KYUNGPOOK Math. J. 49(2009), 183-193

Pseudo-Rank Functions on Rickart *-rings

Dedicated to Dr. K. Anjaneyulu on the occasion of his 75th birthday.

SHRIRAM KHANDERAO NIMBHORKAR Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India e-mail: nimbhorkar@yahoo.com

ABSTRACT. Pseudo-rank functions on Rickart *-rings are introduced and their properties are studied.

1. Introduction

A real valued function D on a lattice L is called a *dimension function* if the range of D has either an upper bound or a lower bound and for all $a, b \in L$, $D(a \lor b) + D(a \land b) = D(a) + D(b)$, see; von Neumann [12] p.58. The theory of dimension functions is studied in various structures. von Neumann [12] introduced dimensionality in continuous geometries by using perspectivity, whereas Iwamura [6] used the concept of a relation called the p-relation.

Kaplansky [8], Murray and von Neumann [11] and others have introduced dimensionality in rings of operators by using equivalence of projections. Maeda [10] generalized the work of von Neumann [12] and Kaplansky [8] for a certain class of lattices. At the same time Loomis [9] gave an abstract setting to the Murray, von Neumann dimension theory by using complete orthocomplemented lattices. Berberian [2] has developed theory of dimension functions on the lattice of projections of a finite Baer *-ring. Goodearl [4] developed the dimension theory for a certain class of modules. von Neumann [12], p.231 has introduced the concept of a rank-function on a regular ring which generalizes the dimension function. Goodearl [3], [5] has introduced and developed the study of *pseudo-rank functions* on regular rings, which is a generalization of rank functions.

In this paper we introduce and study the concept of a *pseudo-rank function* on a Rickart *-ring R. We obtain some basic properties of pseudo-rank functions and the set of all pseudo-rank functions on R, on the lines of Goodearl [5] for Rickart *-rings. The undefined terms are from Berberian [2] and Birkhoff [1].

2000 Mathematics Subject Classification: 16W10, 16B99, 06A99.

Received 28 January 2008; accepted 9 June 2008.

Key words and phrases: pseudo-rank function, Rickart *-ring, strict ideal.

¹⁸³

S. K. Nimbhorkar

2. Preliminaries

A *-ring is a ring R with an involution "*" (i.e. an antiautomorphism of period two) such that $x^{**} = x$, $(x + y)^* = x^* + y^*$, $(xy)^* = y^*x^*$. Throughout we denote by R, a *-ring. An element $e \in R$ is called a *projection* if it is *self-adjoint* (i.e. $e = e^*$) and *idempotent* (i.e. $e = e^2$). The set of projections in R can be partially ordered by $e \leq f$ if and only if e = ef, see; Berberian [2]. If for two projections $e, f \in R, ef = fe$, then $inf\{e, f\} = e \land f = ef$ and $sup\{e, f\} = e \lor f = e + f - ef$. Two projections $e, f \in R$ are called *equivalent*, in notation $e \sim f$, if there exists some $w \in R$ such that $w^*w = e$ and $ww^* = f$. Then w is a partial isometry, (i.e. $ww^*w = w$) and we = w = fw. For projections $e, f \in R$, we say that f dominates e, in notation $e \preceq f$, if $e \sim g \leq f$ for some projection $g \in R$. Two elements $x, y \in R$ are said to be orthogonal, in notation $x \perp y$, if $x^*y = xy^* = 0$, see; Loomis [9] p.26. A *-ring A is called a Rickart *-ring if for each $x \in A$, the right annihilator of x, $R({x}) = {y \in A : xy = 0}$, is a right ideal generated by a projection. i. e. $R(\{x\}) = qA$ for some projection $q \in A$. A *-ring A is called a Baer *-ring if the right annihilator of any nonempty subset S of A is the right ideal generated by a projection $e \in A$ i. e. R(S) = eA. In this case, the projection 1 - e is called the right projection of S. Similarly the left projection of S is defined. The right projection (respectively, left projection) of an element x in a Rickart *-ring is denoted by RP(x) (respectively, by LP(x)) and it is the smallest projection e such that xe = x (ex = x) and xy = 0 is equivalent to RP(x)y = 0 (yLP(x) = 0). It is known that a *-ring with proper involution (i.e. $x^*x = 0$ implies x = 0) is a poset under the partial order (called the *-order) $x \leq y$ iff $x^*x = x^*y$ and $xx^* = xy^*$, see; Janowitz [7]. This partial order generalizes the partial order defined on the set of projections. A Rickart *-ring has proper involution.

3. Pseudo-rank function

A pseudo-rank function f on a *-ring R is a mapping $f: R \to [0,1]$ such that

- (1) f(1) = 1,
- (2) $f(xy) \le f(x), f(y)$ for all $x, y \in R$,
- (3) f(x+y) = f(x) + f(y) for all orthogonal $x, y \in R$,
- (4) $f(x) = f(x^*) = f(RP(x)) = f(LP(x))$ provided RP(x), LP(x) exist in R.

It is clear that f(0) = 0. A pseudo-rank function f with the property f(x) > 0, for $x \neq 0$ is called a *rank function* on R.

Proposition 1. Let R be a *-ring and f be a pseudo-rank function on R.

