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Abstract. Let J be the Jacobian variety of a hyperelliptic curve over Q. Let M be the

field generated by all square roots of rational integers over a finite number field K. Then

we prove that the Mordell-Weil group J(M) is the direct sum of a finite torsion group

and a free Z-module of infinite rank. In particular, J(M) is not a divisible group. On the

other hand, if M̃ is an extension of M which contains all the torsion points of J over Q,

then J(M̃ sol)/J(M̃ sol)tors is a divisible group of infinite rank, where M̃ sol is the maximal

solvable extension of M̃ .

1. Introduction

Let K be a number field. Let A be a nonzero abelian variety defined over K.
For an extension M over K, we denote the group of M -rational points by A(M)
and its torsion subgroup by A(M)tors. We call A(M) is the Mordell-Weil group of
A over M . In [1], Frey and Jarden have asked whether the Mordell-Weil group of
every nonzero abelian variety A defined over K has infinite Mordell-Weil rank over
the maximal abelian extension Kab of K. They proved that for elliptic curves E
defined over Q, the Mordell-Weil group E(Qab) has infinite rank. Imai [3] and Top
[7] generalized independently this result to the Jacobian variety of a hyperelliptic
curve defined over Q. In fact, they showed the infiniteness of the Mordell-Weil rank
for certain elementary abelian 2-extensions over Q. Our aim in this paper is to
give yet another proof of this result. Furthermore, our theorem gives slightly more
precise information on the structure of the Mordell-Weil group than [3] and [7]. In
addition to this result, we exhibit some cases where, over certain larger fields, the
Mordell-Weil groups modulo torsion are infinite-dimensional Q-vector spaces.

Our main theorem is the following:

Theorem 1. Let C be a hyperelliptic curve of genus at least 1 defined over Q and
let J be its Jacobian variety. Suppose that C has a Q-rational point. Let K be a
finite number field, and let M = K(

√
m | m ∈ Z) be the field generated by all square

roots of rational integers over K. Then the group J(M) is the direct sum of a finite
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torsion group and a free Z-module of infinite (countable) rank.

In [1], [3], [7], the Mordell-Weil rank of A over M seems to mean dimQ(A(M)⊗Z
Q). However, for a Z-module X, that dimQ(X⊗ZQ) = ∞ does not necessarily imply
that X modulo torsion is a free Z-module of infinite rank (Example: X = Q⊕∞).
Thus our statement above gives more precise information on the structure of J(M)
than those of [1], [3], [7].

This theorem will be proved in Section 2. Two key ingredients in our proof are
the following results of Ribet and Siegel.

Theorem 2(Ribet, [5]). Let K(ζ∞) be the field obtained by adjoining to K all roots
of unity. Then for any abelian variety A over K, the group A(K(ζ∞))tors is finite.

This is proved by showing that the p-primary part of A(K(ζ∞))tors vanishes for
almost all p and is finite for all p. In Theorem 1, since M ⊂ K(ζ∞), the theorem
of Ribet guarantees the finiteness of torsion subgroup J(M)tors.

Remark. We can generalize Theorem 1 for hyperelliptic curves C defined over
an arbitrary finite number field K, if we could prove that J(M)tors is finite for
M = K(

√
m; m ∈ OK), where OK is the ring of integers of K.

Theorem 3(Siegel, cf. [6]). For an affine curve C0 ⊂ An of genus at least 1 over
K, the group of integer points C0(OK) is finite.

This is proved by using techniques for the theory of Diophantine approximation.

Remark. To prove Theorem 1 for curves C of genus ≥ 2, we may appeal to
Faltings’ theorem [2] (= Mordell’s conjecture) instead of Siegel’s theorem.

Acknowledgment. The author would like to thank Professor Akio Tamagawa for
helpful comments. In particular, he pointed out that M0/K in Lemma 4 needs the
assumption of Galois by providing a nice counterexample.

2. Proof of theorem 1

First, we prove a few algebraic lemmas. Let X be a Z-module. For a submodule
Y ⊂ X, the saturation Y ∼ of Y in X is defined by

Y ∼ = {x ∈ X | ax ∈ Y for some nonzero integer a}.

