alpha^\beta(a), e \in E_\gamma$,

E-Inversive Γ -Semigroups

(iii) $a'\beta e\gamma a \in E_{\alpha}$ for all $a \in S, a' \in I_{\alpha}^{\beta}(a), e \in E_{\gamma}$. Proof. (i) \Rightarrow (ii): Let $a \in S, a' \in V_{\alpha}^{\beta}(a)$ and $e \in E_{\gamma}$. Since $e \in I_{\gamma}^{\gamma}(e)$ and $a' \in I_{\alpha}^{\beta}(a)$, from (i) we have $e\gamma a' \in I_{\gamma}^{\beta}(a\alpha e)$. Now $a\alpha e\gamma a' = (a\alpha e)\gamma(e\gamma a') \in E_{\beta}$. (ii) \Rightarrow (i): Let $a' \in I_{\alpha_1}^{\alpha_2}(a)$ and $b' \in I_{\beta_1}^{\beta_2}(b)$. Then $b\beta_1 b' \in E_{\beta_2}$ and by (ii), $(a\alpha_1 b)\beta_1(b'\beta_2 a') = a\alpha_1(b\beta_1 b')\beta_2 a' \in E_{\alpha_2}$. Again since $a \in I_{\alpha_2}^{\alpha_1}(a')$ and $b \in I_{\beta_2}^{\beta_1}(b')$, similarly we can show that $(b'\beta_2 a')\alpha_2(a\alpha_1 b) = b'\beta_2(a'\alpha_2 a)\alpha_1 b \in E_{\beta_1}$. Hence we have $b'\beta_2 a' \in I_{\beta_1}^{\alpha_2}(a\alpha_1 b)$. Thus (i) is proved. It can be shown (ii) \Leftrightarrow (iii). \Box

Theorem 3.15. Let S be a right E- Γ -semigroup and $a \in S$. If $a' \in W_{\alpha}^{\beta}(a), e \in E_{\gamma}, f \in E_{\delta}$, then $e\gamma a' \in W_{\alpha}^{\beta}(a), a'\beta f \in W_{\alpha}^{\delta}(a)$ and $e\gamma a'\beta f \in W_{\alpha}^{\delta}(a)$.

Proof. Let $a' \in W^{\beta}_{\alpha}(a), e \in E_{\gamma}, f \in E_{\delta}$. Now $e\gamma a'\beta a\alpha e\gamma a' = (e\gamma(a'\beta a)\alpha e)\gamma a'\beta a\alpha a' = (e\gamma(a'\beta a))\alpha(e\gamma(a'\beta a))\alpha a' = (e\gamma(a'\beta a))\alpha a'$ (Since $e\gamma(a'\beta a) \in E_{\alpha}$) = $e\gamma a'$. Hence $e\gamma a' \in W^{\beta}_{\alpha}(a)$. Again

$$\begin{aligned} (a'\beta f)\delta a\alpha(a'\beta f) &= a'\beta a\alpha a'\beta f\delta a\alpha a'\beta f\\ &= a'\beta((a\alpha a')\beta f)\delta((a\alpha a')\beta f)\\ &= a'\beta((a\alpha a')\beta f)(\text{ Since } (a\alpha a')\beta f \in E_{\delta})\\ &= a'\beta f. \end{aligned}$$

Hence $a'\beta f \in W^{\delta}_{\alpha}(a)$. Again from $e\gamma a' \in W^{\beta}_{\alpha}(a)$ and $f \in E_{\delta}$ it follows that $e\gamma a'\beta f \in W^{\delta}_{\alpha}(a)$ \Box .

Theorem 3.16. Let S be a right E- Γ -semigroup and a be a regular element of S such that $a' \in V_{\alpha}^{\beta}(a)$. Then $W_{\alpha}^{\delta}(a) = E_{\alpha} \alpha a' \beta E_{\delta}$.

Proof. By the Theorem 3.15 we have $E_{\alpha}\alpha a'\beta E_{\delta} \subseteq W_{\alpha}^{\delta}(a)$. Now let $a^* \in W_{\alpha}^{\delta}(a)$, then $a^* = a^*\delta a\alpha a' = a^*\delta a\alpha a'\beta a\alpha a^* = (a^*\delta a)\alpha a'\beta(a\alpha a^*) \subseteq E_{\alpha}\alpha a'\beta E_{\delta}$. Hence the proof.