- (1) If $x_1, \dots, x_n \in R$ are mutually orthogonal then $f(x_1 + \dots + x_n) = \sum_{i=1}^n f(x_i)$.
- (2) If the involution in R is proper and $x \leq y$ then $f(x) \leq f(y)$.

- (3) If the involution in R is proper and x_1, \dots, x_n and y_1, \dots, y_k are sets of orthogonal elements in R such that $x_1 + \dots + x_n \leq y_1 + \dots + y_k$, then $\sum_{i=1}^n f(x_i) \leq \sum_{i=1}^k f(y_i)$.
- (4) If e, g are projections in R, such that $e \sim g$ then f(e) = f(g).
- (5) If e_1, \dots, e_n and g_1, \dots, g_k are sets of orthogonal projections in R such that $e_1 + \dots + e_n \preceq g_1 + \dots + g_k$, then $\sum_{i=1}^n f(e_i) \leq \sum_{i=1}^k f(g_i)$.

Proof. (1) Follows from the definition of a pseudo-rank function.

(2) $x \le y$ iff $x^*x = x^*y$ and $xx^* = xy^*$. By the definition of a pseudo-rank function $f(x) = f(x^*x) = f(x^*y) \le f(y)$.

(3) Using (2) and the definition of a pseudo-rank function we have $\sum_{i=1}^{n} f(x_i) = f(x_1 + \dots + x_n) \leq f(y_1 + \dots + y_k) = \sum_{i=1}^{k} f(y_i).$

(4) $e \sim g$ implies $e = w^*w$, $g = ww^*$ for some partial isometry $w \in R$. Then $w = ww^*w = gw = we$ and so $f(e) = f(w^*w) \leq f(w) = f(gw) \leq f(g)$. Similarly $f(g) \leq f(e)$.

(5) Follows from (4) and (3).

It is known that for a projection e in a Rickart *-ring R, eRe is a Rickart *-ring, see; Berberian [2] p.15.

Lemma 1. Let f be a pseudo-rank function on a Rickart *-ring R. Let $e \in R$ be a nonzero projection such that $f(e) \neq 0$.

- (1) The function Q(x) = f(x)/f(e) defines a pseudo-rank function on the Rickart *-ring eRe.
- (2) If e is a central projection in R then the function Q(x) = f(ex)/f(e) defines a pseudo-rank function on R.
- (3) If e is a central projection such that f(e) = 1 then f(ex) = f(x) for all $x \in R$.

Proof. (1) $x \in eRe$ implies x = ex = xe. Hence $f(x) = f(ex) \leq f(e)$ shows that $Q(x) \leq 1$. Thus Q maps eRe into [0, 1]. By Corollary p.15 from Berberian [2], for $x \in eRe, RP(x), LP(x)$ are same whether calculated in R or in eRe. Hence the remaining properties for Q to be a pseudo-rank function can be easily verified.

(2) Since $f(ex) \leq f(e)$ for all $x \in R$, Q maps R into [0, 1].

(i). Clearly Q(1) = 1.

(ii). For $x, y \in R$, $f(exy) \le f(ex)$, f(ey) and so $Q(xy) \le Q(x)$, Q(y).

(iii). Suppose $x \perp y$ in R. Since, e is a central projection it follows that $ex \perp ey$. Hence Q(x+y) = f(ex+ey)/f(e) = Q(x) + Q(y).

(iv). Since $(ex)^* = ex^*$, we get $Q(x) = Q(x^*)$.

To show that Q(x) = Q(RP(x)), we first show that eRP(x) = RP(ex). From x = xRP(x) we get ex = exRP(x). Hence ex[1 - eRP(x)] = 0 and so RP(ex)[1 - eRP(x)] = 0. Thus RP(ex) = RP(ex)eRP(x).

On the other hand, ex = exRP(ex) implies x[eRP(ex) - e] = 0 and so RP(x)[eRP(ex) - e] = 0 i.e. RP(x)eRP(ex) = eRP(x). Since e is a central projection it follows from the Lemma p.137 from Berberian [2] that $RP(ex) \leq RP(x)$. Thus RP(x) and RP(ex) commute with each other. This shows that RP(ex) = eRP(x).

Thus Q(x) = f(ex)/f(e) = f(RP(ex))/f(e) = f(eRP(x))/f(e) = Q(RP(x)). Similarly we get Q(x) = Q(LP(x)).

(3) We have f(x) = f(xe + x(1 - e)) = f(xe) + f(x(1 - e)). Also, 1 = f(1) = f(e + (1 - e)) = f(e) + f(1 - e) implies f(1 - e) = 0. Now $f(x(1 - e)) \le f(1 - e) = 0$ leads to f(x) = f(xe).

Lemma 2. Let $\{e_1, \dots, e_n\}$ be a set of orthogonal projections in a Rickart *-ring R. Suppose I, J are nonempty subsets of $\{1, \dots, n\}$. Let α_i and β_j be nonzero real numbers. For each $i \in I$ and $j \in J$, let P_i and Q_j be pseudo-rank functions on e_iRe_i and e_jRe_j respectively. If $\sum_{i\in I} \alpha_i P_i(e_ixe_i) = \sum_{j\in J} \beta_j Q_j(e_jxe_j)$ for every $x \in R$, then I = J, $\alpha_i = \beta_i$ and $P_i = Q_i$ for each i.

