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Abstract. On page 366 of his lost notebook [15], Ramanujan recorded a cubic contin-

ued fraction and several theorems analogous to Rogers-Ramanujan’s continued fractions.

In this paper, we derive several general formulas for explicit evaluations of Ramanujan’s

cubic continued fraction, several reciprocity theorems, two formulas connecting V (q) and

V (q3) and also establish some explicit evaluations using the values of remarkable product

of theta-function.

1. Introduction

In Chapter 16, of his second notebook, Ramanujan defines his theta-function as

f(a, b) =

∞∑
n=−∞

a
n(n+1)

2 b
n(n−1)

2 , |ab| < 1,

= (−a; ab)∞(−b; ab)∞(ab; ab)∞,

where

(a; q)∞ =

∞∏
n=1

(1− aqn−1).
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Following Ramanujan for |q| < 1, we define

(1.1) ϕ(q) := f(q, q) =

∞∑
n=−∞

qn
2

= (−q; q2)2∞(q2; q2)∞,

(1.2) ψ(q) := f(q, q3) =

∞∑
n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

,

(1.3) f(−q) := f(−q,−q2) =

∞∑
n=−∞

(−1)nq
n(3n−1)

2 = (q; q)∞

and

(1.4) χ(q) := (−q; q2)∞.

On page 366 of his lost notebook [15], Ramanujan recorded the cubic continued
fraction

(1.5) V := V (q) :=
q

1
3

1 +

q + q2

1 +

q2 + q4

1 +
· · · , |q| < 1,

and claimed that there are many results of V (q) which are analogous to the Rogers-
Ramanujan continued fraction. H. H. Chan [7] established the relation between V (q)
and the other three continued fractions V (−q), V (q2) and V (q3). N. D. Baruah [3]
established the relation between V (q) and the two continued fractions V (q5) and
V (q7).

In [4], Baruah and Nipen Saikia have also established some general theorems to
find explicit evaluations of cubic continued fraction. In [1], C. Adiga, T. Kim, M. S.
Mahadeva Naika and H. S. Madhusudan derived a modular equation relating V (q)
with V (q3), a transformation formula and several explicit evaluations of V (q). For
more discussions of (1.5), see [2] and [9].

On page 338 in his first notebook [14], Ramanujan defined

(1.6) aM,N =
Ne−

(N−1)π
4

√
M
N ψ2(e−π

√
MN )ϕ2(−e−2π

√
MN )

ψ2(e−π
√

M
N )ϕ2(−e−2π

√
M
N )

.

He then, on pages 338 and 339, offered a list of eighteen particular values. All these
eighteen values have been established by Berndt, Chan and Zhang [6]. In [10] and
[11], Mahadeva Naika et al. derived general theorems to establish explicit new eval-
uations of Ramanujan’s remarkable product of theta-function. In [12], Mahadeva
Naika and M. C. Maheshkumar have also obtained other explicit evaluations of
Ramanujan’s remarkable product of theta-function.
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In [13], Mahadeva Naika, Maheshkumar and K. Sushan Bairy defined

(1.7) bM,N =
Ne−

(N−1)π
4

√
M
N ψ2(−e−π

√
MN )ϕ2(−e−2π

√
MN )

ψ2(−e−π
√

M
N )ϕ2(−e−2π

√
M
N )

.

and established several general formulas for evaluating bM,N .
The ordinary hypergeometric series 2F1(a, b; c;x) is defined for |x| < 1,

2F1(a, b; c;x) =

∞∑
n=0

(a)n(b)nx
n

(c)nn!
,

where

(a)0 = 1 and (a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1), for n ≥ 1.