Theorem 3.17. Let S be a right E- Γ -semigroup. Then the following are equivalent:

- (i) for $e \in E_{\alpha}, f \in E_{\beta}, e\alpha f\beta e = e\alpha f$,
- (ii) for every $a \in S$, if $a' \in V_{\alpha_1}^{\beta_1}(a)$ and $a'' \in V_{\alpha_2}^{\beta_2}(a)$ then $a\alpha_1 a' = a\alpha_2 a''$,
- (iii) every \mathcal{R} class contains at most one idempotent,
- (iv) if for some $\alpha, \beta, \delta \in \Gamma, a' \in W^{\beta}_{\alpha}(a)$ and $a^* \in W^{\delta}_{\alpha}(a)$ with $a'\mathcal{R}a^*$ then $a' = a^*$,
- (v) (for all $e \in E_{\alpha}, e' \in V_{\alpha}^{\beta}(e)$) $e'\beta e = e'$.

Proof. (i) \Rightarrow (v) From Theorem 3.12(i) we have $e' \in E_{\beta}$. Now from (i) $e' = e'\beta e\alpha e' = e'\beta e$.

 $(\mathbf{v}) \Rightarrow (\mathbf{iv})$: Let $a' \in W^{\beta}_{\alpha}(a)$ and $a^* \in W^{\delta}_{\alpha}(a)$ such that $a'\mathcal{R}a^*$. Then we have $a'\beta a\mathcal{R}a'\mathcal{R}a^*\mathcal{R}a^*\delta a$. Since $(a'\beta a)\alpha x = (a^*\delta a)\alpha x = x$ for all $x \in R_{a'\beta a} = R_{a^*\delta a}$, we have

M. K. Sen and S. Chattopadhyay

$$\begin{aligned} (a\alpha a^*)\delta(a\alpha a')\beta(a\alpha a^*) &= a\alpha((a^*\delta a)\alpha(a'\beta a))\alpha a^* \\ &= a\alpha(a'\beta a)\alpha a^* \\ &= a\alpha((a'\beta a)\alpha a^*) = a\alpha a^*. \end{aligned}$$

i.e, $a\alpha a^* \in W^{\delta}_{\beta}(a\alpha a')$. Hence by (v) we have

 $a' = (a^*\delta a)\alpha a' = (a^*\delta a)\alpha (a^*\delta a)\alpha a' = a^*\delta((a\alpha a^*)\delta(a\alpha a')) = a^*\delta(a\alpha a^*) = a^*.$

(iv) \Rightarrow (iii) : Let $e \in E_{\alpha}$ and $f \in E_{\beta}$ with $e\mathcal{R}f$, then we have $e\alpha f = f$ and $f\beta e = e$. Now $f\beta e\alpha f = f$ and hence we get $f \in W^{\beta}_{\alpha}(e)$. Again $e \in V^{\alpha}_{\alpha}(e)$ and by (iv) we have e = f.

(iii) \Rightarrow (ii) : Let $a' \in V_{\alpha_1}^{\beta_1}(a), a'' \in V_{\alpha_2}^{\beta_2}(a)$. Then $a\alpha_1 a' \mathcal{R} a \mathcal{R} a \alpha_2 a''$. Hence by (iii) we have $a\alpha_1 a' = a\alpha_2 a''$.

(ii) \Rightarrow (i) : Let $e \in E_{\alpha}$ and $f \in E_{\beta}$. Now $(e\alpha f)\beta(f\beta e)\alpha(e\alpha f) = e\alpha f\beta e\alpha f = e\alpha f$ and $(f\beta e)\alpha(e\alpha f)\beta(f\beta e) = f\beta e\alpha f\beta e = f\beta e$. Hence $f\beta e \in V^{\alpha}_{\beta}(e\alpha f)$. Again $e\alpha f \in$ $V_{\beta}^{\beta}(e\alpha f)$. Hence by (ii) we have $(e\alpha f)\beta(f\beta e) = (e\alpha f)\beta(e\alpha f)$. Thus $e\alpha f\beta e = e\alpha f$.

