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Abstract. In this paper, one kind of subgroup in arbitrary group which similar to the

linear subspace was constructed, and the generalization of the Hahn-Banach theorem on

this kind of subgroup in arbitrary groups was obtained.

1. Introduction

The Hahn-Banach theorem is a powerful existence theorem whose form is par-
ticularly appropriate to applications in linear problems. In its elegance and power,
the Hahn-Banach theorem is a favorite of almost every analyst. The generalization
of the Hahn-Banach theorem on groups has been discussed in many articles, much
of these discussions were under the assumption of some condition of groups, such as
the weakly commutativity in the paper of Z. Gajda and Z. Kominek [3], or groups
in class G during R. Badora [1]. The purpose of this paper is to find the sufficient
and necessary condition of Hahn-Banach theorem on arbitrary groups.

Let G be a group, p, f be functionals on G → R, then p is subadditive and f is
additive if and only if

p(xy) ≤ p(x) + p(y), x, y ∈ G and f(xy) = f(x) + f(y), x, y ∈ G.

Moreover, p is completely commutative if and only if for any n ∈ Z+ and any per-
mutation xk1 , · · · , xkn of x1, · · · , xn ∈ G, one has

p(
n∏

i=1

xi) = p(
n∏

i=1

xki
).

Let A be all additive functionals f on group G, denote that

V0 =
⋂

f∈A

ker(f)

and for every H < G, we denote

r(H) = {x|∃ l ∈ Z+, xl ∈ H}, V = r(G0),
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where G0 is the commutator subgroup that generated by all the elements g1g2g
−1
1 g−1

2

of G.
According to the discussion, we first show that V = V0 in Lemma 3.1, which

reveals the relationship between additive functional and subgroup. Second based
on the research of S({xi}) (Definition 2.3), for arbitrary group G and it’s subgroup
H, we give the sufficient and necessary condition that Hahn-Banach theorem can
be generalized in Theorem 4.5 and Theorem 4.6. Thus the result of R. Badora
([1], Theorem 3) is able to extend when V ⊆ H. Moreover, by our Corollary 4.2,
Theorem 4.3 implies when the Hyers theorem on the stability of Cauchy functional
equation (see Tabor [7]) still holds true on arbitrary G and when not, that means
the conclusion of R. Badora ([1], Theorem 2) is much weaker than what we obtain.
Finally as an application of Theorem 4.6, the result on subadditive functional p
which is completely commutative was obtained.

2. Preliminaries

Firstly, we give some preparations for the paper.

Proposition 2.1. G0 � G, for any x, y ∈ G, there exists v, u ∈ G0 such that

xy = vyx = yxu.

Proposition 2.2. V � G, V0 � G.

Definition 2.3. For x0 ∈ G, x0 6∈ V , we denote that

S({x0}) = {x|∃ l, l0 ∈ Z, v ∈ V, l > 0; xl = vxl0
0 }

Let {xi} = {x1, · · · , xn} ⊆ G, satisfying
(1) for any {xik

} ⊂ {xi}, S({xik
}) can be defined;

(2) for any x ∈ {xi}, {xik
} ⊆ {xi} \ {x}, x 6∈ S({xik

}).
Then we denote

S({xi}) = {x|∃ l, li ∈ Z, v ∈ V, l > 0; xl = v
∏

xli
i }.

Suppose a infinite subset {xΛ} ⊆ G, satisfying
(1) for any finite subset {xk} ⊂ {xΛ}, S({xk}) can be defined;
(2) for any x ∈ {xΛ}, finite subset {xk} ⊂ {xΛ} \ {x}, x 6∈ S({xk}).

Then we denote
S({xΛ}) =

⋃
{x

k
}⊆{xΛ}

S({xk}).

Proposition 2.4. Let {xi} = {x1, · · · , xn} ⊆ G, S({xi}) can be defined,
xk1 , · · · , xkn

is an any permutation of x1, · · · , xn, then S({xki
}) = S({xi}).

Proof. By Definition 2.3, for any x ∈ S({xki}), ∃ l, lki ∈ Z, v ∈ V, l > 0; xl =
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v
∏

x
lki

ki
, suppose xki

is the element xj ∈ {xi}, denote that lj = lki
, using Proposi-

tion 2.1, we commute xki
again and again such that

xl = v
∏

x
lki

ki
= vu

∏
xli

i = v′
∏

xli
i , u ∈ G0, v′ = vu ∈ V.

