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ABSTRACT. In this paper, one kind of subgroup in arbitrary group which similar to the
linear subspace was constructed, and the generalization of the Hahn-Banach theorem on
this kind of subgroup in arbitrary groups was obtained.

1. Introduction

The Hahn-Banach theorem is a powerful existence theorem whose form is par-
ticularly appropriate to applications in linear problems. In its elegance and power,
the Hahn-Banach theorem is a favorite of almost every analyst. The generalization
of the Hahn-Banach theorem on groups has been discussed in many articles, much
of these discussions were under the assumption of some condition of groups, such as
the weakly commutativity in the paper of Z. Gajda and Z. Kominek [3], or groups
in class G during R. Badora [1]. The purpose of this paper is to find the sufficient
and necessary condition of Hahn-Banach theorem on arbitrary groups.

Let G be a group, p, f be functionals on G — R, then p is subadditive and f is
additive if and only if

p(zy) <plx) +ply), z,yc G and f(xy) = f(x)+ f(y), z,y€G.

Moreover, p is completely commutative if and only if for any n € Z* and any per-
mutation xg,,- -, 2k, of z1,--- ,x, € G, one has

p(H T;) = P(H T, )
i=1 i=1
Let A be all additive functionals f on group G, denote that
Vo = () ker(f)
feEA

and for every H < GG, we denote
r(H)={z|31€Z,z' ¢ H}, V =r(Gy),
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where G is the commutator subgroup that generated by all the elements g1 g29; ! 9y !
of G.

According to the discussion, we first show that V = Vj in Lemma 3.1, which
reveals the relationship between additive functional and subgroup. Second based
on the research of S({z;}) (Definition 2.3), for arbitrary group G and it’s subgroup
H, we give the sufficient and necessary condition that Hahn-Banach theorem can
be generalized in Theorem 4.5 and Theorem 4.6. Thus the result of R. Badora
([1], Theorem 3) is able to extend when V' C H. Moreover, by our Corollary 4.2,
Theorem 4.3 implies when the Hyers theorem on the stability of Cauchy functional
equation (see Tabor [7]) still holds true on arbitrary G and when not, that means
the conclusion of R. Badora ([1], Theorem 2) is much weaker than what we obtain.
Finally as an application of Theorem 4.6, the result on subadditive functional p
which is completely commutative was obtained.

2. Preliminaries

Firstly, we give some preparations for the paper.

Proposition 2.1. Gg < G, for any x,y € G, there exists v,u € Go such that

TY = VYT = YTU.
Proposition 2.2. V<1 G, V) < G.
Definition 2.3. For zg € G, 29 € V, we denote that

SH{zo}) ={z3,lo € Z,v € V,1 > 0; 2! = vald}

Let {x;} = {x1, - ,2,} C G, satisfying

(1) for any {z;, } C {x;}, S({:,}) can be defined;

(2) for any = € {x;},{z:, } C{x;} \ {2}, v & S{=i,}).
Then we denote

SHz}) ={z|3 1,1, €Z,veV,1>0; 2! = ”HIiL}

Suppose a infinite subset {24} C G, satisfying
(1) for any finite subset {xr} C {za}, S({xr}) can be defined;
(2) for any = € {x}, finite subset {zr} C {za} \ {2z}, v & S{zr}).

Then we denote
Sz = U SUah).
{z, }C{z,}

Proposition 2.4. Let {z;} = {z1,---,z,} C G, S({x;}) can be defined,
Xgyy o Xk, 18 an any permutation of x1,- -« &y, then S({xg, }) = S({z:}).

Proof. By Definition 2.3, for any z € S({zy,}), 3 LIy, € Z,v € V,1 > 0; 2! =



The Hahn-Banach Theorem on Arbitrary Groups 247

Ik, . . .
v Hmk’?, suppose x, is the element z; € {x;}, denote that I; = lj,, using Proposi-
tion 2.1, we commute z, again and again such that

l_ ley i _ 1 I r_
x —UH,’Eki —UUH% =0 Hmi, u€ Gy, v =vueV.

So z € S({z;}), S{zx,}) € S({z;}), by the same method we obtain S({z;}) C
S({zk,}), as the result S({z;}) = S({xk, })- O
From now on, we ignore the permutation of 1, - - - , z,, when discussing S({z;}).

