KYUNGPOOK Math. J. 49(2009), 425-433

On Compact-covering Images of Locally Separable Metric Spaces

NGUYEN VAN DUNG

Department of Mathematics, Pedagogical University of Dongthap, Vietnam e-mail: nguyendungtc@yahoo.com

ABSTRACT. In this paper, we give the internal characterizations of compact-covering s-(resp., π -)images of locally separable metric spaces. As applications of these results, we obtain characterizations of compact-covering quotient s-(resp., π -)images of locally separable metric spaces.

1. Introduction

Finding the internal characterizations of certain images of metric spaces is a considerable interest in general topology. In the past, many nice results have been obtained [6], [11], [12], [17], [18]. Recently, many topologists were engaged in research of internal characterizations of images of locally separable metric spaces, and some noteworthy results were shown. In [12], S. Lin, C. Liu, and M. Dai gave a characterization of quotient s-images of locally separable metric spaces. After that, S. Lin, and P. Yan characterized sequence-covering s-images of locally separable metric spaces in [13]; Y. Ikeda, C. Liu and Y. Tanaka characterized quotient compact images of locally separable metric spaces in [7]; and Y. Ge characterized pseudo-sequence-covering compact images of locally separable metric spaces in [5]. In a personal communication, the first author of [12] and [13] informs that characterizations on compact-covering s-images and compact-covering π -images still have no answer. Thus, it is natural to rise the following question.

Question 1.1. How are compact-covering s-(resp., π -)images of locally separable metric spaces characterized?

In this paper, we give the internal characterizations of compact-covering s-(resp., π -)images of locally separable metric spaces. As applications of these results, we obtain a characterization of compact-covering quotient s-(resp., π -)images of locally separable metric spaces.

Throughout this paper, all spaces are assumed to be regular and T_1 , all mappings are assumed continuous and onto, \mathbb{N} denotes the set of all natural numbers. Let $f: X \longrightarrow Y$ be a mapping, $x \in X$, and \mathcal{P} be a family of subsets of X, we

Key words and phrases: point-countable, compact-covering, s-mapping, π -mapping, cfp-cover, cfp-network, Ponomarev-system.

Received February 14, 2008; accepted March 10, 2009.

²⁰⁰⁰ Mathematics Subject Classification: 54E35, 54E40, 54E99.

denote $st(x, \mathcal{P}) = \bigcup \{P \in \mathcal{P} : x \in P\}, \ \bigcup \mathcal{P} = \bigcup \{P : P \in \mathcal{P}\}, \ \bigcap \mathcal{P} = \bigcap \{P : P \in \mathcal{P}\},\$ and $f(\mathcal{P}) = \{f(P) : P \in \mathcal{P}\}.$

Definition 1.2. Let \mathcal{P} be a family of subsets of a space X, and K be a subset of X.

(1) \mathcal{P} is a cover for K in X, if $K \subset \bigcup \mathcal{P}$. When K = X, a cover for K in X is a cover of X [3].

(2) For each $x \in X$, \mathcal{P} is a *network at* x *in* X [15], if $x \in \bigcap \mathcal{P}$ and if $x \in U$ with U open in X, then $x \in P \subset U$ for some $P \in \mathcal{P}$.

 \mathcal{P} is a *network for* X [15], if $\{P \in \mathcal{P} : x \in P\}$ is a network at x in X for every $x \in X$.

(3) \mathcal{P} is a *cfp-cover for* K *in* X, if for each compact subset H of K, there exists a finite subfamily \mathcal{F} of \mathcal{P} such that $H \subset \bigcup \{C_F : F \in \mathcal{F}\}$, where C_F is closed and $C_F \subset F$ for every $F \in \mathcal{F}$. Note that such a \mathcal{F} is a *full cover* in the sense of [2]. When K = X, a *cfp*-cover for K in X is a *cfp-cover for* X [20].