So x ∈ S({xi}), S({xki
}) ⊆ S({xi}), by the same method we obtain S({xi}) ⊆

S({xki}), as the result S({xi}) = S({xki}). �

From now on, we ignore the permutation of x1, · · · , xn when discussing S({xi}).
Proposition 2.5. suppose {xi} = {x1, · · · , xn} ⊆ G, S({xi}) can be defined,
x ∈ S({xi}), xl = v

∏
xli

i , l, li ∈ Z, v ∈ V, l > 0, then li/l is uniquely determined
by x.

Proof. For the reduction to absurdity, when n > 1, suppose there exist l′, l′i ∈
Z, v′ ∈ V, l′ > 0, such that

xl′ = v′
∏

x
l′i
i ,

where not all the value of li/l− l′i/l′ are 0, in other words, lil
′ − l′il do not all equal

to 0. Then, by Proposition 2.1 and the proof of Proposition 2.4, we have

e = xll′−l′l = (v
∏

xli
i )l′(v′

∏
x

l′i
i )−l = v′′

∏
x

lil
′−l′il

i , v′′ ∈ V.

Notice that there exist lkl′ − l′kl 6= 0, without loss of generality, we can suppose
k = n and lnl′ − l′nl < 0, so

x
l′nl−lnl′

n = v′′
n−1∏
i=1

x
lil

′−l′il
i .

Now we get xn ∈ S({x1, · · · , xn−1}), which is contrary to the definition of S({xi}).
When n = 1, as the same discussion, we get x1 ∈ V , which is also contrary to the
definition. Hence li/l is uniquely determined by x. �

Proposition 2.6. Suppose {xi} = {x1, · · · , xn} ⊆ G, S({xi}) can be defined, then
S({xi}) � G.

Proof. For x ∈ S({xi}), xl = v
∏

xli
i , v ∈ V, l, li ∈ Z, l > 0, since V � G, we have

x−l = (
n∏

i=1

x
−ln+1−i

n+1−i )v−1 = v′
n∏

i=1

x
−ln+1−i

n+1−i , v′ ∈ V.

Hence x−1 ∈ S({xn, · · · , x1}) = S({xi}). Moreover, for gxg−1, g ∈ G, we obtain

gxg−1 = (gxg−1x−1)x ∈ S({xi}).

Suppose y ∈ S({xi}), then ∃ k, ki ∈ Z, u ∈ V, k > 0; yk = u
∏

xki
i , using Proposition

2.1 over and over, we get

(xy)kl = wxklykl = w(v
∏

xli
i )k(u

∏
xki

i )l = w′
∏

xkil+lik
i , w ∈ G0, w′ ∈ V.
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Since kl > 0, we have xy ∈ S({xi}), thus S({xi}) � G. �

Proposition 2.7. Suppose a infinite subset {xΛ} ⊆ G, where S({xΛ}) can be
defined, then S({xΛ}) � G.

Proof. This can be proved immediately by the Definition 2.3 and Proposition 2.6.
�

Proposition 2.8. Let {xi} = {x1, · · · , xn} ⊆ G, where S({xi}) can be defined,
suppose x ∈ G \ S({xi}), then S({xi}) ∩ S({x}) = V .

Proof. Firstly, we have V ⊆ S({xi}) ∩ S({x}) by Definition 2.3. Moreover, if there
exist y ∈ S({xi})∩S({x})\V , using the similar method in the proof of Proposition
2.5, it can be proved that x ∈ S({xi}), which is impossible to the condition. �

Proposition 2.9. Suppose {xi} = {x1, · · · , xn} ⊆ G where S({xi}) can be defined,
if x ∈ G \ S({xi}), then S({xi}) ⊆ S({x, xi}).

3. Some results about additive functionals

The purpose of this section is to study the additive functional on S({xi}).

Lemma 3.1. Let {xi} = {x1, · · · , xn} ⊆ G where S({xi}) can be defined, then for
any real number sequence c1, · · · , cn, there exist additive functional a on S({xi}),
which satisfy a(xi) = ci and a|V = 0.

Proof. By Definition 2.3, for any x ∈ S({xi}),

∃ l, li ∈ Z, v ∈ V, l > 0;xl = v
∏

xli
i .

Define that
a(x) =

∑ li
l
ci.

Following Proposition 2.5, li/l is uniquely determined by x, so a(x) is a well-defined
functional on S({xi}). Moreover, if x ∈ V , then li/l = 0, as the result,

a|V = 0.

