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Abstract. Pseudo-rank functions on Rickart *-rings are introduced and their properties

are studied.

1. Introduction

A real valued function D on a lattice L is called a dimension function if the
range of D has either an upper bound or a lower bound and for all a, b ∈ L,
D(a ∨ b) + D(a ∧ b) = D(a) + D(b), see; von Neumann [12] p.58. The theory of
dimension functions is studied in various structures. von Neumann [12] introduced
dimensionality in continuous geometries by using perspectivity, whereas Iwamura
[6] used the concept of a relation called the p-relation .
Kaplansky [8], Murray and von Neumann [11] and others have introduced dimen-
sionality in rings of operators by using equivalence of projections. Maeda [10] gener-
alized the work of von Neumann [12] and Kaplansky [8] for a certain class of lattices.
At the same time Loomis [9] gave an abstract setting to the Murray, von Neumann
dimension theory by using complete orthocomplemented lattices. Berberian [2] has
developed theory of dimension functions on the lattice of projections of a finite Baer
*-ring. Goodearl [4] developed the dimension theory for a certain class of modules.
von Neumann [12], p.231 has introduced the concept of a rank-function on a regular
ring which generalizes the dimension function. Goodearl [3], [5] has introduced and
developed the study of pseudo-rank functions on regular rings, which is a general-
ization of rank functions.
In this paper we introduce and study the concept of a pseudo-rank function on a
Rickart *-ring R. We obtain some basic properties of pseudo-rank functions and
the set of all pseudo-rank functions on R, on the lines of Goodearl [5] for Rickart
*-rings. The undefined terms are from Berberian [2] and Birkhoff [1].
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2. Preliminaries

A *-ring is a ring R with an involution “∗ ”(i.e. an antiautomorphism of period
two) such that x∗∗ = x, (x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗. Throughout we denote
by R, a *-ring. An element e ∈ R is called a projection if it is self-adjoint (i.e.
e = e∗) and idempotent (i.e. e = e2). The set of projections in R can be partially
ordered by e ≤ f if and only if e = ef , see; Berberian [2]. If for two projections
e, f ∈ R, ef = fe, then inf{e, f} = e∧ f = ef and sup{e, f} = e∨ f = e+ f − ef .
Two projections e, f ∈ R are called equivalent, in notation e ∼ f , if there exists
some w ∈ R such that w∗w = e and ww∗ = f . Then w is a partial isometry, (i.e.
ww∗w = w) and we = w = fw. For projections e, f ∈ R, we say that f dominates
e, in notation e - f , if e ∼ g ≤ f for some projection g ∈ R. Two elements x, y ∈ R
are said to be orthogonal, in notation x ⊥ y, if x∗y = xy∗ = 0, see; Loomis [9]
p.26. A *-ring A is called a Rickart *-ring if for each x ∈ A, the right annihilator
of x, R({x}) = {y ∈ A : xy = 0}, is a right ideal generated by a projection. i.
e. R({x}) = gA for some projection g ∈ A. A *-ring A is called a Baer *-ring if
the right annihilator of any nonempty subset S of A is the right ideal generated
by a projection e ∈ A i. e. R(S) = eA. In this case, the projection 1 − e is
called the right projection of S. Similarly the left projection of S is defined. The
right projection (respectively, left projection) of an element x in a Rickart *-ring is
denoted by RP (x) (respectively, by LP (x)) and it is the smallest projection e such
that xe = x (ex = x) and xy = 0 is equivalent to RP (x)y = 0 (yLP (x) = 0). It is
known that a *-ring with proper involution (i.e. x∗x = 0 implies x = 0 )is a poset
under the partial order (called the *-order) x ≤ y iff x∗x = x∗y and xx∗ = xy∗,
see; Janowitz [7]. This partial order generalizes the partial order defined on the set
of projections. A Rickart *-ring has proper involution.

3. Pseudo-rank function

A pseudo-rank function f on a *-ring R is a mapping f : R→ [0, 1] such that

(1) f(1) = 1,

(2) f(xy) ≤ f(x), f(y) for all x, y ∈ R,

(3) f(x+ y) = f(x) + f(y) for all orthogonal x, y ∈ R,

(4) f(x) = f(x∗) = f(RP (x)) = f(LP (x)) provided RP (x), LP (x) exist in R.