 $\begin{array}{ll} Proof. \ \mbox{Let}\ t\in J. \ \mbox{Then using}\ e_je_t=0\ \mbox{for}\ j\neq t,\ Q_j(0)=0\ \mbox{and}\ Q_j(e_j)=1\\ \mbox{we get}\ \sum_{i\in I}\alpha_iP_i(e_ixe_t)=\sum_{j\in J}\beta_jQ_j(e_jxe_t)=\beta_t\neq 0. \ \mbox{Hence}\ P_s(e_se_t)\neq 0\ \mbox{for}\\ \mbox{some}\ s\in I. \ \mbox{This implies}\ e_se_t\neq 0\ \mbox{and}\ \mbox{som}\ s=t,\ \mbox{i.e.}\ \ t\in I. \ \mbox{Thus}\ J\subseteq I. \ \mbox{Similarly}\\ \mbox{iiarly}\ \mbox{we get}\ I\subseteq J. \ \mbox{Given}\ s\in I,\ y\in e_sRe_s\ \mbox{then using}\ e_ie_s=0\ \mbox{for}\ i\neq s\ \mbox{we}\\ \mbox{get}\ \ \alpha_sP_s(x)=\sum_{i\in I}\alpha_iP_i(e_ixe_i)=\sum_{j\in J}\beta_jQ_j(e_jxe_j)=\beta_sQ_s(x). \ \mbox{In particular}\\ \ \ \alpha_s=\alpha_sP_s(e_s)=\beta_sQ_s(e_s)=\beta_s. \ \ \mbox{Consequently}\ P_s(x)=Q_s(x)\ \mbox{for every}\ x\in e_sRe_s. \ \ \mbox{Thus}\ P_s=Q_s. \ \end{tabular}$

Lemma 3. Let $\{e_1, \dots, e_n\}$ be a set of orthogonal central projections in a Rickart *-ring R. Suppose I, J are nonempty subsets of $\{1, \dots, n\}$. Let α_i and β_j be nonzero real numbers. For each $i \in I$ and $j \in J$, let P_i and Q_j be pseudo-rank functions on R such that $P_i(e_i) = 1$ and $Q_j(e_j) = 1$. If $\sum_{i \in I} \alpha_i P_i(e_i xe_i) =$ $\sum_{j \in J} \beta_j Q_j(e_j xe_j)$ for every $x \in R$, then I = J, $\alpha_i = \beta_i$ and $P_i = Q_i$ for each $i \in I$.

Proof. Let $t \in J$. Then using Lemma 1(3) we get $Q_j(e_t) = Q_j(e_je_t) = 0$. Hence $\sum_{i \in I} \alpha_i P_i(e_t) = \sum_{j \in J} \beta_j Q_j(e_t) = \beta_t Q_t(e_t) = \beta_t \neq 0$. Therefore $P_s(e_t) \neq 0$ for some $s \in I$. This implies $e_s e_t \neq 0$ and so s = t, i.e. $t \in I$. Thus $J \subseteq I$. Similarly we get $I \subseteq J$.

Given $s \in I$, $x \in R$ we have by using Lemma 1(3), $\alpha_s P_s(x) = \alpha_s P_s(e_s x) = \sum_{i \in I} \alpha_i P_i(e_i e_s x) = \sum_{j \in J} \beta_j Q_j(e_j e_s x) = \beta_s Q_s(e_s x) = \beta_s Q_s(x)$. In particular $\alpha_s = \alpha_s P_s(e_s) = \beta_s Q_s(e_s) = \beta_s$. Consequently $P_s(x) = Q_s(x)$ for every $x \in R$. Thus $P_s = Q_s$.

Lemma 4. Let e_1, \dots, e_n be orthogonal central projections in a Rickart *-ring R. Let f be a pseudo-rank function on R such that $\sum_{i=1}^n f(e_i) = 1$ and $f(e_i) \neq 0$ for all i.

(a) There exist unique pseudo-rank functions $P_i, 1 \leq i \leq n$, on $e_i R$ such that

$$f(x) = \sum_{i=1}^{n} f(e_i) P_i(e_i x) \text{ for all } x \in R.$$

(b) There exist unique pseudo-rank functions $Q_i, 1 \leq i \leq n$, on R such that $Q_i(e_i) = 1$ and $f(x) = \sum_{i=1}^n f(e_i)Q_i(x)$ for all $x \in R$.

Proof. Since e_1, \dots, e_n are orthogonal central projections in R, $f(e_1 + \dots + e_n) = \sum_{i=1}^n f(e_i) = 1$. Hence by Lemma 1(3), $f(x) = f(e_1x + \dots + e_nx) = \sum_{i=1}^n f(e_ix)$. (a) For each $i, 1 \le i \le n$ by Lemma 1(1), $P_i(x) = f(x)/f(e_i)$ defines a pseudo-rank function P_i on $e_i R$. Given any $x \in R$, we then have $f(e_i x) = f(e_i)P_i(e_i x)$ for each i. Hence $f(x) = \sum_{i=1}^n f(e_i)P(e_i x)$. Uniqueness follows from Lemma 2.