Let

(1.8) z(r) := z(r;x) := 2F1

(
1

r
,
r − 1

r
; 1;x

)
and

qr := qr(x) := exp

(
−πcsc

(π
r

)
2F1( 1

r ,
r−1
r ; 1; 1− x)

2F1( 1
r ,

r−1
r ; 1;x)

)
,

where r = 2, 3, 4, 6 and 0 < x < 1.
Let N denote a fixed natural number, and assume that

(1.9) N
2F1

(
1
r ,

r−1
r ; 1; 1− α

)
2F1

(
1
r ,

r−1
r ; 1;α

) =
2F1

(
1
r ,

r−1
r ; 1; 1− β

)
2F1

(
1
r ,

r−1
r ; 1;β

) ,

where r = 2, 3, 4 or 6. Then a modular equation of degree N in the theory of elliptic
functions of signature r is a relation between α and β induced by (1.9). We often

say that β is of degree N over α and m(r) :=
z(r : α)

z(r : β)
is called the multiplier. We

also use the notations z1 := z1(r) = z(r : α) and zN := zN (r) = z(r : β) to indicate
that β has degree N over α. When the context is clear, we omit the argument r in
qr, z(r) and m(r).

In Section 2, we collect some preliminary results which are useful in proving our
main results. In Section 3, we establish our main results. In Section 4, we prove
several reciprocity theorems for V (q). In Section 5, we establish two formulas con-
necting V (q) and V (q3). In Section 6, we also establish several explicit evaluations
of V (q).

2. Preliminary results

In this section, we collect some of the identities which are very useful to prove
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our main results.

Theorem 2.1. If z is defined as in (1.8), then we have

ϕ(e−y) =
√
z(2.1)

ϕ(−e−2y) =
√
z(1− x)

1
8(2.2)

ψ(e−y) =

√
1

2
z(xey)

1
8(2.3)

ψ(−e−y) =

√
1

2
z{x(1− x)ey} 1

8(2.4)

1 +
1

V
=

ψ(q
1
3 )

q
1
3ψ(q3)

and 1 +
1

V 3
=

ψ4(q)

qψ4(q3)
(2.5)

2V = 1− ϕ(−q 1
3 )

ϕ(−q3)
(2.6)

1− 8V 3 =
ϕ4(−q)
ϕ4(−q3)

, where V is defined as in (1.5)(2.7)

Proof. For a proof of (2.1) see [5, Entry 10(i), ch.17, p.122]; for a proof of (2.2)
see [5, Entry 10(iii), ch.17, p.123]; for a proof of (2.3) see [5, Entry 11(i), ch.17,
pp.123-124]; for a proof of (2.4) see [5, Entry 11(ii), ch.17, pp.123-124]; for a proof
of (2.5) see [5, Entry 1(i), ch.20, pp.345-346]; for a proof of (2.6) see [5, Entry 1(ii),
ch.20, pp.345-347]; for a proof of (2.7) see proof of Entry 1(iii) in [5, ch.20, p.347].

�

3. General formulas for explicit evaluations of V (q)

Lemma 3.1. If β is of degree N over α, then

(3.1)
N

aM, N
= m2

(
α(1− α)

β(1− β)

) 1
4

.

Proof. The identity (1.6) can be written as

(3.2) aM, N =
Nq

(N−1)
4 ψ2(qN )ϕ2(−q2N )

ψ2(q)ϕ2(−q2)
, q = e−π

√
M
N .

Using (2.2) and (2.3), we obtain (3.1). �

Theorem 3.1. We have

(3.3) 8V 3(−e−π
√

M
3 )− 1

V 3(−e−π
√

M
3 )

+ 7 =
9

a2M,3

.
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Proof. Using (2.1) and (2.4) in (2.5) and (2.7), we find that

(3.4) −1− 1

V 3(−q)
= m2

(
α(1− α)

β(1− β)

) 1
2

and

(3.5) 1− 8V 3(−q) =
z21
z23

= m2.

Using (3.4) and (3.5) in (3.1) with N = 3, we obtain (3.3). �

It is clear from the above Theorem 3.1 that to evaluate V (−e−π
√

M
3 ), one has

to compute aM,3.

Corollary 3.1. We have

(3.6) V 3(−e−
π√
3 ) = −1

4
.

Proof. Putting M = 1 and N = 3 in (3.2), we find that

(3.7) a1, 3 = 1.

Using (3.7) in (3.3), we obtain (3.6). �

This was also evaluated by Adiga et al. [2] and Mahadeva Naika [9].

Corollary 3.2. We have

(3.8) V 3(−e−π) =
(5− 3

√
3)

4
.