It is clear that f(0) = 0. A pseudo-rank function f with the property f(x) > 0, for
x 6= 0 is called a rank function on R.

Proposition 1. Let R be a *-ring and f be a pseudo-rank function on R.

(1) If x1, · · · , xn ∈ R are mutually orthogonal then f(x1+· · ·+xn) =
∑n

i=1 f(xi).

(2) If the involution in R is proper and x ≤ y then f(x) ≤ f(y).
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(3) If the involution in R is proper and x1, · · · , xn and y1, · · · , yk are sets of
orthogonal elements in R such that x1 + · · · + xn ≤ y1 + · · · + yk, then∑n

i=1 f(xi) ≤
∑k

i=1 f(yi).

(4) If e, g are projections in R, such that e ∼ g then f(e) = f(g).

(5) If e1, · · · , en and g1, · · · , gk are sets of orthogonal projections in R such that
e1 + · · ·+ en - g1 + · · ·+ gk, then

∑n
i=1 f(ei) ≤

∑k
i=1 f(gi).

Proof. (1) Follows from the definition of a pseudo-rank function.

(2) x ≤ y iff x∗x = x∗y and xx∗ = xy∗. By the definition of a pseudo-rank function
f(x) = f(x∗x) = f(x∗y) ≤ f(y).

(3) Using (2) and the definition of a pseudo-rank function we have
∑n

i=1 f(xi) =
f(x1 + · · ·+ xn) ≤ f(y1 + · · ·+ yk) =

∑k
i=1 f(yi).

(4) e ∼ g implies e = w∗w, g = ww∗ for some partial isometry w ∈ R. Then
w = ww∗w = gw = we and so f(e) = f(w∗w) ≤ f(w) = f(gw) ≤ f(g). Similarly
f(g) ≤ f(e).

(5) Follows from (4)and (3). �

It is known that for a projection e in a Rickart *-ring R, eRe is a Rickart *-ring,
see; Berberian [2] p.15.

Lemma 1. Let f be a pseudo-rank function on a Rickart *-ring R. Let e ∈ R be a
nonzero projection such that f(e) 6= 0.

(1) The function Q(x) = f(x)/f(e) defines a pseudo-rank function on the Rickart
*-ring eRe.

(2) If e is a central projection in R then the function Q(x) = f(ex)/f(e) defines
a pseudo-rank function on R.

(3) If e is a central projection such that f(e) = 1 then f(ex) = f(x) for all x ∈ R.

Proof. (1) x ∈ eRe implies x = ex = xe. Hence f(x) = f(ex) ≤ f(e) shows that
Q(x) ≤ 1. Thus Q maps eRe into [0, 1]. By Corollary p.15 from Berberian [2], for
x ∈ eRe, RP (x), LP (x) are same whether calculated in R or in eRe. Hence the
remaining properties for Q to be a pseudo-rank function can be easily verified.

(2) Since f(ex) ≤ f(e) for all x ∈ R, Q maps R into [0, 1].
(i). Clearly Q(1) = 1.
(ii). For x, y ∈ R, f(exy) ≤ f(ex), f(ey) and so Q(xy) ≤ Q(x), Q(y).
(iii). Suppose x ⊥ y in R. Since, e is a central projection it follows that ex ⊥ ey.
Hence Q(x+ y) = f(ex+ ey)/f(e) = Q(x) +Q(y).
(iv). Since (ex)∗ = ex∗, we get Q(x) = Q(x∗).

To show that Q(x) = Q(RP (x)), we first show that eRP (x) = RP (ex). From
x = xRP (x) we get ex = exRP (x). Hence ex[1− eRP (x)] = 0 and so RP (ex)[1−
eRP (x)] = 0. Thus RP (ex) = RP (ex)eRP (x).
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On the other hand, ex = exRP (ex) implies x[eRP (ex) − e] = 0 and so
RP (x)[eRP (ex) − e] = 0 i.e. RP (x)eRP (ex) = eRP (x). Since e is a central pro-
jection it follows from the Lemma p.137 from Berberian [2] that RP (ex) ≤ RP (x).
Thus RP (x) and RP (ex) commute with each other. This shows that RP (ex) =
eRP (x).
Thus Q(x) = f(ex)/f(e) = f(RP (ex))/f(e) = f(eRP (x))/f(e) = Q(RP (x)). Sim-
ilarly we get Q(x) = Q(LP (x)).

