References
- S. N. Bhatt, An aspect of local property of | R, log n, 1 | summability of the factored Fourier series, Proc. Nat. Inst. India, 26(1960), 69-73.
- H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc., 97(1985), 147-149. https://doi.org/10.1017/S030500410006268X
-
H. Bor, Local property of |
$\overline{N},\;p_n$ |$_k$ summability of factored Fourier series, Bull. Inst. Math. Acad. Sinica, 17(1989), 165-170. - H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113(1991), 1009-1012. https://doi.org/10.1090/S0002-9939-1991-1068115-X
-
H. Bor, On the local property of |
$\overline{N},\;p_n$ |$_k$ summability of factored Fourier series, J. Math. Anal. Appl., 163(1992), 220-226. https://doi.org/10.1016/0022-247X(92)90289-P - T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7(1957), 113-141. https://doi.org/10.1112/plms/s3-7.1.113
- G. H. Hardy, Divergent series, Oxford Univ. Press, Oxford, 1949.
-
S.M. Mazhar, A note on the localization of |
$\overline{N},\;p_n$ |$_k$ summability of Fourier series, Kumamoto J. Math., 12(1999), 1-8. -
K. Matsumoto, Local property of the summability |
$R,\;\lambda_n,\;1$ |, Tohoku Math. J., 8(2)(1956), 114-124. https://doi.org/10.2748/tmj/1178245014 -
K. N. Mishra, Multipliers for |
$\overline{N},\;p_n$ | summability of Fourier series, Bull. Inst. Math. Acad. Sinica, 14(1986), 431-438. - R. Mohanty, On the summability | R, log w, 1 | of Fourier series, J. London Math. Soc., 25(1950), 67-72. https://doi.org/10.1112/jlms/s1-25.1.67
- W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc., 115(1992), 313-317. https://doi.org/10.1090/S0002-9939-1992-1045602-2
- E.C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, London, 1961.
Cited by
- On the Absolute Matrix Summability Factors of Fourier Series vol.103, pp.1-2, 2018, https://doi.org/10.1134/S0001434618010303