Proof. Putting M = 3 and N = 3 in (3.2), we find that

(3.9) a3, 3 =
1√
3
.

Using (3.9) in (3.3), we obtain (3.8). �

This was also evaluated by Baruah et al. [4] and Mahadeva Naika [9].

Theorem 3.2. We have

(3.10) 2V (−e−π
√
M )− 1

V (−e−π
√
M )

+ 1 =
3

√
aM,9

.

Proof. Using (2.1) and (2.4) in (2.5) and (2.6), we find that

(3.11) 1− 2V (−q3) =

√
z1
z9

=
√
m.
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(3.12) −1− 1

V (−q3)
=
√
m

(
α(1− α)

β(1− β)

) 1
8

.

and putting N = 9 in (3.1), we find that

(3.13)
9

aM,9
= m2

(
α(1− α)

β(1− β)

) 1
4

,

where β is of degree 9 over α. Using (3.11) and (3.12) in (3.13), we obtain (3.10).�

It is clear from the above Theorem 3.2 that to evaluate V (−e−π
√
M ), one has

to compute aM,9.

Corollary 3.3. We have

(3.14) V (−e−π) =
1−
√

3

2
.

Proof. Putting M = 1 and N = 9 in (2.2), we find that

(3.15) a1, 9 = 1.

Using (3.15) in (3.10), we obtain (3.14). �

This was also evaluated by Chan [7], Baruah et al. [4] and Mahadeva Naika [9].

Remark. In [9], Mahadeva Naika has also derived a different general formula to
evaluate V (−e−π

√
n).

Theorem 3.3. We have

(3.16)
1

V 3(e−π
√

M
3 )
− 8V 3(e−π

√
M
3 )− 7 =

9

b2M,3

.

Proof. Using (2.1) and (2.4) in (2.5) and (2.7), we find that

(3.17) 1 +
1

V 3(q)
= m2

(
α

β

) 1
2

and

(3.18) 1− 8V 3(q) = m2

(
1− α
1− β

)
,

where β is of degree 3 over α. Putting N = 3 in (1.7) with q = e−π
√

M
3 and then

using (2.1) and (2.4), we find that

(3.19)
9

b2M,3

= m4

(
α(1− α)2

β(1− β)2

) 1
2

.



Ramanujan’s Cubic Continued Fraction 441

Using (3.17) and (3.18) in (3.19), we obtain (3.16). �

It is clear from the above Theorem 3.3 that to evaluate V (e−π
√

M
3 ), one has to

compute bM,3.

Corollary 3.4. We have

(3.20) V 3(e−
√

2
3π) =

3− 2
√

2

2
√

2
.

Proof. Putting M = 2 and N = 3 in (1.7), we find that

(3.21) b2, 3 = 1.

Using (3.21) in (3.16), we obtain (3.20). �

Theorem 3.4. We have

(3.22)
1

V (e−π
√
M )
− 2V (e−π

√
M )− 1 =

3√
bM,9

.

Proof. Using (2.1) and (2.4) in (2.5) and (2.6), we find that

(3.23) 1− 2V (q3) =
√
m

(
1− α
1− β

) 1
4

and

(3.24) 1 +
1

V (q3)
=
√
m

(
α

β

) 1
8

.

and putting N = 9 in (1.7) with q = e−π
√

M
9 and then using (2.1) and (2.4), we

find that

(3.25)
9√
bM,9

= m

(
α(1− α)2

β(1− β)2

) 1
8

,

where β is of degree 9 over α. Using (3.23), (3.24) in (3.25), we obtain (3.22). �

It is clear from the above Theorem 3.4 that to evaluate V (e−π
√
M ), one has to

compute bM,9.

Corollary 3.5. We have

(3.26) V (e−
√
2π) =

√
3−
√

2√
2

.

Proof. Putting M = 2 and N = 9 in (1.7), we find that

(3.27) b2,9 = 1.
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Using (3.27) in (3.22), we obtain (3.26). �

This was also evaluated by Chan [7].

4. Some reciprocity theorems for V (q)

In this section, we establish several reciprocity theorems for V (q).