(3) We have f(x) = f(xe + x(1 − e)) = f(xe) + f(x(1 − e)). Also, 1 = f(1) =
f(e+(1−e)) = f(e)+f(1−e) implies f(1−e) = 0. Now f(x(1−e)) ≤ f(1−e) = 0
leads to f(x) = f(xe). �

Lemma 2. Let {e1, · · · , en} be a set of orthogonal projections in a Rickart *-ring
R. Suppose I, J are nonempty subsets of {1, · · · , n}. Let αi and βj be nonzero real
numbers. For each i ∈ I and j ∈ J , let Pi and Qj be pseudo-rank functions on
eiRei and ejRej respectively. If

∑
i∈I αiPi(eixei) =

∑
j∈J βjQj(ejxej) for every

x ∈ R, then I = J , αi = βi and Pi = Qi for each i.

Proof. Let t ∈ J . Then using ejet = 0 for j 6= t, Qj(0) = 0 and Qj(ej) = 1
we get

∑
i∈I αiPi(eixet) =

∑
j∈J βjQj(ejxet) = βt 6= 0. Hence Ps(eset) 6= 0 for

some s ∈ I. This implies eset 6= 0 and so s = t, i.e. t ∈ I. Thus J ⊆ I. Sim-
ilarly we get I ⊆ J . Given s ∈ I, y ∈ esRes then using eies = 0 for i 6= s we
get, αsPs(x) =

∑
i∈I αiPi(eixei) =

∑
j∈J βjQj(ejxej) = βsQs(x). In particular

αs = αsPs(es) = βsQs(es) = βs. Consequently Ps(x) = Qs(x) for every x ∈ esRes.
Thus Ps = Qs. �

Lemma 3. Let {e1, · · · , en} be a set of orthogonal central projections in a Rickart
*-ring R. Suppose I, J are nonempty subsets of {1, · · · , n}. Let αi and βj be
nonzero real numbers. For each i ∈ I and j ∈ J , let Pi and Qj be pseudo-rank
functions on R such that Pi(ei) = 1 and Qj(ej) = 1. If

∑
i∈I αiPi(eixei) =∑

j∈J βjQj(ejxej) for every x ∈ R, then I = J , αi = βi and Pi = Qi for each
i ∈ I.

Proof. Let t ∈ J . Then using Lemma 1(3) we get Qj(et) = Qj(ejet) = 0. Hence∑
i∈I αiPi(et) =

∑
j∈J βjQj(et) = βtQt(et) = βt 6= 0. Therefore Ps(et) 6= 0 for

some s ∈ I. This implies eset 6= 0 and so s = t, i.e. t ∈ I. Thus J ⊆ I. Similarly
we get I ⊆ J .
Given s ∈ I, x ∈ R we have by using Lemma 1(3), αsPs(x) = αsPs(esx) =∑

i∈I αiPi(eiesx) =
∑

j∈J βjQj(ejesx) = βsQs(esx) = βsQs(x). In particular
αs = αsPs(es) = βsQs(es) = βs. Consequently Ps(x) = Qs(x) for every x ∈ R.
Thus Ps = Qs. �

Lemma 4. Let e1, · · · , en be orthogonal central projections in a Rickart *-ring R.
Let f be a pseudo-rank function on R such that

∑n
i=1 f(ei) = 1 and f(ei) 6= 0 for

all i.

(a) There exist unique pseudo-rank functions Pi, 1 ≤ i ≤ n, on eiR such that
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f(x) =
∑n

i=1 f(ei)Pi(eix) for all x ∈ R.

(b) There exist unique pseudo-rank functions Qi, 1 ≤ i ≤ n, on R such that
Qi(ei) = 1 and f(x) =

∑n
i=1 f(ei)Qi(x) for all x ∈ R.

Proof. Since e1, · · · , en are orthogonal central projections in R, f(e1 + · · ·+ en) =∑n
i=1 f(ei) = 1. Hence by Lemma 1(3), f(x) = f(e1x+ · · ·+ enx) =

∑n
i=1 f(eix).