(4) \mathcal{P} is a *cfp-network for* K *in* X, if for each compact subset H of K satisfying $H \subset U$ with U open in X, there exists a finite subfamily \mathcal{F} of \mathcal{P} such that $H \subset \bigcup \{C_F : F \in \mathcal{F}\} \subset \bigcup \mathcal{F} \subset U$, where C_F is closed and $C_F \subset F$ for every $F \in \mathcal{F}$. Note that a *cfp*-network \mathcal{P} for K in X is a family to have *property cc for* K [14], and if K = X, then \mathcal{P} is a *strong k-network* for X in the sense of [2].

It is clear that if \mathcal{P} is a cover (resp., *cfp*-cover, *cfp*-network) for X, then \mathcal{P} is a cover (resp., *cfp*-cover, *cfp*-network) for K in X.

(5) \mathcal{P} is *point-countable* [6], if every point of X meets at most countably many members of \mathcal{P} .

Definition 1.3. Let $f: X \longrightarrow Y$ be a mapping.

(1) f is a compact-covering mapping [16], if every compact subset of Y is the image of some compact subset of X.

(2) f is a *pseudo-sequence-covering* mapping [7], if every convergent sequence of Y is the image of some compact subset of X.

(3) f is a pseudo-open mapping [1], if $y \in int f(U)$ whenever $f^{-1}(y) \subset U$ with U open in X.

(4) f is a π -mapping [1], if for every $y \in Y$ and for every neighborhood U of y in Y, $d(f^{-1}(y), X - f^{-1}(U)) > 0$, where X is a metric space with a metric d.

(5) f is an s-mapping [1], if $f^{-1}(y)$ is separable for every $y \in Y$.

Definition 1.4. Let X be a space.

(1) X is a sequential space [4], if a subset A of X is closed if and only if any convergent sequence in A has a limit point in A.

(2) X is a Fréchet space [4], if for each $x \in \overline{A}$, there exists a sequence in A converging to x.

For terms which are not defined here, please refer to [3] and [18].

426

2. Results

In 1960, V. Ponomarev proved that every first-countable space is precisely an open image of some Baire zero-dimension metric space [3, 4.2 D]. The Ponomarev's method has been generalized [14], and plays a very important role in characterizations of images of metric spaces. We shall use the above method to characterize compact-covering s-images of locally separable metric spaces.

Definition2.1. Let \mathcal{P} be a network for a space X. Assume that there exists a countable network $\mathcal{P}_x \subset \mathcal{P}$ at x in X for every $x \in X$. Put $\mathcal{P} = \{P_\alpha : \alpha \in \Lambda\}$. For every $n \in \mathbb{N}$, put $\Lambda_n = \Lambda$ and endowed Λ_n a discrete topology. Put

$$M = \left\{ a = (\alpha_n) \in \prod_{n \in \mathbb{N}} \Lambda_n : \{ P_{\alpha_n} : n \in \mathbb{N} \right\}$$

forms a network at some point x_a in X.

Then M, which is a subspace of the product space $\prod_{n \in \mathbb{N}} \Lambda_n$, is a metric space and each point x_a is unique for every $a \in M$. Define $f : M \longrightarrow X$ by $f(a) = x_a$, then f is a mapping, and (f, M, X, \mathcal{P}) is a *Ponomarev-system* [14]. Note that under \mathcal{P} being a point-countable network for X, the Ponomarev-system (f, M, X, \mathcal{P}) exists.

It is well known that cfp-networks are preserved by compact-covering mappings. We shall strengthen this result on preservations of cfp-covers and cfp-networks for a compact subset without the assumption of the compact-covering property.

Lemma 2.2. Let $f: X \longrightarrow Y$ be a mapping.

- If P is a cfp-cover for a compact set K in X, then f(P) is a cfp-cover for f(K) in Y.
- (2) If P is a cfp-network for a compact set K in X, then f(P) is a cfp-network for f(K) in Y.

