DOI QR코드

DOI QR Code

On Local Properties of Factored Fourier Series

  • Bor, Huseyin (Department of Mathematics, Erciyes University)
  • Received : 2008.05.29
  • Accepted : 2008.09.03
  • Published : 2009.06.30

Abstract

In the present paper, a theorem dealing with local property of ${\mid}\;\overline{N},p_n,{\theta}_n\;{\mid}_k$ summability of factored Fourier series which generalizes a result of Mazhar [8], has been proved. Some new results have also been obtained.

Keywords

References

  1. S. N. Bhatt, An aspect of local property of | R, log n, 1 | summability of the factored Fourier series, Proc. Nat. Inst. India, 26(1960), 69-73.
  2. H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc., 97(1985), 147-149. https://doi.org/10.1017/S030500410006268X
  3. H. Bor, Local property of | $\overline{N},\;p_n$ |$_k$ summability of factored Fourier series, Bull. Inst. Math. Acad. Sinica, 17(1989), 165-170.
  4. H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113(1991), 1009-1012. https://doi.org/10.1090/S0002-9939-1991-1068115-X
  5. H. Bor, On the local property of | $\overline{N},\;p_n$ |$_k$ summability of factored Fourier series, J. Math. Anal. Appl., 163(1992), 220-226. https://doi.org/10.1016/0022-247X(92)90289-P
  6. T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7(1957), 113-141. https://doi.org/10.1112/plms/s3-7.1.113
  7. G. H. Hardy, Divergent series, Oxford Univ. Press, Oxford, 1949.
  8. S.M. Mazhar, A note on the localization of | $\overline{N},\;p_n$ |$_k$ summability of Fourier series, Kumamoto J. Math., 12(1999), 1-8.
  9. K. Matsumoto, Local property of the summability | $R,\;\lambda_n,\;1$ |, Tohoku Math. J., 8(2)(1956), 114-124. https://doi.org/10.2748/tmj/1178245014
  10. K. N. Mishra, Multipliers for | $\overline{N},\;p_n$ | summability of Fourier series, Bull. Inst. Math. Acad. Sinica, 14(1986), 431-438.
  11. R. Mohanty, On the summability | R, log w, 1 | of Fourier series, J. London Math. Soc., 25(1950), 67-72. https://doi.org/10.1112/jlms/s1-25.1.67
  12. W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc., 115(1992), 313-317. https://doi.org/10.1090/S0002-9939-1992-1045602-2
  13. E.C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, London, 1961.

Cited by

  1. On the Absolute Matrix Summability Factors of Fourier Series vol.103, pp.1-2, 2018, https://doi.org/10.1134/S0001434618010303