(a) For each i, 1 ≤ i ≤ n by Lemma 1(1), Pi(x) = f(x)/f(ei) defines a pseudo-rank
function Pi on eiR. Given any x ∈ R, we then have f(eix) = f(ei)Pi(eix) for each
i. Hence f(x) =

∑n
i=1 f(ei)P (eix). Uniqueness follows from Lemma 2.

(b) For each i, by Lemma 1(2), Qi(x) = f(eix)/f(ei) defines a pseudo-rank func-
tion Qi on R. We note that Qi(ei) = 1. Given any x ∈ R, we then have
f(eix) = f(ei)Qi(x) for all i. Hence f(x) =

∑n
i=1 f(ei)Qi(x). Uniqueness fol-

lows from Lemma 3. �

Theorem 1. Let R be a Rickart *-ring and e1, · · · , en be orthogonal central pro-
jections in R such that e1 + · · ·+ en = 1.

(a) Suppose I is a nonempty subset of {1, · · · , n}. Let αi be positive real numbers
such that

∑
i∈I αi = 1. For each i ∈ I, let Pi be a pseudo-rank function on

eiR. Then f(x) =
∑

i∈I αiPi(eix) is a pseudo-rank function on R.

(b) Let αi, 1 ≤ i ≤ n be nonnegative real numbers such that
∑

i∈I αi = 1.
For each i ∈ I, let Pi be a pseudo-rank function on eiR. Then f(x) =∑n

i=1 αiPi(eix) is a pseudo-rank function on R.

(c) Every pseudo-rank function on R may be uniquely obtained as in (a). More-
over, if there exists at least one pseudo-rank function on each eiR, then every
pseudo-rank function on R may be obtained as in (b).

Proof. (a) and (b) follow from the definition of a pseudo-rank function.
(c) Let f be a pseudo-rank function on R. Let I be the set of those i ∈ {1, · · · , n}
for which f(ei) 6= 0. Put αi = f(ei) for all i ∈ I. Then

∑
i∈I αi =

∑
i∈I f(ei) =

f(e1 + · · · + en) = f(1) = 1. By Lemma 4(a) there exist pseudo-rank functions Pi

on eiR for each i ∈ I such that f(x) =
∑

i∈I αiPi(eix) for all x ∈ R. Thus f has a
representation as in (a).
Suppose that there exists at least one pseudo-rank function on each eiR. Put
αi = f(ei) for all i = 1, · · · , n. For i ∈ {1, · · · , n} − I, let Pi be any pseudo-rank
function on eiR. Then f(x) =

∑
i∈I αiPi(eix) =

∑n
i=1 αiPi(eix) for all x ∈ R,

which represents f as in (b). �

The proof of the following lemma follows from the definition of a pseudo-rank
function.

Lemma 5. Let R1, R2 be two Rickart *-rings, f : R1 → R2 be a *-homomorphism
satisfying the condition f(RP (x)) = RP (f(x)). If g is a pseudo-rank function on
R2, then g ◦ f is a pseudo-rank function on R1.
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An ideal I of a Rickart *-ring is called a strict ideal, if x ∈ I implies RP (x) ∈ I,
see; Berberian [2] p. 141.

Lemma 6. Let f be a pseudo-rank function on a Rickart *-ring R. The set
A = {x ∈ R : f(x) = 0} is a proper strict ideal of R.

Proof. Since f(0) = 0, A is nonempty. Also, f(x) = f(x∗) = f(RP (x)) shows that
if x ∈ A, then x∗, RP (x) ∈ A. Clearly, for x ∈ A and y ∈ R; f(xy) ≤ f(x) implies
xy ∈ A. Similarly yx ∈ A. Let x, y ∈ A. Then f(x+y) = f(RP (x+y)). By Lemma
on p. 137 from Berberian [2], RP (x+ y) ≤ RP (x) ∨RP (y). For convenience write
RP (x) = e and RP (y) = g. Then e ∨ g = g +RP [e(1− g)] with g ⊥ RP [e(1− g)].
We have f [g+RP (e(1−g))] = f(g)+f [RP (e(1−g))] = f(RP (y))+f [e(1−g)]. We
have f(g) = f(RP (y)) = f(y) = 0 and f [e(1− g)] ≤ f(e) = f(RP (x)) = f(x) = 0.
Hence f(x+ y) = f(RP (x+ y)) ≤ f(e∨ g) = 0. Thus x+ y ∈ A and so A is a strict
ideal of R. Since f(1) = 1, A is a proper strict ideal. �

The following result is from Berberian [2] (Exercise 1, p. 144).