We call Y a saturated subgroup of X if Y = Y ∼. Note that Y is a saturated
subgroup if and only if the quotient group X/Y is torsion-free.

Lemma 4. Let A be an abelian variety over K. Let M0 be a Galois extension of
K such that A(M0)tors is finite. We denote the exponent of A(M0)tors by N . Let L
be a finite extension of K contained in M0. Then the saturation A(L)∼ of A(L) in
A(M0) is contained in

1
N

A(L) := {P ∈ A(M0) | NP ∈ A(L)}.
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Proof. Let P be an element of A(L)∼ such that nP ∈ A(L) for some nonzero
integer n. Let σ be an element of Gal(M0/L). Then Pσ−P is an n-torsion element
of A(M0) since n(Pσ − P ) = (nP )σ − nP = O. Hence n|N , and also we have
NP ∈ A(L). �

Lemma 5. Let Y be a finitely generated abelian group. Let Z be a saturated
subgroup of Y . Then there exists a free subgroup Z ′ of Y such that

Y = Z ⊕ Z ′.

Proof. Let Z be a saturated subgroup of Y . Then it follows that the quotient group
Y/Z is a free Z-module since it is a finitely generated torsion-free abelian group. If
we take a basis {z′1 + Z, z′2 + Z, · · · , z′r + Z} for Y/Z, and a basis {z1, · · · , zl} for
Z, then {z1, · · · , zl, z

′
1, · · · , z′r} is a basis for Y. Hence we have Y = Z ⊕ Z ′ with

Z ′ := 〈z′1, · · · , z′r〉. �

Lemma 6. Let X be a countably generated torsion-free abelian group. Let (Yi)i≥1

be an increasing sequence of finitely generated subgroups Yi of X such that X = ∪Yi.

If there exists an integer N ≥ 1 such that Y ∼i ⊂ 1
N

Yi for all i, then X is a free
Z-module of countable rank.

Proof. By the definition of saturation, we have Y ∼1 ⊂ Y ∼2 ⊂ · · · , so X = ∪∞i=1Y
∼
i .

Since Y ∼i ⊂ 1
N

Yi, the saturation Y ∼i is also a finitely generated subgroup of X for

all i. Using Lemma 5, we have Y ∼i = Y ∼i−1 ⊕ (Y ∼i−1)
′ for some free group (Y ∼i−1)

′.
Hence any basis of Y ∼i−1 extends to a basis of Y ∼i . Therefore X is a free Z-module
of countable rank. �

Lemmas 4 and 6 imply the following:

Proposition 7. Let A be an abelian variety over a finite number field K. Let
M0 be a Galois extension of K such that A(M0)tors is finite. Then the group
A(M0)/A(M0)tors is a free Z-module of at most countable rank.

Proof. Clear. �

Proof of theorem 1. We may assume that C is a smooth compactification of the
affine plane curve C0 : y2 = f(x), where f(x) is a separable polynomial with integer
coefficients. Let P0 = (∞,∞) be the point at infinity on C, which is rational over Q.
Let j : C → J be the embedding defined over K such that j(P0) = O, the identity
point of J . Since J(K(ζ∞))tors is finite by Ribet, J(M)tors is also finite. Then, by
Proposition 7, it only remains to show that J(M) is not finitely generated. If J(M)
is finitely generated, then it is equal to J(L) for some finite extension L/K. Indeed,
such L is constructed by adjoining to K all coordinates of a finite set of generators
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of J(M). Then we have the following commutative diagram:

C0(M) ↪→ J(M)

‖ ‖

C0(L) ↪→ J(L)

Here, the left hand equality follows from C0(M) = C0(K)∩J(M) = C0(K)∩J(L) =
C0(L). By Siegel’s theorem, C0(L) contains only finitely many integral points. This
contradicts the fact that the set C0(M) contains the infinite set {(x,

√
f(x)) | x ∈ Z}

of integral points. �

3. Divisibility

Let A be a nonzero abelian variety defined over a number field K and M be an
extension of K. An element P ∈ A(M) is said to be divisible if there is a solution
X ∈ A(M) to the equation nX = P for every nonzero integer n. When every
nonzero element of A(M) is divisible, we say that A(M) is a divisible group. For
example, Q is a torsion-free divisible group and Q/Z is a divisible torsion group.
Then we see that Proposition 7 implies that the group A(M0) there (and hence
J(M) in Theorem 1) has no nonzero divisible elements. Note that a torsion-free
divisible group is uniquely divisible and hence has a natural structure of Q-vector
space.