Theorem 4.1. We have

(4.1) V 3(−e−π
√

1
3M ) =

1 + V 3(−e−π
√

M
3 )

−1 + 8V 3(−e−π
√

M
3 )
.

Proof. Replacing M by
1

M
in (3.3), we find that

(4.2) 8V 3(−e−π
√

1
3M )− 1

V 3(−e−π
√

1
3M )

+ 7 =
9

a21
M ,3

.

Using (3.3) and (4.2), we deduce that

(4.3) (8x− 1

x
+ 7)(8y − 1

y
+ 7) = 81, x = V 3(−e−π

√
M
3 ), y = V 3(−e−π

√
1

3M ).

On simplification of the above identity (4.3), we find that

(4.4) (8x+ 8xy + 8y − 1)(−y + 8xy − x− 1) = 0.

The first factor does not vanish in the neighborhood of q = e
− π√

3 . But the second
factor vanishes in the neighborhood of q = e

− π√
3 . So by the identity theorem the

second factor vanishes identically. Hence, we complete the proof. �

Corollary 4.1. We have

(4.5) V 3(−e−π3 ) =
−(
√

3 + 1)

4
.

Proof. Putting M = 3 in (4.1), we find that

(4.6) V 3(−e−π3 ) =
1 + V 3(−e−π)

−1 + 8V 3(−e−π)
.

Using (3.14) in (4.6), we obtain (4.5). �

Theorem 4.2. We have

(4.7) V (−e−π
√

1
M ) =

1 + V (−e−π
√
M )

−1 + 2V (−e−π
√
M )

.
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Proof. Replacing M by
1

M
in (3.10), we find that

(4.8) 2V (−e−π
√

1
M )− 1

V (−e−π
√

1
M )

+ 1 =
3√
a 1
M ,9

.

Using (3.10) and (4.8), we deduce that

(4.9) (2x− 1

x
+ 1)(2y − 1

y
+ 1) = 9, x = V (−e−π

√
M ), y = V (−e−π

√
1
M ).

On simplification of the above identity (4.9), we find that

(4.10) (2x+ 2xy + 2y − 1)(−y + 2xy − x− 1) = 0.

The first factor does not vanish in the neighborhood of q = e−π. But the second
factor vanishes in the neighborhood of q = e−π. So by the identity theorem the
second factor vanishes identically. Hence, we complete the proof. �

Corollary 4.2. We have

(4.11) V (−e−3π) =
−2 + 3

√
2(
√

3 + 1)

2

(
1 + 3

√
2(
√

3 + 1)

) .
Proof. Using (4.5) in (4.7) with M = 9 and solving the resultant equation, we

obtain (4.11). �

Theorem 4.3. We have

(4.12)
1

8V 3(e−π
√

2
3M )

=
1 + V 3(e−π

√
2M
3 )

1− 8V 3(e−π
√

2M
3 )

.

Proof. Replacing M by 2M in (3.16), we find that

(4.13)
1

V 3(e−π
√

2M
3 )
− 8V 3(e−π

√
2M
3 )− 7 =

9

b22M,3

.

Replacing M by
1

M
in (4.13), we find that

(4.14)
1

V 3(e−π
√

2
3M )
− 8V 3(e−π

√
2

3M )− 7 =
9

b22
M ,3

.

Using (4.13) and (4.14), we deduce that

(4.15) (
1

x
− 8x− 7)(

1

y
− 8y − 7) = 81, x = V 3(e−π

√
2M
3 ), y = V 3(e−π

√
2

3M ).
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On simplification of the above identity (4.15), we find that

(4.16) (8x+ 8xy + 8y − 1)(−y + 8xy − x− 1) = 0.

The second factor does not vanish in the neighborhood of q = e−π
√

2
3 . But the first

factor vanishes in the neighborhood of q = e−π
√

2
3 . So by the identity theorem the

first factor vanishes identically. Hence, we complete the proof. �

Corollary 4.3. We have

(4.17) V 3(e−
π
√

2
3 ) =

√
3−
√

2

2
√

2
.