Proof. (1). Let H be a compact subset of f(K). Then $L = f^{-1}(H) \cap K$ is a compact subset of K satisfying f(L) = H. Since \mathcal{P} is a cfp-cover for K in X, there exists a finite subfamily \mathcal{F} of \mathcal{P} such that $L \subset \bigcup \{C_F : F \in \mathcal{F}\}$, where $C_F \subset F$, and C_F is closed for every $F \in \mathcal{F}$. Because L is compact, every C_F can be chosen compact. It implies that every $f(C_F)$ is closed (in fact, every $f(C_F)$ is compact), and $f(C_F) \subset f(F)$. We get that $H = f(L) \subset \bigcup \{f(C_F) : F \in \mathcal{F}\}$, where $f(\mathcal{F})$ is a finite subfamily of $f(\mathcal{P})$. Then $f(\mathcal{P})$ is a cfp-cover for f(K) in Y.

(2). Similar to the proof of (1).

Now, we characterize compact-covering s-images of locally separable metric spaces as follows.

Theorem 2.3. The following are equivalent for a space X.

(1) X is a compact-covering s-image of a locally separable metric space,

Nguyen Van Dung

(2) X has a point-countable cover {X_α : α ∈ Λ} satisfying that each X_α has a countable network P_α, and each compact subset K of X has a finite compact cover {K_α : α ∈ Λ_K} such that, for each α ∈ Λ_K, P_α is a cfp-network for K_α in X_α.

Proof. (1) \Rightarrow (2). Let $f : M \longrightarrow X$ be a compact-covering *s*-mapping from a locally separable metric space M onto X. Since M is a locally separable metric space, $M = \bigoplus_{\alpha \in \Lambda} M_{\alpha}$, where each M_{α} is a separable metric space by [3, 4.4.F]. For each $\alpha \in \Lambda$, let \mathcal{B}_{α} be a countable base of M_{α} , and put $X_{\alpha} = f(M_{\alpha}), \mathcal{P}_{\alpha} = f(\mathcal{B}_{\alpha})$. Then $\{X_{\alpha} : \alpha \in \Lambda\}$ is a point-countable cover for X, and each \mathcal{P}_{α} is a countable network for X_{α} .

Let K be a compact subset of X. Since f is compact-covering, K = f(L) for some compact subset L of M. Because L is a compact subset of M, $\Lambda_K = \{\alpha \in \Lambda : L \cap M_\alpha \neq \emptyset\}$ is finite. For each $\alpha \in \Lambda_K$, put $L_\alpha = L \cap M_\alpha$, then L_α is compact. Denote $K_\alpha = f(L_\alpha)$, we get that $\{K_\alpha : \alpha \in \Lambda_K\}$ is a finite compact cover for K. By [2, Claim 4.2], each \mathcal{B}_α is a cfp-network for M_α . Then \mathcal{B}_α is a cfp-network for L_α in M_α . It follows from Lemma 2.2 that, for each $\alpha \in \Lambda_K$, \mathcal{P}_α is a cfp-network for K_α in X_α .

 $(2) \Rightarrow (1)$. For each $\alpha \in \Lambda$ and $n \in \mathbb{N}$, put $\mathcal{P}_{\alpha} = \{P_{\beta} : \beta \in \Gamma_{\alpha}\}$, and denote by $\Gamma_{\alpha,n}$ the countable set Γ_{α} endowed with the discrete topology. Put

$$M_{\alpha} = \left\{ b_{\alpha} = (\beta_{\alpha,n}) \in \prod_{n \in \mathbb{N}} \Gamma_{\alpha,n} : \{ P_{\beta_{\alpha,n}} : n \in \mathbb{N} \right\}$$

forms a network at some point $x_{b_{\alpha}}$ in X_{α} .