In this section, we consider for which extension M the Mordell-Weil group
A(M) contains a divisible subgroup (of countable rank). For example, if M is an
algebraic closure of Q, then for every nonzero integer n and every point P ∈ A(Q),
the equation nX = P is solvable in Q. Hence we see that A(Q) is divisible. In fact,
A(Q)/A(Q)tors is an infinite dimensional Q-vector space.

Lemma 8. If M contains the field K(A(Q)tors) obtained by adjoining the coordi-
nates of all torsion points of A over Q, then every element of A(M) is divisible in
A(Mab), where Mab is the maximal abelian extension of M.

Proof. Let P be an element of A(M). We show that for every nonzero integer

n, we have
1
n

P ∈ A(Mab). Denote by M(
1
n

P ) the field obtained by adjoining

the coordinates of the points X ∈ A(Q) such that nX = P . Note that the exten-

sion M(
1
n

P )/M is a Galois extension. Let A(Q)[n] ⊂ A(Q)tors be the subgroup

of elements of order dividing n. Choose a point X ∈ A(Q) such that nX = P .

Then we have an injective homomorphism Gal(M(
1
n

P )/M) ↪→ A(Q)[n] by send-

ing σ ∈ Gal(M(
1
n

P )/M) to Xσ −X ∈ A(Q)[n]. Since A(Q)[n] ' (Z/nZ)2g, where
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g is the dimension of A, we know that M(
1
n

P )/M is an abelian extension. Hence

we have
1
n

P ∈ A(Mab). �

Thus we have proved the following:

Proposition 9. If M ⊃ K(A(Q)tors) and A(M)/A(M)tors contains a subgroup
isomorphic to Z⊕r, then A(Mab)/A(Mab)tors contains a subgroup isomorphic to
Q⊕r.

Although any element of A(M) is divisible in A(Mab), we cannot say in general that
A(Mab) itself is divisible. This is because for an element P ∈ A(Mab)rA(Mab)tors,

the coordinates of its n-division points
1
n

P are a priori contained only in an abelian

extension of Mab. Therefore we obtain the following result:

Theorem 10. Let A be a nonzero abelian variety defined over K. Suppose that
M ⊃ K(A(Q)tors). Let Msol be the maximal solvable extension of M. Then
A(Msol)/A(Msol)tors is a torsion-free divisible group.

Proof. Since Msol = ((Mab)ab)ab..., by Lemma 8, every element of
A(Msol)/A(Msol)tors is divisible in A(Msol)/A(Msol)tors. This completes the proof.

�

Now we apply the above to the situation of our main theorem.

Theorem 11. Let C be an hyperelliptic curve defined over Q. Suppose that C has
a Q-rational point. Let J be the Jacobian variety of C. Let M = K(

√
m | m ∈ Z)

be as in Theorem 1, and put M̃ := M(J(Q)tors). Then we have

J(M̃ sol)/J(M̃ sol)tors ' Q⊕∞.

Proof. By Theorem 1, we know that J(M)/J(M)tors is a free Z-module of infinite
rank. Since J(M̃)tors ⊃ J(M)tors, J(M̃)/J(M̃)tors also contains a free Z-module of
infinite rank. Then Proposition 9 and Theorem 10 imply that J(M̃ sol)/J(M̃ sol)tors
is an infinite dimensional Q-vector space. Thus we obtain the Theorem. �

Remark. It is expected that the field M̃ sol is not too large (i.e., Gal(Q/M̃ sol) is not
too small). It is another interesting problem to study the structure of Gal(Q/M̃ sol).
Note that Ohtani [4] studied certain closed normal subgroups of free profinite groups
of countably infinite rank. In particular, her results imply that, if M is a subfield of
Q such that Gal(Q/M) is free profinite of countably infinite rank, then Gal(Q/Msol)
is a so-called ω-N -free pro-N group, where N is the class of all finite groups which
have no non-trivial solvable quotients.
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