Proof. Using (3.26) in (4.12) with M = 3 and solving the resulting equation, we
obtain the required result. �

Theorem 4.4. We have

(4.18)
1

2V (e−π
√

2
M )

=
1 + V (e−π

√
2M )

1− 2V (e−π
√
2M )

.

Proof. Replacing M by 2M in (3.22), we find that

(4.19)
1

V (e−π
√
2M )

− 2V (e−π
√
2M )− 1 =

3√
b2M,9

.

Replacing M by
1

M
in (4.19),we find that

(4.20)
1

V (e−π
√

2
M )
− 2V (e−π

√
2
M )− 1 =

3√
b 2
M ,9

.

Using (4.19) and (4.20), we deduce that

(4.21) (
1

x
− 2x− 1)(

1

y
− 2y − 1) = 9, x = V (e−π

√
2M ), y = V (e−π

√
2
M ).

On simplification of the above identity (4.21), we find that

(4.22) (2x+ 2xy + 2y − 1)(−y + 2xy − x− 1) = 0.

The second factor does not vanish in the neighborhood of q = e−π
√
2. But the first

factor vanishes in the neighborhood of q = e−π
√
2. So by the identity theorem the

first factor vanishes identically. Hence, we complete the proof. �

Corollary 4.4. We have

(4.23) V (e−π
√
6) =

1−
√

2
3
√

3− 2
√

2
√

2(
√

2 +
3
√

3− 2
√

2)
.
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Proof. Using (3.20) in (4.18) with M = 3 and solving the resulting equation, we
obtain the result (4.23). �

5. Formulas relating V (q) and V (q3)

In this section, we prove two formulas relating V (q) and V (q3).

Theorem 5.1. We have

(5.1) V (q3) =
−1 + t

1 + 2t
,

where

t = 3

√
1 + V 3(q)

1− 8V 3(q)
.

Proof. Using (4.18) with replacing M by 3M in (4.12), we find that

(5.2)
1 + V (e−π

√
6M )

1− 2V (e−π
√
6M )

= 3

√√√√ 1 + V 3(e−π
√

2M
3 )

1− 8V 3(e−π
√

2M
3 )

On simplification of the above identity (5.2) with q = e−π
√

2M
3 , we obtain the

required result (5.1). �

Replacing q by −q in Theorem 5.1 and observe that t is equal to −y, then we
obtain the following theorem.

Theorem 5.2. We have

(5.3) V (−q3) =
1 + y

−1 + 2y
,

where

y = 3

√
1 + V 3(−q)
−1 + 8V 3(−q)

.

6. Some explicit evaluations of V (q)

In this section, we establish following explicit evaluations of Ramanujan’s cubic
continued fractions.

Theorem 6.1. We have

(6.1) V 3(−e−π
√

14
3 ) =

−7x2 + 9− 3
√

9x4 − 14x2 + 9

16x2
,
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where

x =

√
4125

√
7− 10887− 2376

√
21 + 6300

√
3

2

−

√
4125

√
7− 10889− 2376

√
21 + 6300

√
3

2
.

(6.2) V 3(−e−π
√

2
3 ) =

9
√

6− 15
√

2 + 12
√

3− 22

4
,

V (−e−π
√
2)(6.3)

=
1

4

[√
97− 51

√
3− 63

√
2 + 39

√
6−

√
105− 51

√
3− 63

√
2 + 39

√
6

]
,

and

(6.4) V (−e−π
√
3) =

1− 3
√

4

2 + 3
√

4
.

Proof of (6.1). From Ramanujan’s first notebook [14, p.316], we have

(6.5) g42 =
(

2
√

2 +
√

7
) 1

6

(√
3 +
√

7

2

) 1
2

.

From the Theorem 4.1(i) in [8], we have

(6.6) 2
√

2

[
g3ng

3
9n +

1

g3ng
3
9n

]
=
g69n
g6n
− g6n
g69n

.

Using (6.5) in (6.6) with n =
14

3
, we find that

(6.7) g 14
3

=
(

2
√

2−
√

7
) 1

6

(√
3 +
√

7

2

) 1
2

.