Proposition 2.5. suppose {x;} = {x1,- -, 2, C G, S({zi}) can be defined,
v € S({x;}), 2t = vaﬁi, Ll € Z,v € V,1 > 0, then l;/1 is uniquely determined
by x.
Proof. For the reduction to absurdity, when n > 1, suppose there exist I',l; €
Z,v' € V,I' > 0, such that

at = H;Ui;,

where not all the value of I;/1 —I/l' are 0, in other words, [;I" — I/l do not all equal
to 0. Then, by Proposition 2.1 and the proof of Proposition 2.4, we have

ll/—l l_ UHx /Hxéi)_l — " Hxizl *lil’ V' ev.
Notice that there exist {xl’ — [}l # 0, without loss of generality, we can suppose
k=mnandl,l' =1/l <0, so

’ n—- 1 7 !
l =l _ o H xil L
i=1
Now we get x,, € S({x1,-++ ,2xn_1}), which is contrary to the definition of S({z;}).
When n = 1, as the same discussion, we get z; € V, which is also contrary to the
definition. Hence I;/1 is uniquely determined by x. g

Proposition 2.6. Suppose {x;} = {1, - , 2} C G, S{zi}) can be defined, then
Proof. For z € S({x;}), o' = v]_[:céi, veV il €71 >0,since VG, we have

n+1— 1 n+1l—i
H$n+1 2T L=y Hazn_H o eV

Hence 7' € S({xpn, -+ ,21}) = S({z;}). Moreover, for gzg~!, g € G, we obtain

grg ™t = (grg te Ha € S{x}).

Suppose y € S({z;}), then 3k, k; € Z,u € V, k > 0;94* = u]_[xfl, using Proposition
2.1 over and over, we get

(xy)* = wakly? = (vHxi)k(ufo)l = w’Hmf"’lHik, w € Gy, w V.
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Since kl > 0, we have zy € S({x;}), thus S({z;}) < G. O

Proposition 2.7. Suppose a infinite subset {xpx} C G, where S({xa}) can be
defined, then S({za}) < G.

Proof. This can be proved immediately by the Definition 2.3 and Proposition 2.6.
U

Proposition 2.8. Let {z;} = {x1, -+ ,2,} C G, where S({z;}) can be defined,
suppose x € G\ S({z;}), then S{z;}) N S{z}) =V.

Proof. Firstly, we have V C S({z;}) N S({z}) by Definition 2.3. Moreover, if there
exist y € S({z;})NS({z})\V, using the similar method in the proof of Proposition
2.5, it can be proved that z € S({x;}), which is impossible to the condition. O

Proposition 2.9. Suppose {x;} = {x1, -+ ,x,} C G where S({z;}) can be defined,
if v e G\ S({x;}), then S({x;}) C S({z,x;}).
3. Some results about additive functionals

The purpose of this section is to study the additive functional on S({x;}).

Lemma 3.1. Let {x;} = {x1, -+ ,2n} C G where S({x;}) can be defined, then for
any real number sequence ¢y, - , ¢y, there exist additive functional a on S({x;}),
which satisfy a(x;) = ¢; and a|V = 0.

Proof. By Definition 2.3, for any x € S({z;}),
L, eZveV,l> O;xl :rUHxéqz.

Define that ;
a(x) = Z Tzci.

Following Proposition 2.5, I; /1 is uniquely determined by x, so a(x) is a well-defined
functional on S({x;}). Moreover, if © € V, then [;/l = 0, as the result,

alV =0.

Now we prove the additivity of a(z), using the proof of Proposition 2.6, suppose
ye SH{z}), v* = unxf, k,k; € Z,u € V,k > 0, then the following fact is

% . = a(z) + a(z)

a(ry) =
which prove the additivity of a. It’s easy to see a(x;) = ¢;, which means a(z) is the
additive functional as need. O

Corollary 3.2. Suppose a infinite subset {xp} C G where S({xa}) can be defined,
then for any real number set {cp}, there exist additive functional a on S({za}),
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which satisfy a(zp) = cp and a]V = 0.

Lemma 3.3. 1, =V.
Proof. We first prove V' C Vj, let z € V, following the Definition of V,

I1€ZT, = gngingi 9" € Go, o' = sz
So for any f € A,

fa'y=f([Tz)=>_flz) =0, Wf@@) =0, flx)=0.

Hence V C V4.

Next, we will show that V[ C V. If V = G, then the proof is finished. If V C G
and V # G, then for any zop € G\ V, by Lemma 3.1, there exist an additive
functional a(x) on S({zo}), satisfying a(xg) = 1 and a|V = 0. Denote family
F ={(S({za}), fizar)}> where S({za}) can be defined and f(,,; is additive func-
tional on S({xa}). Moreover, we let all (S({za}), f{z,}) of F satisfy

(1) zo € {za};

(2) fen)[S(z0}) = a.