Lemma 7. Let I be a strict ideal of a Rickart *-ring R. Equip R/I with the natural
*-ring structure and write x→ x for the canonical mapping R→ R/I.

(1) R/I is a Rickart *-ring.

(2) RP (x) = (RP (x)), LP (x) = (LP (x)), for all x ∈ R; in particular, every
projection in R/I has the form e with e a projection in R.

(3) For all projections e, f ∈ R, e ∨ f = e ∨ f and e ∧ f = e ∧ f .

(4) If u, v are orthogonal projections in R/I and if v = f , f a projection in R,
then there exists a projection e ∈ R such that u = e and e is orthogonal to f .

Lemma 8. Let R be a Rickart *-ring in which every projection is central. Let I be
a strict ideal of R. Let u, v ∈ R/I and v = b for some b ∈ R.

(1) If u ≤ v, then there exists a ∈ R such that u = a and a ≤ b.

(2) If u ⊥ v, then there exists a ∈ R such that u = a and a ⊥ b.

Proof. Let u = x for some x ∈ R.

(1) We note that u ≤ v implies u∗u = u∗v = v∗u and uu∗ = uv∗ = vu∗ in R/I.
Then in R/I

(a) x∗x = x∗b = b∗x andxx∗ = xb∗ = bx∗.

Put a = bRP (x). Since all projections are central, RP (x) = RP (x∗). We have
a∗a = a∗b = b∗a and aa∗ = ba∗ = ab∗. Thus a ≤ b in R. Moreover, x∗a = x∗b and
ax∗ = bx∗. Hence in R/I,

(b) x∗x = x∗b = x∗a andxx∗ = bx∗ = ax∗.
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Thus, in R/I, x ≤ a. Further we have, xx∗ = ax∗ = xa∗. Hence
x [x∗ − a∗ ] a = 0. This implies RP (x) [x∗ − a∗ ] a = 0. Thus RP (x)x∗ a =
RP (x)a∗a. Using RP (x)x∗ = x∗ and RP (x)a∗ = a∗, we get x∗a = a∗a. Therefore,
(a − x)∗(a − x) = 0. Since R/I is a Rickart *-ring, its involution is proper and so
we get a− x = 0. Thus a = x.

(2) Suppose u ⊥ v in R/I. Then u∗v = 0 implies x∗b = 0 and so x∗RP (b) = 0,
consequently, xRP (b) = 0, x = x[1−RP (b)]. Put a = x[1−RP (b)]. As all projec-
tions are central, we get a∗b = ab∗ = 0. Hence a ⊥ b in R. Also we have a = x. �

Lemma 9. Let f be a pseudo rank function on a Rickart *-ring R, in which all
projections are central. Let I be a strict ideal of R, such that I ⊆ ker(f). Then
there exists a pseudo rank function g on R/I such that g ◦ φ = f . Further g is a
rank function iff I = ker(f).

Proof. Let φ be the canonical *-homomorphism from R to R/I. Suppose x, y ∈ R
and φ(x) = φ(y). Then φ(x−y) = 0 and so x−y ∈ I ⊆ ker(f) implies f(x−y) = 0.
We have x = (x − y) + y. By the Lemma on p. 137 from Berberian [2]
RP (x) ≤ RP (x − y) ∨ RP (y). Put RP (x − y) = e and RP (y) = g. We have
e ∨ g = e+RP [g(1− e)] with e ⊥ RP [g(1− e)]. Hence

f(x) = f(RP (x)) ≤ f(e) + f [RP (g(1− e))] = f(x− y) + f [g(1− e)] ≤ f(g) = f(y).

Similarly, we get f(y) ≤ f(x). Thus f(x) = f(y). Define a map g : R/I → [0, 1], by
g(x) = f(x). In view of the above para g is well defined. We have g(1) = 1, g(xy) ≤
g(x), g(y). Let x, y ∈ R/I and x ⊥ y. Then by Lemma 8 there exist a, b ∈ R such
that a ⊥ b, a = x and b = y. We have

g[x+ y] = g[a+ b] = f [a+ b] = f(a) + f(b) = g(x) + g(y).