Theorem 3.18. Let S be an E-inversive Γ -semigroup. Then the following are equivalent:

- (i) for $e \in E_{\alpha}$ and $f \in E_{\beta}, e\alpha f\beta e = e$,
- (ii) for $e \in E_{\alpha}$, $f \in E_{\beta}$ and $g \in E_{\gamma}$, $e\alpha f\beta g = e\alpha g$,
- (ii) (for all $e \in E_{\alpha}$) $W_{\alpha}^{\beta}(e) = E_{\beta}(S)$, (iv) (for all $a, b \in S$) $W_{\alpha_{1}}^{\beta}(a) \cap W_{\alpha_{2}}^{\beta}(b) \neq \phi$ for some $\alpha_{1}, \alpha_{2}, \beta \in \Gamma$ implies $W^{\delta}_{\alpha_1}(a) = W^{\delta}_{\alpha_2}(b) \text{ for all } \delta \in \Gamma,$
- (v) (for $e \in E_{\alpha}, f \in E_{\beta}$) if $W_{\alpha}^{\gamma}(e) \cap W_{\beta}^{\gamma}(f) \neq \phi$ for some $\gamma \in \Gamma$ then $W_{\alpha}^{\delta}(e)$ $= W^{\delta}_{\beta}(f)$ for all $\delta \in \Gamma$,
- (vi) for $e \in E_{\alpha}$ and $f \in E_{\beta}$, $e\alpha f \in E_{\beta}$ and $W_{\alpha}^{\beta}(a) = V_{\alpha}^{\beta}(a)$ for all $\alpha, \beta \in \Gamma$ and for all regular elements $a \in S$.

Proof. (i) \Rightarrow (ii) : Let $e \in E_{\alpha}, f \in E_{\beta}$ and $g \in E_{\gamma}$. Then $(e\alpha g)\gamma(e\alpha g) =$ $(e\alpha g\gamma e)\alpha g = e\alpha g$. Thus $e\alpha g$ is γ -idempotent. Now $e\alpha f\beta e = e$ and $g\gamma f\beta g = g$. Thus

$$e\alpha g = (e\alpha f\beta e)\alpha(g\gamma f\beta g) = e\alpha(f\beta(e\alpha g)\gamma f)\beta g = e\alpha f\beta g.$$

Hence (ii) follows.

(ii) \Rightarrow (i) is obvious.

(i) \Rightarrow (iii) : Let $a \in W^{\beta}_{\alpha}(e)$. Then $a\beta e \in E_{\alpha}$ and $e\alpha a \in E_{\beta}$. Now $a\beta a = (a\beta e\alpha a)\beta(a\beta e\alpha a) = (a\beta e)\alpha(e\alpha a)\beta(a\beta e)\alpha(e\alpha a) = (a\beta e)\alpha(e\alpha a) = a$. Hence $W^{\beta}_{\alpha}(e) \subseteq E_{\beta}$. Again if $f \in E_{\beta}$ then by (i) $f\beta e\alpha f = f$ i.e, $f \in W^{\beta}_{\alpha}(e)$. Hence (iii) holds.

(iii) \Rightarrow (i) is obvious.

(i) \Rightarrow (iv) : Let $x \in W^{\beta}_{\alpha_1}(a) \cap W^{\beta}_{\alpha_2}(b)$ and let $a' \in W^{\delta}_{\alpha_1}(a)$. Then $a'\delta a \in E_{\alpha_1}$ and $a\alpha_1 a' \in E_{\delta}$. Again by (i) we can show that S is a right E- Γ -semigroup and by Theorem 3.12(ii) $b\alpha_2 a' \delta a \alpha_1 x \in E_\beta$. Now