(b) For each *i*, by Lemma 1(2), $Q_i(x) = f(e_i x)/f(e_i)$ defines a pseudo-rank function Q_i on R. We note that $Q_i(e_i) = 1$. Given any $x \in R$, we then have $f(e_i x) = f(e_i)Q_i(x)$ for all *i*. Hence $f(x) = \sum_{i=1}^n f(e_i)Q_i(x)$. Uniqueness follows from Lemma 3.

Theorem 1. Let R be a Rickart *-ring and e_1, \dots, e_n be orthogonal central projections in R such that $e_1 + \dots + e_n = 1$.

- (a) Suppose I is a nonempty subset of $\{1, \dots, n\}$. Let α_i be positive real numbers such that $\sum_{i \in I} \alpha_i = 1$. For each $i \in I$, let P_i be a pseudo-rank function on $e_i R$. Then $f(x) = \sum_{i \in I} \alpha_i P_i(e_i x)$ is a pseudo-rank function on R.
- (b) Let α_i , $1 \leq i \leq n$ be nonnegative real numbers such that $\sum_{i \in I} \alpha_i = 1$. For each $i \in I$, let P_i be a pseudo-rank function on $e_i R$. Then $f(x) = \sum_{i=1}^{n} \alpha_i P_i(e_i x)$ is a pseudo-rank function on R.
- (c) Every pseudo-rank function on R may be uniquely obtained as in (a). Moreover, if there exists at least one pseudo-rank function on each e_iR , then every pseudo-rank function on R may be obtained as in (b).

Proof. (a) and (b) follow from the definition of a pseudo-rank function.

(c) Let f be a pseudo-rank function on R. Let I be the set of those $i \in \{1, \dots, n\}$ for which $f(e_i) \neq 0$. Put $\alpha_i = f(e_i)$ for all $i \in I$. Then $\sum_{i \in I} \alpha_i = \sum_{i \in I} f(e_i) = f(e_1 + \dots + e_n) = f(1) = 1$. By Lemma 4(a) there exist pseudo-rank functions P_i on $e_i R$ for each $i \in I$ such that $f(x) = \sum_{i \in I} \alpha_i P_i(e_i x)$ for all $x \in R$. Thus f has a representation as in (a).

Suppose that there exists at least one pseudo-rank function on each $e_i R$. Put $\alpha_i = f(e_i)$ for all $i = 1, \dots, n$. For $i \in \{1, \dots, n\} - I$, let P_i be any pseudo-rank function on $e_i R$. Then $f(x) = \sum_{i \in I} \alpha_i P_i(e_i x) = \sum_{i=1}^n \alpha_i P_i(e_i x)$ for all $x \in R$, which represents f as in (b).

The proof of the following lemma follows from the definition of a pseudo-rank function.

Lemma 5. Let R_1, R_2 be two Rickart *-rings, $f : R_1 \to R_2$ be a *-homomorphism satisfying the condition f(RP(x)) = RP(f(x)). If g is a pseudo-rank function on R_2 , then $g \circ f$ is a pseudo-rank function on R_1 .

An ideal I of a Rickart *-ring is called a *strict ideal*, if $x \in I$ implies $RP(x) \in I$, see; Berberian [2] p. 141.

Lemma 6. Let f be a pseudo-rank function on a Rickart *-ring R. The set $A = \{x \in R : f(x) = 0\}$ is a proper strict ideal of R.

Proof. Since f(0) = 0, A is nonempty. Also, $f(x) = f(x^*) = f(RP(x))$ shows that if $x \in A$, then x^* , $RP(x) \in A$. Clearly, for $x \in A$ and $y \in R$; $f(xy) \leq f(x)$ implies $xy \in A$. Similarly $yx \in A$. Let $x, y \in A$. Then f(x+y) = f(RP(x+y)). By Lemma on p. 137 from Berberian [2], $RP(x+y) \leq RP(x) \lor RP(y)$. For convenience write RP(x) = e and RP(y) = g. Then $e \lor g = g + RP[e(1-g)]$ with $g \perp RP[e(1-g)]$. We have f[g+RP(e(1-g))] = f(g) + f[RP(e(1-g))] = f(RP(y)) + f[e(1-g)]. We have f(g) = f(RP(y)) = f(y) = 0 and $f[e(1-g)] \leq f(e) = f(RP(x)) = f(x) = 0$. Hence $f(x+y) = f(RP(x+y)) \leq f(e \lor g) = 0$. Thus $x+y \in A$ and so A is a strict ideal of R. Since f(1) = 1, A is a proper strict ideal. □

The following result is from Berberian [2] (Exercise 1, p. 144).

Lemma 7. Let I be a strict ideal of a Rickart *-ring R. Equip R/I with the natural *-ring structure and write $x \to \overline{x}$ for the canonical mapping $R \to R/I$.

- (1) R/I is a Rickart *-ring.
- (2) $RP(\overline{x}) = \overline{(RP(x))}, LP(\overline{x}) = \overline{(LP(x))}, \text{ for all } x \in R; \text{ in particular, every projection in } R/I \text{ has the form } \overline{e} \text{ with } e \text{ a projection in } R.$
- (3) For all projections $e, f \in R$, $\overline{e \vee f} = \overline{e} \vee \overline{f}$ and $\overline{e \wedge f} = \overline{e} \wedge \overline{f}$.
- (4) If u, v are orthogonal projections in R/I and if $v = \overline{f}$, f a projection in R, then there exists a projection $e \in R$ such that $u = \overline{e}$ and e is orthogonal to f.