Thus g is a pseudo rank function. We have for x ∈ R, g ◦φ(x) = g(0) = f(0) = 0 =
f(x) if x ∈ I. If x /∈ I, then g ◦ φ(x) = g(x) = f(x). Thus g ◦ φ = f .
Clearly, g is unique.
We note that if x 6= 0 in R/I then g(x) > 0 iff x /∈ I iff x /∈ ker(f). Thus I = ker(f).
Conversely, if I = ker(f), then g(x) > 0 for x 6= 0. Thus g is a rank function iff
I = ker(f). �

Lemma 10. If f , g are pseudo-rank functions on a Rickart *-ring R such that
f(e) ≤ g(e) for all projections e ∈ R, then f = g.

Proof. If f 6= g, then f(x) < g(x) for some x ∈ R. This implies f(RP (x)) <
g(RP (x)). Put e = RP (x). Using f(1− e) ≤ g(1− e) we get

1 = f(1) = f(e+ (1− e)) = f(e) + f(1− e) < g(e) + g(1− e) = g(1) = 1,

a contradiction. �

We recall some terms from Birkhoff [1], p. 5. The length of a poset P is defined
as the least upper bound of the lengths of the chains in P and it is denoted by
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l(P ). If l(P ) is finite then P is said to be of finite length. Let P be a poset of
finite length and with 0 and a ∈ P . The height of a, denoted by h(a), is defined as
the least upper bound of all chains in [0, a]. It is known that in a modular lattice
h(a ∨ b) + h(a ∧ b) = h(a) + h(b). The following two results are from Janowitz [7].

Theorem 2. Every interval [0, x] of a Rickart *-ring is an orthomodular lattice.

Lemma 11. Let R be a Rickart *-ring, x ∈ R. The interval [0, x] is orthoisomor-
phic to {e ∈ C(x∗x)|e ≤ x

′′}, where C(x∗x) dentes the set of all projections f ∈ R
which commute with x∗x. Moreover, [0, x] is orthoisomorphic to [0, x∗].

In the notations of Berberian [2], we have x
′′

= RP (x).

Theorem 3. Let R be a Rickart *-ring, considered as a poset, of finite length
and in which each projection is central. Then the function N on R defined by
N(x) = inf{m/n : m,n ∈ Z,m > 0, n > 0 and nh(x) ≤ mh(1)} is a pseudo-rank
function on R.

Proof. For all x ∈ R, put N(x) = inf{m/n : m,n ∈ Z > 0 andnh(x) ≤ mh(1)}.
From Lemma 11, we get h(x) = h(x∗) = h(RP (x)). Clearly, h(RP (x)) ≤ h(1)
and so h(x) ≤ h(1). Hence 0 ≤ N(x) ≤ 1. Suppose, N(1) < 1. Then there
exist positive integers m,n, m < n such that nh(1) ≤ mh(1) but this is not pos-
sible as h(1) is a positive integer. Thus N(1) = 1. Let x, y ∈ R. Then h(xy) =
h(RP (xy)). By Lemma on p. 137, from Berberian [2], RP (xy) ≤ RP (y). Hence
h(RP (xy)) ≤ h(RP (y)). Also we get LP (xy) ≤ LP (x). Since all projections are
central, LP (a) = RP (a) for all a ∈ R. Thus RP (xy) ≤ RP (x). Let m,n be any pos-
itive integers such that nh(x) ≤ mh(1).Then nh(xy) ≤ mh(1) and so N(xy) ≤ m/n.
Thus N(xy) ≤ N(x). Similarly, N(xy) ≤ N(y). Let x, y ∈ R be such that x ⊥ y.
This implies RP (x) ⊥ RP (y) and so RP (x) ∨ RP (y) = RP (x) + RP (y). We have
h(x+ y) = h(RP (x+ y)). By Lemma on p.137 from Berberian, [2],

RP (x+ y) ≤ RP (x) ∨RP (y) = RP (x) +RP (y).

As all projections are central, the lattice of projections in R is distributive. Hence
h(RP (x) ∨ RP (y)) = h(RP (x)) + h(RP (y)). Thus h(x + y) ≤ h(RP (x)) +
h(RP (y)) = h(x) + h(y). Let ε > 0 be given. Then there exist positive inte-
gers m,n, s, t such that nh(x) ≤ mh(1) and th(y) ≤ sh(1) and m/n < N(x) + ε/2
and s/t < N(y) + ε/2. Then nth(x + y) = nth(x) + nth(y) ≤ mth(1) + nsh(1) =
(mt+ ns)h(1). Hence

N(x+ y) ≤ (m/n) + (s/t) < N(x) +N(y) + ε.