E-Inversive Γ -Semigroups

$$\begin{aligned} a' &= (a'\delta a)\alpha_{1}a' \\ &= ((a'\delta a)\alpha_{1}(x\beta b)\alpha_{2}(a'\delta a))\alpha_{1}a' \\ &= a'\delta a\alpha_{1}x\beta b\alpha_{2}((a'\delta a)\alpha_{1}(x\beta a)\alpha_{1}(a'\delta a))\alpha_{1}a' \\ &= a'\delta((a\alpha_{1}a')\delta(a\alpha_{1}x)\beta(b\alpha_{2}a'\delta a\alpha_{1}x))\beta(a\alpha_{1}a')\delta(a\alpha_{1}a') \\ &= a'\delta((a\alpha_{1}a')\delta(b\alpha_{2}a'\delta a\alpha_{1}x))\beta(a\alpha_{1}a')\delta(a\alpha_{1}a') \text{ (Since (i) } \Rightarrow (ii)) \\ &= a'\delta b\alpha_{2}((a'\delta a)\alpha_{1}(x\beta a)\alpha_{1}(a'\delta a))\alpha_{1}a' \\ &= a'\delta b\alpha_{2}a'\delta a\alpha_{1}a' = a'\delta b\alpha_{2}a'. \end{aligned}$$

Thus we have $a' \in W^{\delta}_{\alpha_2}(b)$. Hence $W^{\delta}_{\alpha_1}(a) \subseteq W^{\delta}_{\alpha_2}(b)$. Similarly we can show that $W^{\delta}_{\alpha_2}(b) \subseteq W^{\delta}_{\alpha_1}(a)$. Thus $W^{\delta}_{\alpha_2}(b) = W^{\delta}_{\alpha_1}(a)$. (iv) \Rightarrow (v) is trivial.

(v) \Rightarrow (i) : Let *e* be an α -idempotent and *f* be a β -idempotent and since *S* is *E*-inversive, we find an $x \in W^{\mu}_{\gamma}(e\alpha f)$ for some $\gamma, \mu \in \Gamma$ such that $x\mu e\alpha f\gamma x = x$. Now $(f\gamma x\mu e)\alpha f\beta(f\gamma x\mu e) = f\gamma x\mu(e\alpha f)\gamma x\mu e = f\gamma x\mu e = f\gamma x\mu(e\alpha f)\gamma x\mu e = (f\gamma x\mu e)\alpha e\alpha(f\gamma x\mu e)$. Which implies that $f\gamma x\mu e \in W^{\alpha}_{\alpha}(e) \cap W^{\alpha}_{\beta}(f)$. Hence by (v), $W^{\delta}_{\alpha}(e) = W^{\delta}_{\beta}(f)$ for all $\delta \in \Gamma$. Since $e \in W^{\alpha}_{\alpha}(e)$ we have $e \in W^{\alpha}_{\beta}(f)$ and hence (i) follows.

(i) \Rightarrow (vi): Let $e \in E_{\alpha}$ and $f \in E_{\beta}$. Then $(e\alpha f)\beta(e\alpha f) = (e\alpha f\beta e)\alpha f = e\alpha f$. Thus $e\alpha f \in E_{\beta}$. For $a \in S$ we see that $V_{\alpha}^{\beta}(a) \subseteq W_{\alpha}^{\beta}(a)$ for some $\alpha, \beta \in \Gamma$. Now let $a' \in W_{\alpha}^{\beta}(a)$ i.e, $a'\beta a\alpha a' = a'$ and $a\alpha a' \in E_{\beta}$. Since a is regular, there exists $a^* \in V_{\gamma}^{\delta}(a)$ for some $\gamma, \delta \in \Gamma$. i.e, $a\gamma a^* \in E_{\delta}$. Now $a = a\gamma a^*\delta a = (a\gamma a^*)\delta(a\alpha a')\beta(a\gamma a^*)\delta a = a\alpha a'\beta a$. Thus $a' \in V_{\alpha}^{\beta}(a)$ and hence we have $W_{\alpha}^{\beta}(a) = V_{\alpha}^{\beta}(a)$.

(vi) \Rightarrow (i) : Let $e \in E_{\alpha}$ and $f \in E_{\beta}$. Then $(e\alpha f)\beta e\alpha(e\alpha f) = (e\alpha f)\beta(e\alpha f) = e\alpha f$ and hence $e\alpha f \in W^{\beta}_{\alpha}(e) = V^{\beta}_{\alpha}(e)$. Thus we have $e\alpha f\beta e = e\alpha(e\alpha f)\beta e = e$. Hence the proof.