Lemma 8. Let R be a Rickart *-ring in which every projection is central. Let I be a strict ideal of R. Let $u, v \in R/I$ and $v = \overline{b}$ for some $b \in R$.

- (1) If $u \leq v$, then there exists $a \in R$ such that $u = \overline{a}$ and $a \leq b$.
- (2) If $u \perp v$, then there exists $a \in R$ such that $u = \overline{a}$ and $a \perp b$.

Proof. Let $u = \overline{x}$ for some $x \in R$.

(1) We note that $u \leq v$ implies $u^*u = u^*v = v^*u$ and $uu^* = uv^* = vu^*$ in R/I. Then in R/I

(a)
$$\overline{x^*x} = \overline{x^*b} = \overline{b^*x}$$
 and $\overline{xx^*} = \overline{xb^*} = \overline{bx^*}$.

Put a = bRP(x). Since all projections are central, $RP(x) = RP(x^*)$. We have $a^*a = a^*b = b^*a$ and $aa^* = ba^* = ab^*$. Thus $a \leq b$ in R. Moreover, $x^*a = x^*b$ and $ax^* = bx^*$. Hence in R/I,

(b)
$$\overline{x^*x} = \overline{x^*b} = \overline{x^*a} \text{ and } \overline{xx^*} = \overline{bx^*} = \overline{ax^*}.$$

Thus, in R/I, $\overline{x} \leq \overline{a}$. Further we have, $\overline{xx^*} = \overline{ax^*} = \overline{xa^*}$. Hence $\overline{x} [\overline{x^*} - \overline{a^*}] \overline{a} = \overline{0}$. This implies $RP(\overline{x}) [\overline{x^*} - \overline{a^*}] \overline{a} = \overline{0}$. Thus $RP(x) \overline{x^*} \overline{a} = \overline{0}$. $\overline{RP(x)a^*a}$. Using $RP(x)x^* = x^*$ and $RP(x)a^* = a^*$, we get $\overline{x^*a} = \overline{a^*a}$. Therefore, $(\overline{a} - \overline{x})^* (\overline{a} - \overline{x}) = \overline{0}$. Since R/I is a Rickart *-ring, its involution is proper and so we get $\overline{a} - \overline{x} = \overline{0}$. Thus $\overline{a} = \overline{x}$.

(2) Suppose $u \perp v$ in R/I. Then $u^*v = 0$ implies $\overline{x^*b} = \overline{0}$ and so $\overline{x^*RP(b)} = \overline{0}$, consequently, $\overline{xRP(b)} = \overline{0}, \overline{x} = \overline{x[1 - RP(b)]}$. Put a = x[1 - RP(b)]. As all projections are central, we get $a^*b = ab^* = 0$. Hence $a \perp b$ in R. Also we have $\overline{a} = \overline{x}$.

Lemma 9. Let f be a pseudo rank function on a Rickart *-ring R, in which all projections are central. Let I be a strict ideal of R, such that $I \subseteq ker(f)$. Then there exists a pseudo rank function g on R/I such that $g \circ \phi = f$. Further g is a rank function iff I = ker(f).

Proof. Let ϕ be the canonical *-homomorphism from R to R/I. Suppose $x, y \in R$ and $\phi(x) = \phi(y)$. Then $\phi(x-y) = 0$ and so $x-y \in I \subseteq ker(f)$ implies f(x-y) = 0. We have x = (x - y) + y. By the Lemma on p. 137 from Berberian [2] $RP(x) \leq RP(x-y) \lor RP(y)$. Put RP(x-y) = e and RP(y) = g. We have $e \lor q = e + RP[q(1-e)]$ with $e \perp RP[q(1-e)]$. Hence

$$f(x) = f(RP(x)) \le f(e) + f[RP(g(1-e))] = f(x-y) + f[g(1-e)] \le f(g) = f(y).$$

Similarly, we get $f(y) \leq f(x)$. Thus f(x) = f(y). Define a map $q: R/I \to [0,1]$, by $q(\overline{x}) = f(x)$. In view of the above para q is well defined. We have $q(\overline{1}) = 1, q(\overline{xy}) \leq 1$ $q(\overline{x}), q(\overline{y})$. Let $\overline{x}, \overline{y} \in R/I$ and $\overline{x} \perp \overline{y}$. Then by Lemma 8 there exist $a, b \in R$ such that $a \perp b$, $\overline{a} = \overline{x}$ and $\overline{b} = \overline{y}$. We have

$$g[\overline{x} + \overline{y}] = g[\overline{a+b}] = f[a+b] = f(a) + f(b) = g(\overline{x}) + g(\overline{y}).$$

Thus g is a pseudo rank function. We have for $x \in R$, $g \circ \phi(x) = g(0) = f(0) = 0 =$ f(x) if $x \in I$. If $x \notin I$, then $g \circ \phi(x) = g(x) = f(x)$. Thus $g \circ \phi = f$. Clearly, q is unique.