Then (S({zo}),a) € F, F # 0. Introducing a partial order < by putting

{za} S{ar}, flaoylSUza}) = frany-

Let £ = {(S({za}), frza}) : {za} € D} be a linearly ordered subfamily of F, then
it’s easy to verify that the pair (S, f), where

S= |J S(za}), f(@)=fany(2), v € S{xr}), {za} €D

{za}eD

is a upper bound of £, moreover, (S, f) € F. Hence the Zorn Lemma implies that
there exist a maximal element {(S({za}), f{z5})} in F. We obtain

G = S({J?A})

In fact, for the reduction to absurdity, suppose y € G\ S({za}), we construct a
subgroup S({y,za}). Following the Corollary 3.2, there exist an additive functional
ag on S({y,xza}), satisfying

ao(y) =0, ao(z) = flzay (@), € {za} and ag|V =0.

Now for any « € S({za}), there exist {x;} = {z1, -+ ,zn} C {za}, € S{x:})
and z! = vnxii, veV,l,l; € Z,1>0, then

ao(z') = ao(v [ %) = ao(J [ 25) = Froay ([ [ 28) = Frony @ [ [ 2) = Froay (@),
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ao(z) = flaeay ().
So,
aO‘S({xA}) = f{LEA}7 (S({Z‘A})vf{xA}) = (S({yva})’ao)

which implies that S({za}) = S(y,{za}), and this is contrary to the assumption
ofye G\ S{za}). Thus, G = S({za}).

As a result, f,,} is an additive functional on G, where fr;,y(20) = 1, and by the
arbitrariness of xg, we obtain Vi C V. Hence Vp = V. ([l

4. The Hahn-Banach theorem on arbitrary groups

From now on, the Hahn-Banach theorem on arbitrary groups will be discussed.

Theorem 4.1. Suppose {xpx} C G where S({xa}) can be defined, a is an additive
functional on S({za}) , p is subaddtive functional on G where a < p|S({za}),
then alV = 0 if and only if there exist additive functional ag on G satisfying
ap|S({za}) = a and ap < p|G.

Proof. The conclusion is trivial when G = S({za}), so we discuss the case
S({za}) € G. Assume that o]V = 0. Let y € G\ S({za}), then for any
21,22 € S({wa}), 11, 12 € Z7,

lop(z1y™") + ip(z2y") 2 p((21y™") "2 (22y™)").
Using Proposition 2.1, one has

(Zly_ll)l2 (z2yl2)l1 — Ulell_lllQZiZZél — ,U,leZZél7

v € Gy CV CS{za}).
Thus

Lp(z1y™") + Lip(22y'2) > p(v2l22h) > a(v2l224) = lha(21) + ha(zz),

1
Iy
By the arbitrariness of z1, 2,11, l2, we have

1
I

[a(z1) = p(z1y™")] < = [=a(z2) + p(22y™)].

o~
(V)

la(z) — p(zy™")]) < inf(2[~a(2) + p(=0")]), = € S{za}).l € Z*.

1
So there exist a real number ¢ such that
1
l

sup(

o~ —

sup(+[a(z) — p(zy™")]) < ¢ < inf(<[—a(2) + p(z9)]).

Now we consider the subgroup S({zs}), by Lemma 3.1, Corollary 3.2 and the proof
of Lemma 3.3, there exist an additive functional g on S({y,xx}), satisfying

glv =0, glS{za}) =a and g(y) =c.
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For any z € S({y,xa}), when z € S({za}), using g|S({za}) = a we have

9(2) < p(2),

when z € S({y,za}) \ S({za}), there exist {z,y} C {y,xa},k = 1,--- ,n, where
satisfy 2= = (v [[2¥)yl, v € V,1,,1,,1 € Z,1, > 0. Thus using the inequality of ¢
just now

9(z") = g((w =i )w") = 9w [ =) + lye < p((w [ 2)9'™) = p(z") < Lp(2),

9(2) <p(2).

On the basis of above, we have an additive functional g on S({y,zx}), satisfying

glS{za}) =a, g <p|lSHy,za}).

As the same method in Lemma 3.3, by Zorn Lemma we can establish an additive
functional ag on G, satisfying ao|S({za}) = @ and ag < p|G, which prove the
necessity of this theorem. To show the sufficiency, let ag be the additive functional
satisfy the conditions of this theorem. By Vj = V, we obtain a|V = ag|V = ag|Vh =
0. (I

Corollary 4.2. Let p be a subadditive functional on G, then p|V > 0 if and only if
there exist additive functional a on G satisfying a < p|G.

One application of above corollary is to discuss the Hyers Theorem (see [1] and
[7]) on arbitrary group G.

Theorem 4.3. Let ¢ > 0, f is functional on G — R satisfying
[f(zy) = f(@) = fy) < e, xy€d,
then —c < f|V < c if and only if there exist an additive functional a on G such that
la(z) — f(z)| <e¢, x€QG.