4. Semidirect product of a semigroup and a Γ -semigroup

Let S be a semigroup and T be a Γ -semigroup. Let End(T) denote the set of all endomorphisms on T i.e., the set of all mappings $f: T \to T$ satisfying $f(a\alpha b) = f(a)\alpha f(b)$ for all $a, b \in T$, $\alpha \in \Gamma$. Clearly End(T) is a semigroup. Let $\phi: S \not\rightarrow End(T)$ be a given antimorphism i.e. $\phi(sr) = \phi(r)\phi(s)$ for all $r, s \in$ S. If $s \in S$ and $t \in T$, we write t^s for $(\phi(s))(t)$ and $T^s = \{t^s: t \in T\}$. Let $S \times_{\phi} T = \{(s,t): s \in S, t \in T\}$. We define $(s_1, t_1) \alpha(s_2, t_2) = (s_1 s_2, t_1^{s_2} \alpha t_2)$ for all $(s_i, t_i) \in S \times_{\phi} T$ and $\alpha \in \Gamma$. Then $S \times_{\phi} T$ is a Γ -semigroup. This Γ -semigroup $S \times_{\phi} T$ is called the semidirect product of the semigroup S and the Γ -semigroup T. In [6] we have studied such type of semidirect product. We recall the following lemmas from [6].

Lemma 4.1. Let $S \times_{\phi} T$ be a semidirect product of a semigroup S and a Γ -semigroup T. Then

(i) $(t\alpha u)^s = t^s \alpha u^s$ for all $s \in S$, $t, u \in T$ and $\alpha \in \Gamma$.

(ii) $(t^s)^r = (t)^{sr}$ for all $s, r \in S$ and $t \in T$.

Lemma 4.2. Let $S \times_{\phi} T$ be a semidirect product of a semigroup S and a Γ -semigroup

T. Then T^x is a Γ -semigroup for all $x \in S$.

We now give the following characterization.

Theorem 4.3. Let $S \times_{\phi} T$ be a semidirect product of a semigroup S and a Γ -semigroup T. Then $S \times_{\phi} T$ is E-inversive if and only if for all $s \in S, t \in T$ there exists $s' \in W(s)$ such that $t^{s's}$ is an E-inversive element of a Γ -semigroup $T^{s's} = \{t^{s's} : t \in T\}$. If S is an E-inversive semigroup and T is an E-inversive Γ -semigroup, then every semidirect product of S and T is E-inversive Γ -semigroup.

Proof. Let $S ×_{\phi} T$ be *E*-inversive Γ-semigroup. Let $s \in S$ and $t \in T$. Then $(s, t) \in S ×_{\phi} T$. Since $S ×_{\phi} T$ is *E*-inversive, $W^{\beta}_{\alpha}((s,t)) \neq \phi$ for some $\alpha, \beta \in \Gamma$. Let $(s',t') \in W^{\beta}_{\alpha}((s,t))$. Then $(s',t')\beta(s,t)\alpha(s',t') = (s',t')$. i.e., $(s'ss',t'^{ss'}\beta t^{s'}\alpha t') = (s',t')$. Thus s'ss' = s' and $(t')^{ss'}\beta t^{s'}\alpha t' = t'$. Thus $s' \in W(s)$ and hence *S* is *E*-inversive semigroup. Now since $(t')^{ss'}\beta t^{s'}\alpha t' = t'$, we have $((t')^{ss'}\beta t^{s'}\alpha t')^{ss's} = (t')^{ss's}$ i.e., $(t')^{ss's}\beta t^{s's}\alpha(t')^{ss's} = (t')^{ss's}$ which implies $(t'^{s})^{s's}\beta(t)^{s's}\alpha(t')^{s's} = (t')^{s's}$. Hence $t^{s's}$ is an *E*-inversive element of the Γ-semigroup $T^{s's} = \{t^{s's} : t \in T\}$.

Conversely let the given condition hold. Let $(s,t) \in S \times_{\phi} T$. Then by the given condition we have $x \in W(s)$ and $u^{xs} \in W^{\beta}_{\alpha}(t^{xs})$ for some $x \in S$ and $u^{xs} \in T^{xs}$. Now $(x, u^x)\beta(s, t)\alpha(x, u^x) = (xsx, u^{xsx}\beta t^x\alpha u^x) = (x, u^{xsx}\beta t^{xsx}\alpha u^{xsx}) = (x, (u^{xs}\beta t^{xs}\alpha u^{xs})^x) = (x, u^{xsx}) = (x, u^x)$ Hence $(x, u^x) \in W^{\beta}_{\alpha}((s, t))$. Hence $S \times_{\phi} T$ is *E*-inversive Γ -semigroup.