We note that if $x \neq 0$ in R/I then g(x) > 0 iff $x \notin I$ iff $x \notin ker(f)$. Thus I = ker(f). Conversely, if I = ker(f), then g(x) > 0 for $x \neq 0$. Thus g is a rank function iff I = ker(f). \square

Lemma 10. If f, g are pseudo-rank functions on a Rickart *-ring R such that $f(e) \leq g(e)$ for all projections $e \in R$, then f = g.

Proof. If $f \neq g$, then f(x) < g(x) for some $x \in R$. This implies f(RP(x)) < f(RP(x)) < g(x)q(RP(x)). Put e = RP(x). Using f(1-e) < q(1-e) we get

$$1 = f(1) = f(e + (1 - e)) = f(e) + f(1 - e) < g(e) + g(1 - e) = g(1) = 1,$$

intradiction.

a cor

We recall some terms from Birkhoff [1], p. 5. The *length* of a poset P is defined as the least upper bound of the lengths of the chains in P and it is denoted by l(P). If l(P) is finite then P is said to be of *finite length*. Let P be a poset of finite length and with 0 and $a \in P$. The *height* of a, denoted by h(a), is defined as the least upper bound of all chains in [0, a]. It is known that in a modular lattice $h(a \lor b) + h(a \land b) = h(a) + h(b)$. The following two results are from Janowitz [7].

Theorem 2. Every interval [0, x] of a Rickart *-ring is an orthomodular lattice.

Lemma 11. Let R be a Rickart *-ring, $x \in R$. The interval [0, x] is orthoisomorphic to $\{e \in C(x^*x) | e \leq x^{''}\}$, where $C(x^*x)$ dentes the set of all projections $f \in R$ which commute with x^*x . Moreover, [0, x] is orthoisomorphic to $[0, x^*]$.

In the notations of Berberian [2], we have x'' = RP(x).

Theorem 3. Let R be a Rickart *-ring, considered as a poset, of finite length and in which each projection is central. Then the function N on R defined by $N(x) = \inf\{m/n : m, n \in \mathbb{Z}, m > 0, n > 0 \text{ and } nh(x) \le mh(1)\}$ is a pseudo-rank function on R.

Proof. For all $x \in R$, put $N(x) = \inf\{m/n : m, n \in \mathbb{Z} > 0 \text{ and } nh(x) \leq mh(1)\}$. From Lemma 11, we get $h(x) = h(x^*) = h(RP(x))$. Clearly, $h(RP(x)) \leq h(1)$ and so $h(x) \leq h(1)$. Hence $0 \leq N(x) \leq 1$. Suppose, N(1) < 1. Then there exist positive integers m, n, m < n such that $nh(1) \leq mh(1)$ but this is not possible as h(1) is a positive integer. Thus N(1) = 1. Let $x, y \in R$. Then h(xy) = h(RP(xy)). By Lemma on p. 137, from Berberian [2], $RP(xy) \leq RP(y)$. Hence $h(RP(xy)) \leq h(RP(y))$. Also we get $LP(xy) \leq LP(x)$. Since all projections are central, LP(a) = RP(a) for all $a \in R$. Thus $RP(xy) \leq RP(x)$. Let m, n be any positive integers such that $nh(x) \leq mh(1)$. Then $nh(xy) \leq mh(1)$ and so $N(xy) \leq m/n$. Thus $N(xy) \leq N(x)$. Similarly, $N(xy) \leq N(y)$. Let $x, y \in R$ be such that $x \perp y$. This implies $RP(x) \perp RP(y)$ and so $RP(x) \lor RP(y) = RP(x) + RP(y)$. We have h(x+y) = h(RP(x+y)). By Lemma on p.137 from Berberian, [2],

$$RP(x+y) \le RP(x) \lor RP(y) = RP(x) + RP(y).$$

As all projections are central, the lattice of projections in R is distributive. Hence $h(RP(x) \lor RP(y)) = h(RP(x)) + h(RP(y))$. Thus $h(x + y) \le h(RP(x)) + h(RP(y)) = h(x) + h(y)$. Let $\epsilon > 0$ be given. Then there exist positive integers m, n, s, t such that $nh(x) \le mh(1)$ and $th(y) \le sh(1)$ and $m/n < N(x) + \epsilon/2$ and $s/t < N(y) + \epsilon/2$. Then $nth(x + y) = nth(x) + nth(y) \le mth(1) + nsh(1) = (mt + ns)h(1)$. Hence

$$N(x+y) \le (m/n) + (s/t) < N(x) + N(y) + \epsilon.$$

Thus $N(x + y) \leq N(x) + N(y)$. If N(x + y) < N(x) + N(y), then there exist positive integers m, n, s, t such that N(x) > m/n and N(y) > s/t, while N(x+y) < (m/n) + (s/t). Consequently, there exist positive integers a, b such that $bh(x+y) \leq ah(1)$ and a/b < (m/n) + (s/t). Then ant < (mt + ns)b, hence $anth(x + y) \leq (mt + ns)bh(x + y) \leq a(mt + ns)h(1)$. Since N(x) > m/n, we have $nh(x) \nleq mh(1)$. Hence $mh(1) \leq nh(x)$. Now $anth(x) + anth(y) = anth(x + y) \leq a(mt + ns)h(1) \leq a(mt + ns)h(1)$

190

anth(x) + ansh(y). Hence $anth(y) \le ansh(1)$. But then $N(y) \le ans/ant = s/t$, which is false. Thus N(x + y) = N(x) + N(y). Therefore N is a pseudo-rank function on R.