Now we prove the additivity of a(x), using the proof of Proposition 2.6, suppose
y ∈ S({xi}), yk = u

∏
xki

i , k, ki ∈ Z, u ∈ V, k > 0, then the following fact is

a(xy) =
∑

(lik + kil)ci

kl
=

∑ lici

l
+

∑ kici

k
= a(x) + a(z)

which prove the additivity of a. It’s easy to see a(xi) = ci, which means a(x) is the
additive functional as need. �

Corollary 3.2. Suppose a infinite subset {xΛ} ⊆ G where S({xΛ}) can be defined,
then for any real number set {cΛ}, there exist additive functional a on S({xΛ}),
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which satisfy a(xΛ) = cΛ and a|V = 0.

Lemma 3.3. V0 = V .

Proof. We first prove V ⊆ V0, let x ∈ V , following the Definition of V ,

∃ l ∈ Z+, xi = gi1gi2g
−1
i1 g−1

i2 ∈ G0, xl =
∏

xi.

So for any f ∈ A,

f(xl) = f(
∏

xi) =
∑

f(xi) = 0, l(f(x)) = 0, f(x) = 0.

Hence V ⊆ V0.
Next, we will show that V0 ⊆ V . If V = G, then the proof is finished. If V ⊂ G
and V 6= G, then for any x0 ∈ G \ V , by Lemma 3.1, there exist an additive
functional a(x) on S({x0}), satisfying a(x0) = 1 and a|V = 0. Denote family
F = {(S({xΛ}), f{xΛ})}, where S({xΛ}) can be defined and f{xΛ} is additive func-
tional on S({xΛ}). Moreover, we let all (S({xΛ}), f{xΛ}) of F satisfy
(1) x0 ∈ {xΛ};
(2) f{xΛ}|S({x0}) = a.
Then (S({x0}), a) ∈ F , F 6= ∅. Introducing a partial order � by putting
(S({xΛ}), f{xΛ}) � (S({xΓ}), f{xΓ}) iff

{xΛ} ⊆ {xΓ}, f{xΓ}|S({xΛ}) = f{xΛ}.

Let L = {(S({xΛ}), f{xΛ}) : {xΛ} ∈ D} be a linearly ordered subfamily of F , then
it’s easy to verify that the pair (S, f), where

S =
⋃

{xΛ}∈D

S({xΛ}), f(x) = f{xΛ}(x), x ∈ S({xΛ}), {xΛ} ∈ D

is a upper bound of L, moreover, (S, f) ∈ F . Hence the Zorn Lemma implies that
there exist a maximal element {(S({x∆}), f{x∆})} in F . We obtain

G = S({x∆}).

In fact, for the reduction to absurdity, suppose y ∈ G \ S({x∆}), we construct a
subgroup S({y, x∆}). Following the Corollary 3.2, there exist an additive functional
a0 on S({y, x∆}), satisfying

a0(y) = 0, a0(x) = f{x∆}(x), x ∈ {x∆} and a0|V = 0.

Now for any x ∈ S({x∆}), there exist {xi} = {x1, · · · , xn} ⊆ {x∆}, x ∈ S({xi})
and xl = v

∏
xli

i , v ∈ V, l, li ∈ Z, l > 0, then

a0(xl) = a0(v
∏

xli
i ) = a0(

∏
xli

i ) = f{x∆}(
∏

xli
i ) = f{x∆}(v

∏
xli

i ) = f{x∆}(x
l),
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a0(x) = f{x∆}(x).

So,
a0|S({x∆}) = f{x∆}, (S({x∆}), f{x∆}) � (S({y, x∆}), a0)

which implies that S({x∆}) = S(y, {x∆}), and this is contrary to the assumption
of y ∈ G \ S({x∆}). Thus, G = S({x∆}).
As a result, f{x∆} is an additive functional on G, where f{x∆}(x0) = 1, and by the
arbitrariness of x0, we obtain V0 ⊆ V . Hence V0 = V . �

4. The Hahn-Banach theorem on arbitrary groups

From now on, the Hahn-Banach theorem on arbitrary groups will be discussed.

Theorem 4.1. Suppose {xΛ} ⊆ G where S({xΛ}) can be defined, a is an additive
functional on S({xΛ}) , p is subaddtive functional on G where a ≤ p|S({xΛ}),
then a|V = 0 if and only if there exist additive functional a0 on G satisfying
a0|S({xΛ}) = a and a0 ≤ p|G.

Proof. The conclusion is trivial when G = S({xΛ}), so we discuss the case
S({xΛ}) ⊂ G. Assume that a|V = 0. Let y ∈ G \ S({xΛ}), then for any
z1, z2 ∈ S({xΛ}), l1, l2 ∈ Z+,

l2p(z1y
−l1) + l1p(z2y

l2) ≥ p((z1y
−l1)l2(z2y

l2)l1).