Then M_{α} , which is a subspace of the product space $\prod_{n \in \mathbb{N}} \Gamma_{\alpha,n}$, is a metric space and $x_{b_{\alpha}}$ is unique for each $b_{\alpha} \in M_{\alpha}$. Define $f_{\alpha} : M_{\alpha} \longrightarrow X_{\alpha}$ by choosing $f_{\alpha}(b_{\alpha}) = x_{b_{\alpha}}$. Then the Ponomarev-system $(f_{\alpha}, M_{\alpha}, X_{\alpha}, \mathcal{P}_{\alpha})$ exists. Put $M = \bigoplus_{\alpha \in \Lambda} M_{\alpha}$. Since every \mathcal{P}_{α} is countable, M_{α} is a separable metric space. Then M is a locally separable metric space. Define $f : M \longrightarrow X$ by choosing $f(b_{\alpha}) = f_{\alpha}(b_{\alpha})$ for every $b_{\alpha} \in M_{\alpha}$. It is easy to check that f is continuous and onto. (a) f is an s-mapping.

For each $x \in X$, since $\{X_{\alpha} : \alpha \in \Lambda\}$ is a point-countable cover for $X, \Lambda_x = \{\alpha \in \Lambda : x \in X_{\alpha}\}$ is countable. Note that $\Gamma_{\alpha,n}$ is countable for each $n \in \mathbb{N}$, M_{α} is a separable metric space. Then $f_{\alpha}^{-1}(x)$ is a separable subset of M_{α} for each $\alpha \in \Lambda_x$. Hence $f^{-1}(x) = \bigcup \{f_{\alpha}^{-1}(x) : \alpha \in \Lambda_x\}$ is a separable subset of M. It implies that f is an s-mapping.

(b) f is compact-covering.

Let K be a compact subset of X. Then K has a finite compact cover $\{K_{\alpha} : \alpha \in \Lambda_K\}$ such that, for each $\alpha \in \Lambda_K$, \mathcal{P}_{α} is a cfp-network for K_{α} in X_{α} . It follows from [14, Theorem 2] that there exists a compact subset L_{α} of M_{α} satisfying $f_{\alpha}(L_{\alpha}) = K_{\alpha}$. Put $L = \bigcup \{L_{\alpha} : \alpha \in \Lambda_K\}$, then L is a compact subset of M satisfying f(L) = K. It implies that f is compact-covering.

By Theorem 2.3, we get a characterization of compact-covering quotient s-

428

images of locally separable metric spaces as follows.

Corollary 2.4. The following are equivalent for a space X.

- (1) X is a compact-covering quotient (resp., pseudo-open) s-image of a locally separable metric space,
- (2) X is a sequential (resp., Fréchet) space with a point-countable cover {X_α : α ∈ Λ} satisfying that each X_α has a countable network P_α, and each compact subset K of X has a finite compact cover {K_α : α ∈ Λ_K} such that, for each α ∈ Λ_K, P_α is a cfp-network for K_α in X_α.

Proof. (1) \Rightarrow (2). By Theorem 2.3, it is sufficient to prove that X is a sequential (resp., Fréchet) space. This is obvious by [3, 2.4.G].

 $(2) \Rightarrow (1)$. It follows from Theorem 2.3 that X is a compact-covering s-image of a locally separable metric space under the mapping f. We get that f is quotient (resp., pseudo-open) by [5, Remark 1.7], and [10, Lemma 2.1]. Then X is a compact-covering quotient (resp., pseudo-open) s-image of a locally separable metric space.

Definition 2.5. For each $n \in \mathbb{N}$, let \mathcal{P}_n be a cover for X. $\{\mathcal{P}_n : n \in \mathbb{N}\}$ is a *refinement sequence* for X, if \mathcal{P}_{n+1} is a refinement of \mathcal{P}_n for each $n \in \mathbb{N}$. A refinement sequence for X is a *refinement* of X in the sense of [5].

Definition 2.6. Let $\{\mathcal{P}_n : n \in \mathbb{N}\}$ be a refinement sequence for X. $\{\mathcal{P}_n : n \in \mathbb{N}\}$ is a *point-star network* for X, if $\{st(x, \mathcal{P}_n) : n \in \mathbb{N}\}$ is a network at x in X for every $x \in X$. Note that a point-star network is used without the assumption of a refinement sequence in [14], and $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ is a σ -strong network for X in the sense of [7].

In Section 2 of [14], S. Lin and P. Yan extended the Ponomarev-system to a sequence of covers for a space as follows.