From the Theorem 4.3(i) in [8] with slight modification, we have

(6.8) GnG9n = (2gng9n)−
1
2

√
g3ng

3
9n +

√
g6ng

6
9n + 2.
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Using (6.5) and (6.7) in (6.8) with n =
14

3
, we deduce that

(6.9) G 14
3
G42 = (2 +

√
3)

1
2

(
3 +
√

7

2

) 1
2
(√

7−
√

3

2

) 1
2

.

From the Theorem 4.2(i) in [8], we have

(6.10) 2
√

2

[
G3
nG

3
9n −

1

G3
nG

3
9n

]
=
G6

9n

G6
n

+
G6
n

G6
9n

.

Using (6.9) in (6.10) with n =
14

3
, we find that

G6
14
3

G6
42

=

√
37125

√
7 + 56700

√
3− 97999− 21384

√
21

2
(6.11)

−3

√
4125

√
7 + 6300

√
3− 10889− 2376

√
21

2
.

From Theorem 2.1 in [6], we have

(6.12) aM, 3 −
1

aM, 3
=

1

3

[
G6
M
3

G6
3M

− G6
3M

G6
M
3

]
.

Using (6.11) in (6.12) with M = 14, we have

a14, 3 =

√
4125

√
7− 10887− 2376

√
21 + 6300

√
3

2
(6.13)

−

√
4125

√
7− 10889− 2376

√
21 + 6300

√
3

2
.

Using (6.13) in (3.3), we obtain the required result.
As the proofs of the identities (6.2)-(6.4) being similar to the proof of the identity
(6.1). So we omit the details. �

Theorem 6.2. We have

(6.14) V 3(e−π
√

5
3 ) =

−209− 93
√

5 + 54
√

15 + 120
√

3

2
,

(6.15) V 3(e−π
√
8) =

1

8
(19− 9

√
3 + 9

√
6− 18

√
2),
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V 3(e−π
√
10) =

1

4 4
√

5
(158
√

2 + 128
√

3)
1
4

×

[√
6

√
10
√

3 + 20
√

2 + 30
4
√

3−

√
2

√
2108
√

2− 1494
√

3 + 30
4
√

3

]
,(6.16)

and

(6.17) V 3(e−π
√

7
3 ) =

−(7x2 + 9) + 3
√

9x4 + 14x2 + 9

16x2
,

where

x =

√
207 + 78

√
7− 3

√
9149 + 3458

√
7

2
−

√
205 + 78

√
7− 3

√
9149 + 3458

√
7

2
.

Proof of (6.14). From Ramanujan’s first notebook [14, p.289], we have

(6.18) G15 = 2
1
4

(
1 +
√

5

2

) 1
3

.

Using (6.18) in (6.10) with n =
5

3
, we find that

(6.19) G 5
3

= 2
1
4

(
−1 +

√
5

2

) 1
3

.

From Theorem 3.4(i) in [8], with replacing q by −q and using the fact that
g4n = 21/4gnGn, we deduce that

(6.20) g2ng
2
9n =

1

2

[
G2
nG

2
9n +

√
G4
nG

4
9n −

2

G2
nG

2
9n

]
.

Using (6.18) and (6.19) with n =
5

3
, we deduce that

(6.21) g15g 5
3

=

√
3 + 1

2
.

Using (6.21) in (6.6) with n =
5

3
, we find that

(6.22)
g615
g65

3

=
1

8
(
√

5− 1)2(9
√

6 + 7
√

10).
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From Theorem 2.5 in [13], we have

(6.23)
1

bM, 3
+ bM, 3 =

1

3

(
g63M
g6M

3

+
g6M

3

g63M

)
.

Using (6.22) in (6.23) with M = 5, we deduce that

(6.24) b5, 3 =
1

4
(
√

5 +
√

3)(7
√

2− 3
√

10).

Using (6.24) in (3.16), we obtain the required result.
As the proofs of the identities (6.15)-(6.17) being similar to the proof of the identity
(6.14). So we omit the details. �

Remark. One can find several interesting other explicit values of V (q) using the
values of aM, 3, aM, 9, bM, 3 and bM, 9 in [10], [11], [12] and [13].
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