4. Properties of the set of pseudo-rank functions

For a Rickart *-ring R, we denote the set of all pseudo-rank functions on R by $\mathbb{P}(R)$ (this set might be empty). We consider it as a subset of the real vector space $\mathbb{R}^R = \{f \mid f : R \to \mathbb{R}\}$ equipped with the product topology.

We note that \mathbb{R}^R is a Housdorff topological vector space. The topology on \mathbb{R}^R can be described in terms of convergence of nets. Given a net $\{f_i\}$ in \mathbb{R}^R and some $f \in \mathbb{R}^R$, we have $f_i \to f$ if and only if $f_i(x) \to f(x)$ for all $x \in R$. A partial order can be defined on \mathbb{R}^R by $f \leq g$ iff for each $x \in R$, $f(x) \leq g(x)$.

We recall some terms. Let E be a real vector space. A convex combination of points $x_1, \dots, x_n \in E$ is any linear combination of the form $\alpha_1 x_1 + \dots + \alpha_n x_n$ where $\alpha_i \in \mathbb{R}$ and $\alpha_i \geq 0$, $\sum_{i=1}^n \alpha_i = 1$. A convex subset of E is any subset $K \subseteq E$ such that for $0 \leq \alpha \leq 1$ and any $x, y \in K$, $\alpha x + (1 - \alpha)y \in K$. A convex cone in E is a subset $C \subseteq E$ such that $0 \in C$ and $\alpha x + \beta y \in C$ for all $x, y \in C$ and nonnegative real numbers α and β . A convex cone C is called strict if $C \cap (-C) = 0$. A subset A of E is called an affine subspace if it is closed under linear combinations of the form $\sum_{i=1}^n \alpha_i x_i$ where $x_i \in A$ and $\sum \alpha_i = 1$. A hyperplane in E is an affine subspace of the form V + x such that V is a linear subspace of E of codimension 1. A base for a strict cone in C is a convex $K \subseteq E$ such that K is contained in a hyperplane not containing the origin and $C = \{\alpha x : x \in K \text{ and } \alpha \ge 0\}$.

Proposition 2. For a Rickart *-ring R, $\mathbb{P}(R)$ is a compact convex subset of \mathbb{R}^R .

Proof. Clearly $\mathbb{P}(R)$ is a convex set.

We note that $\mathbb{P}(R)$ is contained in $W = [0,1]^R$ which is compact by Tichonoff's theorem. Thus it is sufficient to show that $\mathbb{P}(R)$ is closed in W. Let N_i be a net in $\mathbb{P}(R)$ which converges to some $N \in W$. Since $N_i(1) \to N(1)$ we have N(1) = 1. For $x \in R$ we have $N_i(x) \to N(x)$ and $N_i(x^*) \to N(x^*)$, $N_i(x) = N_i(x^*)$ imply $N(x) = N(x^*)$. Also $N_i(xy) \leq N_i(x)$ for all *i* implies $N(xy) \leq N(x)$. Similarly $N(xy) \leq N(y)$ and if $x \perp y$ then N(x+y) = N(x) + N(y) and N(x) = N(RP(x)) = N(LP(x)). Thus $N \in \mathbb{P}(R)$ so $\mathbb{P}(R)$ is closed in W.

A convex subset F of a convex set K is called a *face* of K if for $x, y \in K$ and $0 < \alpha < 1$, $\alpha x + (1 - \alpha)y \in F$ implies $x, y \in F$.

Lemma 12. Let R be a Rickart *-ring and $X \subseteq R$. Then the set $F = \{N \in \mathbb{P}(R) \mid N(x) = 0 \text{ for all } x \in X\}$ is a closed face of $\mathbb{P}(R)$.

Proof. Let N_i be a net in F converging to some $N \in \mathbb{P}(R)$. Clearly for all $x \in R$, $N_i(x) = 0$ for each i and so N(x) = 0. Thus $N \in F$. i. e. F is a closed subset of $\mathbb{P}(R)$. If $0 < \alpha < 1$, then for any $P, Q \in F$, $[\alpha P + (1-\alpha)Q](x) = 0$. Thus F is convex. Suppose that for some α , $0 < \alpha < 1$ and for some $P, Q \in \mathbb{P}(R)$, $\alpha P + (1-\alpha)Q = N \in F$. For all $x \in X$, we have $P(x) \le \alpha^{-1}([\alpha P + (1-\alpha)Q](x)) = \alpha^{-1}N(x) = 0$.

Thus P(x) = 0, i. e. $P \in F$. Similarly $Q \in F$. Therefore, F is a face of $\mathbb{P}(R)$. \Box

A *-ring R with unity is called *factorial* if 0 and 1 are the only central projections in R, see; Berberian [2], p.36.