Using Proposition 2.1, one has

(z1y
−l1)l2(z2y

l2)l1 = vyl2l1−l1l2zl2
1 zl1

2 = vzl2
1 zl1

2 ,

v ∈ G0 ⊆ V ⊆ S({xΛ}).

Thus

l2p(z1y
−l1) + l1p(z2y

l2) ≥ p(vzl2
1 zl1

2 ) ≥ a(vzl2
1 zl1

2 ) = l2a(z1) + l1a(z2),

1
l1

[a(z1)− p(z1y
−l1)] ≤ 1

l2
[−a(z2) + p(z2y

l2)].

By the arbitrariness of z1, z2, l1, l2, we have

sup(
1
l
[a(z)− p(zy−l)]) ≤ inf(

1
l
[−a(z) + p(zyl)]), z ∈ S({xΛ}), l ∈ Z+.

So there exist a real number c such that

sup(
1
l
[a(z)− p(zy−l)]) ≤ c ≤ inf(

1
l
[−a(z) + p(zyl)]).

Now we consider the subgroup S({xΛ}), by Lemma 3.1, Corollary 3.2 and the proof
of Lemma 3.3, there exist an additive functional g on S({y, xΛ}), satisfying

g|V = 0, g|S({xΛ}) = a and g(y) = c.
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For any z ∈ S({y, xΛ}), when z ∈ S({xΛ}), using g|S({xΛ}) = a we have

g(z) ≤ p(z),

when z ∈ S({y, xΛ}) \ S({xΛ}), there exist {xk, y} ⊆ {y, xΛ}, k = 1, · · · , n, where
satisfy zlz = (v

∏
xlk

k )yly , v ∈ V, lz, ly, lk ∈ Z, lz > 0. Thus using the inequality of c
just now

g(zlz ) = g((v
∏

xlk
k )yly ) = g(v

∏
xlk

k ) + lyc ≤ p((v
∏

xlk
k )yly ) = p(zlz ) ≤ lzp(z),

g(z) ≤ p(z).

On the basis of above, we have an additive functional g on S({y, xΛ}), satisfying

g|S({xΛ}) = a, g ≤ p|S({y, xΛ}).

As the same method in Lemma 3.3, by Zorn Lemma we can establish an additive
functional a0 on G, satisfying a0|S({xΛ}) = a and a0 ≤ p|G, which prove the
necessity of this theorem. To show the sufficiency, let a0 be the additive functional
satisfy the conditions of this theorem. By V0 = V , we obtain a|V = a0|V = a0|V0 =
0. �

Corollary 4.2. Let p be a subadditive functional on G, then p|V ≥ 0 if and only if
there exist additive functional a on G satisfying a ≤ p|G.

One application of above corollary is to discuss the Hyers Theorem (see [1] and
[7]) on arbitrary group G.

Theorem 4.3. Let c ≥ 0, f is functional on G → R satisfying

|f(xy)− f(x)− f(y)| ≤ c, x, y ∈ G,

then −c ≤ f |V ≤ c if and only if there exist an additive functional a on G such that

|a(x)− f(x)| ≤ c, x ∈ G.

By Theorem 4.3, it is easy to see the necessary and sufficient condition of
Heyers theorem. This is much stronger than the result of Badora ([1], Theorem
2). So far, the subgroup of G in our main discussion is always S({xΛ}) (here {xΛ}
can be finite or infinite subset), but by the following proposition, we will reveal the
relationship between S({xΛ}) and arbitrary subgroup H.

Proposition 4.4. Let H < G, then there exist a subset {xΛ} ⊆ H, where S({xΛ})
can be defined and H ⊆ S({xΛ}) = r(V H), moreover, r(H) = S({xΛ}) if V ⊆ H.

Proof. It’s the method during the proof of Lemma 3, by Zorn Lemma the existence
of {xΛ} ⊆ H is confirmed where S({xΛ}) can be defined and H ⊆ S({xΛ}). At
the same time Definition 2.3 implies that S({xΛ}) = r(V H), hence when V ⊆ H,
r(H) = S({xΛ}). �
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According to this proposition, Theorem 4.1 can be improved as

Theorem 4.5. Suppose V ⊆ H < G, a is an additive functional on H, p is
subaddtive functional on G where a ≤ p|H, then a|V = 0 if and only if there exist
additive functional a0 on G satisfying a0|H = a and a0 ≤ p|G.