Definition 2.7. Let $\{\mathcal{P}_n : n \in \mathbb{N}\}$ be a point-star network for a space X. For every $n \in \mathbb{N}$, put $\mathcal{P}_n = \{P_\alpha : \alpha \in A_n\}$, and A_n is endowed with discrete topology. Put

$$M = \left\{ a = (\alpha_n) \in \prod_{n \in \mathbb{N}} A_n : \{ P_{\alpha_n} : n \in \mathbb{N} \right\}$$

forms a network at some point x_a in X.

Then M, which is a subspace of the product space $\prod_{n \in \mathbb{N}} A_n$, is a metric space with metric d described as follows.

Let $a = (\alpha_n), b = (\beta_n) \in M$. If a = b, then d(a, b) = 0. If $a \neq b$, then $d(a, b) = 1/(\min\{n \in \mathbb{N} : \alpha_n \neq \beta_n\})$.

Define $f : M \longrightarrow X$ by choosing $f(a) = x_a$, then f is a mapping, and $(f, M, X, \{\mathcal{P}_n\})$ is a *Ponomarev-system* [19]. Note that without the assumption of a refinement sequence in the notion of point-star networks, then $(f, M, X, \{\mathcal{P}_n\})$ is a *Ponomarev-system* in the sense of [14].

Now, we characterize compact-covering π -images of locally separable metric spaces as follows.

Theorem 2.8. The following are equivalent for a space X.

- (1) X is a compact-covering π -image of a locally separable metric space,
- (2) X has a cover $\{X_{\lambda} : \lambda \in \Lambda\}$, where each X_{λ} has a refinement sequence of countable covers $\{\mathcal{P}_{\lambda,n}\}_{n\in\mathbb{N}}$ satisfying the following:
 - (a) $\{\mathcal{P}_n\}_{n\in\mathbb{N}}$ is a point-star network of X, where $\mathcal{P}_n = \bigcup_{\lambda\in\Lambda}\mathcal{P}_{\lambda,n}$ for each $n\in\mathbb{N}$,
 - (b) For every compact subset K of X, there exists a finite subset Λ_K of Λ such that K has a finite compact cover $\{K_{\lambda} : \lambda \in \Lambda_K\}$, and for each $\lambda \in \Lambda_K$ and $n \in \mathbb{N}$, $\mathcal{P}_{\lambda,n}$ is a cfp-cover for K_{λ} in X_{λ} .

Proof. (1) \Rightarrow (2). Let $f: M \longrightarrow X$ be a compact-covering π -mapping from a locally separable metric space M with metric d onto X. Since M is a locally separable metric space, $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$, where each M_{λ} is a separable metric space by [3, 4.4.F]. For each $\lambda \in \Lambda$, denote $f_{\lambda} = f|_{M_{\lambda}}, X_{\lambda} = f_{\lambda}(M_{\lambda})$, and $M_{\lambda} = \overline{D_{\lambda}}$, where D_{λ} is a countable dense subset of M_{λ} .

For each $a \in M_{\lambda}$ and $n \in \mathbb{N}$, put $B(a, 1/n) = \{b \in M_{\lambda} : d(a, b) < 1/n\}$, $\mathcal{B}_{\lambda,n} = \{B(a, 1/n) : a \in D_{\lambda}\}$, and $\mathcal{P}_{\lambda,n} = f_{\lambda}(\mathcal{B}_{\lambda,n})$. It is clear that $\{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$ is a refinement sequence of countable covers for X_{λ} .

(a) $\{\mathcal{P}_n\}_{n\in\mathbb{N}}$ is a point-star network for X.

Since $\{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$ is a refinement sequence for X_{λ} for each $\lambda \in \Lambda$, $\{\mathcal{P}_n : n \in \mathbb{N}\}$ is a refinement sequence for X.