Again let S be an E-inversive semigroup and T be an E-inversive Γ -semigroup. Let $t^x \in T^x$. Since T is E-inversive there exist $u \in T$, α , $\beta \in \Gamma$ such that $u \in W^{\beta}_{\alpha}(t)$. i,e., $u\beta t\alpha u = u$ which implies $u^x\beta t^x\alpha u^x = u^x$. Hence T^x is an E-inversive Γ -semigroup for all $x \in S$. Hence if S is an E-inversive semigroup and T be an E-inversive Γ -semigroup then for all $s \in S, t \in T$ there exists $s' \in W(s)$ such that $t^{s's}$ is an E-inversive element of a Γ -semigroup $T^{s's} = \{t^{s's} : t \in T\}$ and hence we conclude that $S \times_{\phi} T$ is E-inversive Γ -semigroup. \Box

Theorem 4.4. Let $S \times_{\phi} T$ be a semidirect product of a semigroup S and a Γ -semigroup T. Then $S \times_{\phi} T$ is right E- Γ -semigroup if and only if S is an E-semigroup and $e, f \in E(S), t, u \in T$ and $\alpha, \beta \in \Gamma$ such that $t^e \alpha t = t, u^f \beta u = u$ imply that $t^{fef} \alpha u^{ef} \beta t^f \alpha u = t^f \alpha u$.

Proof. Let $S \times_{\phi} T$ be a right E- Γ -semigroup and let $(s,t) \in S \times_{\phi} T$. Again let $e, f \in E(S), t, u \in T$ and $\alpha, \beta \in \Gamma$ such that $t^e \alpha t = t, u^f \beta u = u$. Then (e,t) is an α -idempotent and (f, u) is an β -idempotent. Since $S \times_{\phi} T$ is right E- Γ -semigroup we have $(e,t)\alpha(f,u) \in E_{\beta}$ and hence $(e,t)\alpha(f,u)\beta(e,t)\alpha(f,u) = (e,t)\alpha(f,u)$ i.e., $(efef, t^{fef}\alpha u^{ef}\beta t^f) = (ef, t^f \alpha u)$. Thus $ef \in E(S)$, i.e., S is an E-semigroup and $t^{fef}\alpha u^{ef}\beta t^f = t^f \alpha u$. Reversing the argument the converse follows. \Box

Acknowledgment. The authors are grateful to the learned referee for valuable suggestion.

References

- F. Catino, and M. M. Miccoli, On semidirect products of semigroups, Note di Mat., 9(1989), 189-194.
- [2] S. Chattopadhyay, Right Orthodox Γ-semigroup, Southeast Asian Bull. of Math., 29(2005), 23-30.
- [3] T. K. Dutta and S. Chattopadhyay, On Unoformly Strongly Prime Γ-Semigroup, Analale Stiintifice Ale Universitatii "AL. I. CUZA" Tomul LII, S.I, Mathematica, 2(2006), 325 - 335.
- [4] H. Mitsch, M. Petrich, Basic properties of E-inversive semigroups, Comm. Algebra, 28(2000), 5169-5182.
- [5] N. K. Saha, On Γ-semigroup II, Bull. Cal. Math. Soc., **79**(1987), 331-335.
- [6] M. K. Sen, and S. Chattopadhyay, Wreath Product of a semigroup and a Γ-semigroup, Discussiones Mathematicae - General Algebra and Applications, Vol.28(2008), 161 -178.
- [7] M. K. Sen and N. K. Saha, On $\Gamma\text{-semigroup}\ I$, Bull. Cal. Math. Soc., $\mathbf{78}(1986),$ 181-186.
- [8] A. Seth, Rees's theorem for Γ -semigroup , Bull. Cal. Math. Soc., $\mathbf{81}(1989),\,217\text{-}226.$
- Barbara Weipoltshammer, On classes of E-inversive semigroups and semigroups whose idempotents form a subsemigroup, Communications in Algebra, 32(2004), 2929-2948.