Proof. Assume that a|V = 0, then ∃ {xΛ} ⊆ H where S({xΛ}) can be defined
and S({xΛ}) = r(H), so we have a additive functional f on S({xΛ}) = r(H) by
Corollary 3.2 satisfying

f |V = 0, f(xΛ) = a(xΛ)

from Definition 2.3, it means that

f |H = a.

On the other hand, for any x ∈ S({xΛ}), ∃ l ∈ Z+, xl ∈ H, hence

f(xl) ≤ p(xl) ≤ lp(x), f(x) ≤ p(x).

So by Theorem 4.1, the necessity can be proved. �

To show the sufficiency, let a0 be the additive functional fulfilling the conditions
in this theorem, then Lemma 3.3 implies that

a|V = a0|V = 0.

Now we will discuss the condition in arbitrary subgroup H.

Theorem 4.6. Suppose H < G, a is an additive functional on H, p is subad-
dtive functional on G where a ≤ p|H, then there exist additive functional a0 on
G satisfying a0|H = a and a0 ≤ p|G if and only if a|H ∩ V = 0 and for any
v ∈ V, x ∈ H, a(x) ≤ p(vx).

Proof. Similar to the proof of Theorem 4.5, assume that a|H ∩ V = 0 and for
any v ∈ V, x ∈ H, a(x) ≤ p(vx), there exists an additive functional f on r(V H)
satisfying

f |V = 0, f |H = a.

For any y ∈ r(V H), there exists yl = vx where v ∈ V, x ∈ H, l ∈ Z+, so

f(yl) = f(x) ≤ p(vx) = p(yl), f(y) ≤ p(y).

According to Theorem 4.5, the sufficiency can be proved.
Let a0 be the additive functional fulfilling the conditions in this theorem, Lemma
3.3 points that

a|H ∩ V = a0|H ∩ V = 0.

At the same time, for any v ∈ V, x ∈ H,

a(x) = a0(x) = a0(vx) ≤ p(vx)
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which proves the necessity. �

By the above discussion, Proposition 4.4 also reveals the following conclusion.

Corollary 4.7. Let a be the additive functional on H where H < G, then a can
extend to additive functional f on G if and only if a|H ∩ V = 0.

Up till now, we have finished our discussion about Hahn-Banach Theorem on
arbitrary group. For application, the Hahn-Banach Theorem on commutative sub-
additive functional p will be discussed in the following.

Lemma 4.8. Let p be a subadditive functional on G, if p is also completely com-
mutative, then for every v ∈ V , ∃ l ∈ Z+,

lim
n→+∞

p(vnl)
nl

= lim
n→+∞

p(v−nl)
nl

= 0.

Proof. According to the denotation, for any v ∈ V , ∃ yi ∈ G, yi = gi1gi2g
−1
i1 g−1

i2 , l ∈
Z+,

vl =
∏

yi.

Since p is completely commutative, we have

p(vl) = p(
∏

yi) = p(e), p(vnl) = p((
∏

yi)n) = p(e)

and
p(v−l) = p((

∏
yi)−1) = p(e), p(v−nl) = p((

∏
yi)−n) = p(e)

which implies

lim
n→+∞

p(vnl)
nl

= lim
n→+∞

p(v−nl)
nl

= lim
n→+∞

p(e)
nl

= 0.

�

Theorem 4.9. Suppose H < G, a is additive functional on H, p is completely
commutative subadditive functional on G, then there exist additive functional a0 on
G, where a0|H = a and a0 ≤ p|G.

Proof. By the denotation, for any v ∈ V , there exist yi ∈ G, yi = gi1gi2g
−1
i1 g−1

i2 , l ∈
Z+,

vl =
∏

yi.

Attend that by the complete commutativity of p, for any x ∈ H, there have

a(xl) ≤ p(xl) = p((
∏

yi)xl) = p((vx)l), a(x) ≤ p(vx).

On the other hand, if v ∈ H also and n ∈ Z+, then

(nl)a(v) = a(vnl) ≤ p(vnl), a(v) ≤ p(xnl)
nl
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and

(−nl)a(v) = a(v−nl) ≤ p(v−nl), − a(v) ≤ p(x−nl)
nl

.

According to Lemma 4.8, limn→+∞
p(vnl)

nl = limn→+∞
p(v−nl)

nl = 0, thus

a(v) ≤ 0,−a(v) ≤ 0, a(v) = 0.

So a|H ∩ V = 0, which means our proof is finished by Theorem 4.6. �
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