For each $x \in U$ with U open in X. Since f is a π -mapping, $d(f^{-1}(x), M - f^{-1}(U)) > 2/n$ for some $n \in \mathbb{N}$. Then, for each $\lambda \in \Lambda$ with $x \in X_{\lambda}$, we get $d(f_{\lambda}^{-1}(x), M_{\lambda} - f_{\lambda}^{-1}(U_{\lambda})) > 2/n$, where $U_{\lambda} = U \cap X_{\lambda}$. Since $\mathcal{P}_{\lambda,n}$ is a cover for X_{λ} , there exists $f_{\lambda}(B(a, 1/n)) \in \mathcal{P}_{\lambda,n}$ such that $x \in f(B(a, 1/n))$ for some $a \in D_{\lambda}$. We shall prove that $B(a, 1/n) \subset f_{\lambda}^{-1}(U_{\lambda})$. In fact, if $B(a, 1/n) \not\subset f_{\lambda}^{-1}(U_{\lambda})$, then there exists $b \in B(a, 1/n) - f_{\lambda}^{-1}(U_{\lambda})$. Since $f_{\lambda}^{-1}(x) \cap B(a, 1/n) \neq \emptyset$, there exists $c \in f_{\lambda}^{-1}(x) \cap B(a, 1/n)$. Then $d(f_{\lambda}^{-1}(x), M_{\lambda} - f_{\lambda}^{-1}(U_{\lambda})) \leq d(c, b) \leq d(c, a) + d(a, b) < 2/n$. It is a contradiction. So $B(a, 1/n) \subset f_{\lambda}^{-1}(U_{\lambda})$, thus $f_{\lambda}(B(a, 1/n)) \subset U_{\lambda}$. Then $st(x, \mathcal{P}_{\lambda,n}) \subset U_{\lambda}$, and hence $\bigcup \{st(x, \mathcal{P}_{\lambda,n}) : \lambda \in \Lambda \text{ with } x \in X_{\lambda}\} \subset U$. It implies that $st(x, \mathcal{P}_n) \subset U$.

Hence, $\{\mathcal{P}_n\}_{n\in\mathbb{N}}$ is a point-star network for X.

(b) For each compact subset K of X, since f is compact-covering, K = f(L) for some compact subset L of M. By compactness of L, $L_{\lambda} = L \cap M_{\lambda}$ is compact and $\Lambda_K = \{\lambda \in \Lambda : L_{\lambda} \neq \emptyset\}$ is finite. For each $\lambda \in \Lambda_K$, put $K_{\lambda} = f(L_{\lambda})$, then $\{K_{\lambda} : \lambda \in \Lambda_K\}$ is a finite compact cover for K. For each $n \in \mathbb{N}$, since $\mathcal{B}_{\lambda,n}$ is a *cfp*-cover for L_{λ} in M_{λ} , $\mathcal{P}_{\lambda,n}$ is a *cfp*-cover for K_{λ} in X_{λ} by Lemma 2.2.

 $(2) \Rightarrow (1)$. For each $\lambda \in \Lambda$, let $x \in U_{\lambda}$ with U_{λ} open in X_{λ} . We get that $U_{\lambda} = U \cap X_{\lambda}$ with some U open in X. Since $st(x, \mathcal{P}_n) \subset U$ for some $n \in \mathbb{N}$, $st(x, \mathcal{P}_{\lambda,n}) \subset U_{\lambda}$.

It implies that $\{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$ is a point-star network for X_{λ} . Then the Ponomarevsystem $(f_{\lambda}, M_{\lambda}, X_{\lambda}, \{\mathcal{P}_{\lambda,n}\})$ exists. Since each $\mathcal{P}_{\lambda,n}$ is countable, M_{λ} is a separable metric space with metric d_{λ} described as follows. For $a = (\alpha_n), b = (\beta_n) \in M_{\lambda}$, if a = b, then $d_{\lambda}(a, b) = 0$, and if $a \neq b$, then $d_{\lambda}(a, b) = 1/(\min\{n \in \mathbb{N} : \alpha_n \neq \beta_n\})$. Put $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ and define $f : M \longrightarrow X$ by choosing $f(a) = f_{\lambda}(a)$ for every $a \in M_{\lambda}$ with some $\lambda \in \Lambda$. Then f is a mapping and M is a locally separable metric space with metric d as follows. For $a, b \in M$, if $a, b \in M_{\lambda}$ for some $\lambda \in \Lambda$, then $d(a, b) = d_{\lambda}(a, b)$, and otherwise, d(a, b) = 1.

```
(a) f is a \pi-mapping.
```