By Theorem 4.3, it is easy to see the necessary and sufficient condition of
Heyers theorem. This is much stronger than the result of Badora ([1], Theorem
2). So far, the subgroup of G in our main discussion is always S({za}) (here {z}
can be finite or infinite subset), but by the following proposition, we will reveal the
relationship between S({zx}) and arbitrary subgroup H.

Proposition 4.4. Let H < G, then there exist a subset {xx} C H, where S({xx})
can be defined and H C S({zxp}) = r(VH), moreover, r(H) = S({za}) if VC H.

Proof. 1t’s the method during the proof of Lemma 3, by Zorn Lemma the existence
of {xp} C H is confirmed where S({za}) can be defined and H C S({zx}). At
the same time Definition 2.3 implies that S({za}) = r(V H), hence when V C H,
r(H) = S{za})- O
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According to this proposition, Theorem 4.1 can be improved as

Theorem 4.5. Suppose V. C H < G, a is an additive functional on H, p is
subaddtive functional on G where a < p|H, then a|V = 0 if and only if there exist
additive functional ag on G satisfying ag|H = a and ag < p|G.

Proof. Assume that a|V = 0, then 3 {zp} C H where S({za}) can be defined
and S({za}) = r(H), so we have a additive functional f on S({zp}) = r(H) by
Corollary 3.2 satisfying

fIV=0, f(za)=a(zn)

from Definition 2.3, it means that
fIH = a.
On the other hand, for any z € S({zp}), 31 € Z*, 2! € H, hence

fah) <p(a') <Ip(x), f(z) < p(z).
So by Theorem 4.1, the necessity can be proved. |
To show the sufficiency, let ag be the additive functional fulfilling the conditions
in this theorem, then Lemma 3.3 implies that
alV = ap|V = 0.
Now we will discuss the condition in arbitrary subgroup H.

Theorem 4.6. Suppose H < G, a is an additive functional on H, p is subad-
dtive functional on G where a < p|H, then there exist additive functional ag on
G satisfying ag|H = a and ag < p|G if and only if alH NV = 0 and for any
veV,x e Hya(x) < plvx).

Proof. Similar to the proof of Theorem 4.5, assume that a|H NV = 0 and for
any v € V,x € H,a(z) < p(vx), there exists an additive functional f on r(VH)
satisfying

flV=0, f|H=a.

For any y € r(V H), there exists y' = vx where v € V,x € H,l € Z*, so
fy) = (@) < ploa) = ply"), f(y) < py).

According to Theorem 4.5, the sufficiency can be proved.
Let ag be the additive functional fulfilling the conditions in this theorem, Lemma
3.3 points that

alHNV =aglHNV =0.

At the same time, for any v € V,z € H,

a(z) = ag(x) = ap(vx) < p(vr)
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which proves the necessity. O

By the above discussion, Proposition 4.4 also reveals the following conclusion.

Corollary 4.7. Let a be the additive functional on H where H < G, then a can
extend to additive functional f on G if and only if of/H NV = 0.

Up till now, we have finished our discussion about Hahn-Banach Theorem on
arbitrary group. For application, the Hahn-Banach Theorem on commutative sub-
additive functional p will be discussed in the following.

Lemma 4.8. Let p be a subadditive functional on G, if p is also completely com-
mutative, then for everyv €V, 31 € ZT,

nl
lim M = lim
n—+oo nl n—+oo  nl

Proof. According to the denotation, for any v € V, 3 y; € G,y; = gilgiggi_llgi_zl,l €

Z+,
Ul = Hyl

Since p is completely commutative, we have

p(") =p(J[w) =ple), p@™)=p((J]v)") = ple)
and
pw ™) =p(([Ty) ") =ple), pw™™) =p((JJw:)™™) = ple)

which implies

nl —nl
him PO gy PO g, PO
n—+oo nl n—-—+oo nl n—+oo nl

=0.

O

Theorem 4.9. Suppose H < G, a is additive functional on H, p is completely
commutative subadditive functional on G, then there exist additive functional ag on
G, where ag|H = a and ag < p|G.

Proof. By the denotation, for any v € V, there exist y; € G,y; = gilgiggi_llgi_gl,l €

VAD
’Ul = Hyz

Attend that by the complete commutativity of p, for any x € H, there have
a(z') <p(a') = p(([[9)2") = p((v2)"), a(z) < p(va).
On the other hand, if v € H also and n € Z*, then

p(z™)
nl

(nh)a(v) = a(v™) < p(v™), a(v) <
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and
(—nl)a(v) = a(v™™) <p(v™™), —a(v) <

nl

According to Lemma 4.8, lim,, .1 % = lim, 4 p(v ") _ 0, thus

a(v) <0,—a(v) <0, a(v)=0.

So a|H NV = 0, which means our proof is finished by Theorem 4.6. O
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