Lemma 13. Let R be a Rickart *-ring. Let $f \in \mathbb{P}(R)$ be such that $ker(f) = \{0\}$. If f is an extreme point of $\mathbb{P}(R)$ then R is factorial.

Proof. Let $z \in R$ be a nonzero central projection in R and $z \neq 1$. Then 1 - z is also a central projection. We have f(z) > 0, f(1-z) > 0 and f(z) + f(1-z) =1. By Lemma 4(b) there exist pseudo-rank functions g_1 and g_2 on R such that $g_1(z) = 1$, $g_2(1-z) = 1$ and $f(y) = f(z)g_1(y) + f(1-z)g_2(y)$ for all $y \in R$. Since $g_1(z) = 1$ implies $g_1(1-z) = 0$ we get $g_1 \neq g_2$. Thus f is a convex combination of distinct pseudo-rank functions in $\mathbb{P}(R)$. This contradicts the assumption that f is an extreme point.

A *-ring is said to satisfy the general comparability, (GC), if for any pair of projections $e, f \in R$ there exists a central projection h such that $he \preceq hf$ and $h(1-f) \preceq h(1-e)$, see; Berberian [2], p.77.

Lemma 14. Let R be a Rickart *-ring with the generalized comparability and $f \in \mathbb{P}(R)$. If f is an extreme point of $\mathbb{P}(R)$ then R/ker(f) is factorial.

Proof. Let K = ker(f) and $\phi : R \to R/K$ be the natural homomorphism. By Lemma 9 there exists a rank function g on R/K such that $g \circ \phi = f$. Suppose there exists a nontrivial central projection $e \in R/K$. We have g(e) > 0, g(1-e) > 0and g(e) + g(1-e) = 1. By Lemma 4(b) there exist pseudo-rank functions g_1 and g_2 on R/K such that $g_1(e) = 1$, $g_2(1-e) = 1$ and $g = g(u)g_1 + g(1-u)g_2$. Since $g_1(e) = 1$ implies $g_1(1-e) = 0$, we get $g_1 \neq g_2$. By Proposition 5, p.141 from Berberian [2] there exists a central projection $h \in R$ such that $\overline{h} = e$. Then $g_1 \circ \phi(h) = g_1(e) = 1$ and $g_2 \circ \phi(h) = g_2(e) = 0$ show that $g_1 \circ \phi \neq g_2 \circ \phi$. Thus $f = g(u)[g_1 \circ \phi] + g(1-u)[g_2 \circ \phi]$ is a convex combination of distinct pseudo-rank functions in $\mathbb{P}(R)$. This contradicts the assumption that f is an extreme point. \Box

Theorem 4. Let R be a Rickart *-ring with the generalized comparability. Let $P \in \mathbb{P}(R)$. Consider the following statements.

- (1) P is an extreme point of $\mathbb{P}(R)$.
- (2) $B(R) \cap ker(P)$ is a maximal ideal of B(R) where B(R) is the Boolean algebra of all central projections in R.
- (3) ker(P) is a prime strict ideal of R.
- (4) The set of strict ideals of the Rickart *-ring R/ker(P) is linearly ordered.

Then $(1) \Rightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$.

Proof. (1) \Rightarrow (2) Let ker(P) = K. Since K is a proper strict ideal, $B(R) \cap K$ is a proper ideal of B(R). If $B(R) \cap K$ is not maximal, then there exists an ideal J of B(R) such that $B(R) \cap K \subseteq J$. Let $e \in J$ but $e \notin B(R) \cap K$. Clearly,

 $1-e \notin B(R) \cap K$. Then \overline{e} is a nontrivial central projection in R/K. This contradicts Lemma 14.

(2) \Leftrightarrow (3) and (3) \Leftrightarrow (4) follow from Proposition 1.2 of Thakare and Nimbhorkar [13].

References

- [1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., 25(1979).
- [2] S. K. Berberian, Baer *-rings, Springer Verlag, Berlin, 1972.
- [3] K. R. Goodearl, Simple regular rings and rank functions, Math. Annalen, 214(1975), 267-287.
- [4] K. R. Goodearl, Dimension theory for nonsingular injective modules, Memoirs Amer. Math. Soc., 177(1976).
- [5] K. R. Goodearl, von Neumann regular rings, Pitman, London, 1979.
- [6] T. Iwamura, On continuous geometries II, Jour. Math. Soc. Japan, 2(1950), 148-164.
- [7] M. F. Janowitz, On the *-order for Rickart *-rings, Algebra Universalis, 16(1983), 360-369.
- [8] I. Kaplansky, Projections in Banach algebras, Ann. of Math., 53(1951), 235-249.
- [9] L. H. Loomis, The lattice theoretic background of operator algebras, Memoirs Amer. Math. Soc., 18(1955).
- [10] S. Maeda, Dimension functions on certain general lattices, J. Sc. Hiroshima University, 19(1955), 211-237.
- [11] F. J. Murray and J. von Neumann, On rings of operators, Ann. of Math., 37(1936), 116-229.
- [12] J. von Neumann, Continuous geometry, Princeton University Press, Princeton, 1960.
- [13] N. K. Thakare and S. K. Nimbhorkar, Prime strict ideals in Rickart *-rings, Indian J. Pure Appl. Math., 22(1991), 63-72.