Let $x \in U$ with U open in X, then $st(x, \mathcal{P}_n) \subset U$ for some $n \in \mathbb{N}$. So, for each $\lambda \in \Lambda$ with $x \in X_\lambda$, we get $st(x, \mathcal{P}_{\lambda,n}) \subset U_\lambda$, where $U_\lambda = U \cap X_\lambda$. It is implies that $d_\lambda(f_\lambda^{-1}(x), M_\lambda - f_\lambda^{-1}(U_\lambda)) \geq 1/n$. In fact, if $a = (\alpha_k) \in M_\lambda$ such that $d_\lambda(f_\lambda^{-1}(x), a) < 1/n$, then there exists $b = (\beta_k) \in f_\lambda^{-1}(x)$ such that $d_\lambda(a, b) < 1/n$. So $\alpha_k = \beta_k$ if $k \leq n$. Note that $x \in P_{\beta_n} \subset st(x, \mathcal{P}_{\lambda,n}) \subset U_\lambda$. Then $f_\lambda(a) \in P_{\alpha_n} = P_{\beta_n} \subset st(x, \mathcal{P}_{\lambda,n}) \subset U_\lambda$. Hence $a \in f_\lambda^{-1}(U_\lambda)$. It implies that $d_\lambda(f_\lambda^{-1}(x), a) \geq 1/n$ if $a \in M_\lambda - f_\lambda^{-1}(U_\lambda)$. So $d_\lambda(f_\lambda^{-1}(x), M_\lambda - f_\lambda^{-1}(U_\lambda)) \geq 1/n$. Therefore

$$d(f^{-1}(x), M - f^{-1}(U)) = \inf\{d(a, b) : a \in f^{-1}(x), b \in M - f^{-1}(U)\} = \min\{1, \inf\{d_{\lambda}(a, b) : a \in f_{\lambda}^{-1}(x), b \in M_{\lambda} - f_{\lambda}^{-1}(U_{\lambda}), \lambda \in \Lambda\}\} \\ \ge 1/n > 0.$$

It implies that f is a π -mapping.

(b) f is compact-covering.

For each compact subset K of X, there exists a finite subset Λ_K of Λ such that K has a finite compact cover $\{K_{\lambda} : \lambda \in \Lambda_K\}$, and for each $\lambda \in \Lambda_K$ and $n \in \mathbb{N}$, $\mathcal{P}_{\lambda,n}$ is a *cfp*-cover for K_{λ} in X_{λ} . It follows from [14, Lemma 13] that $K_{\lambda} = f_{\lambda}(L_{\lambda})$ with some compact subset L_{λ} of M_{λ} . Put $L = \bigcup \{L_{\lambda} : \lambda \in \Lambda_K\}$, then L is a compact subset of M and f(L) = K. It implies that f is compact-covering.

By Theorem 2.8, we get the following.

Corollary 2.9. The following are equivalent for a space X.

- (1) X is a compact-covering quotient (resp., pseudo-open) π -image of a locally separable metric space,
- (2) X is a sequential (resp., Fréchet) space having a cover $\{X_{\lambda} : \lambda \in \Lambda\}$, where each X_{λ} has a refinement sequence of countable covers $\{\mathcal{P}_{\lambda,n}\}_{n\in\mathbb{N}}$ satisfying the following:
 - (a) $\{\mathcal{P}_n\}_{n\in\mathbb{N}}$ is a point-star network of X, where $\mathcal{P}_n = \bigcup_{\lambda\in\Lambda} \mathcal{P}_{\lambda,n}$ for every $n\in\mathbb{N}$,
 - (b) For every compact subset K of X, there exists a finite subset Λ_K of Λ such that K has a finite compact cover $\{K_{\lambda} : \lambda \in \Lambda_K\}$, and for each $\lambda \in \Lambda_K$ and $n \in \mathbb{N}$, $\mathcal{P}_{\lambda,n}$ is a cfp-cover for K_{λ} in X_{λ} .

Proof. As in the proof of Corollary 2.4.

Finally, we give examples to illustrate theorems in the above.

Example 2.10. There exists a compact-covering *s*-image of a locally separable metric space which is not a compact-covering π -image of any locally separable metric space.

Proof. Let X be a sequential fan S_{ω} (see [9]). Then X is a Fréchet and \aleph_0 -space. It follows from [18, Remark 8.(2)] that X is a compact-covering s-image of a locally separable metric space. It is clear that every compact-covering mapping is a pseudo-sequence-covering mapping, and X is not a pseudo-sequence-covering π -image of any metric space [8, Example 2.8]. Then X is not a compact-covering π -image of any locally separable metric space.

Example 2.11. There exists a compact-covering π -image of a locally separable metric space which is not a compact-covering *s*-image of any locally separable metric space.

Proof. Let X be a developable space Y in [7, Example 17]. Then X is a compactcovering (quotient) π -image of a locally separable metric space. Moreover, X is not a quotient s-image of any locally separable metric space. It implies that X is not a compact-covering s-image of any locally separable metric space.

References

- [1] A. V. Arhangel'skii, Mappings and spaces, Russian Math. Surveys, 21(1966), 115-162.
- [2] H. Chen, Compact-covering maps and k-networks, Proc. Amer. Math. Soc., 131(2002), 2623-2632.
- [3] R. Engelking, General topology, Sigma series in pure mathematics, vol. 6, Heldermann Verlag, Berlin, 1988.
- [4] S. P. Franklin, Spaces in which sequences suffice, Fund. Math., 57(1965), 107-115.
- [5] Y. Ge, On compact images of locally separable metric spaces, Topology Proc., 27(1) (2003), 351-360.
- [6] G. Gruenhage, E. Michael, and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math., 113(2)(1984), 303-332.
- [7] Y. Ikeda, C. Liu, and Y. Tanaka, Quotient compact images of metric spaces, and related matters, Topology Appl., 122(2002), 237-252.
- [8] Z. Li, On π -s-images of metric spaces, Int. J. Math. Math. Sci., 7(2005), 1101-1107.
- [9] S. Lin, A note on the Arens' space and sequential fan, Topology Appl., 81(1997), 185-196.
- [10] S. Lin, A note on sequence-covering mappings, Acta Math. Hungar., 107(2005), 187-191.

- [11] S. Lin and C. Liu, On spaces with point-countable cs-networks, Topology Appl., 74(1996), 51-60.
- [12] S. Lin, C. Liu, and M. Dai, *Images on locally separable metric spaces*, Acta Math. Sinica (N.S.), **13(1)**(1997), 1-8.
- [13] S. Lin and P. Yan, Sequence-covering maps of metric spaces, Topology Appl., 109(2001), 301-314.
- [14] S. Lin and P. Yan, Notes on cfp-covers, Comment. Math. Univ. Carolin., 44(2)(2003), 295-306.
- [15] E. Michael, A note on closed maps and compact subsets, Israel J. Math., 2(1964), 173-176.
- [16] S. Lin and P. Yan, \aleph_0 -spaces, J. Math. Mech., 15(1966), 983-1002.
- [17] Y. Tanaka, Point-countable covers and k-networks, Topology Proc., 12(1987), 327-349.
- [18] Y. Tanaka, Theory of k-networks II, Questions Answers in Gen. Topology, 19(2001), 27-46.
- [19] Y. Tanaka and Y. Ge, Around quotient compact images of metric spaces, and symmetric spaces, Houston J. Math., 32(1)(2006), 99-117.
- [20] P. Yan, On the compact images of metric spaces, J. Math. Study, 30(2)(1997), 185-187.