Thus N(x + y) ≤ N(x) + N(y). If N(x + y) < N(x) + N(y), then there exist
positive integers m,n, s, t such that N(x) > m/n and N(y) > s/t, while N(x+y) <
(m/n)+(s/t). Consequently, there exist positive integers a, b such that bh(x+y) ≤
ah(1) and a/b < (m/n) + (s/t). Then ant < (mt + ns)b, hence anth(x + y) ≤
(mt+ns)bh(x+ y) ≤ a(mt+ns)h(1). Since N(x) > m/n, we have nh(x) � mh(1).
Hence mh(1) ≤ nh(x). Now anth(x) + anth(y) = anth(x+ y) ≤ a(mt+ ns)h(1) ≤
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anth(x) + ansh(y). Hence anth(y) ≤ ansh(1). But then N(y) ≤ ans/ant = s/t,
which is false. Thus N(x+ y) = N(x) +N(y).
Therefore N is a pseudo-rank function on R. �

4. Properties of the set of pseudo-rank functions

For a Rickart *-ring R, we denote the set of all pseudo-rank functions on R by
P(R) (this set might be empty). We consider it as a subset of the real vector space
RR = {f | f : R→ R} equipped with the product topology.
We note that RR is a Housdorff topological vector space. The topology on RR can
be described in terms of convergence of nets. Given a net {fi} in RR and some
f ∈ RR, we have fi → f if and only if fi(x) → f(x) for all x ∈ R. A partial order
can be defined on RR by f ≤ g iff for each x ∈ R, f(x) ≤ g(x).
We recall some terms. Let E be a real vector space. A convex combination of points
x1, · · · , xn ∈ E is any linear combination of the form α1x1+· · ·+αnxn where αi ∈ R
and αi ≥ 0,

∑n
i=1 αi = 1. A convex subset of E is any subset K ⊆ E such that for

0 ≤ α ≤ 1 and any x, y ∈ K, αx + (1 − α)y ∈ K. A convex cone in E is a subset
C ⊆ E such that 0 ∈ C and αx + βy ∈ C for all x, y ∈ C and nonnegative real
numbers α and β. A convex cone C is called strict if C ∩ (−C) = 0. A subset A of
E is called an affine subspace if it is closed under linear combinations of the form∑n

i=1 αixi where xi ∈ A and
∑
αi = 1. A hyperplane in E is an affine subspace of

the form V + x such that V is a linear subspace of E of codimension 1. A base for
a strict cone in C is a convex K ⊆ E such that K is contained in a hyperplane not
containing the origin and C = {αx : x ∈ Kandα ≥ 0}.

Proposition 2. For a Rickart *-ring R, P(R) is a compact convex subset of RR.

Proof. Clearly P(R) is a convex set.
We note that P(R) is contained in W = [0, 1]R which is compact by Tichonoff’s
theorem. Thus it is sufficient to show that P(R) is closed in W . Let Ni be a net
in P(R) which converges to some N ∈ W . Since Ni(1)→ N(1) we have N(1) = 1.
For x ∈ R we have Ni(x) → N(x) and Ni(x∗) → N(x∗), Ni(x) = Ni(x∗) imply
N(x) = N(x∗). Also Ni(xy) ≤ Ni(x) for all i implies N(xy) ≤ N(x). Similarly
N(xy) ≤ N(y) and if x⊥y then N(x+ y) = N(x) +N(y) and N(x) = N(RP (x)) =
N(LP (x)). Thus N ∈ P(R) so P(R) is closed in W . �

A convex subset F of a convex set K is called a face of K if for x, y ∈ K and
0 < α < 1, αx+ (1− α)y ∈ F implies x, y ∈ F .

Lemma 12. Let R be a Rickart *-ring and X ⊆ R. Then the set F = {N ∈
P(R) |N(x) = 0 for all x ∈ X} is a closed face of P(R).

Proof. Let Ni be a net in F converging to some N ∈ P(R). Clearly for all x ∈ R,
Ni(x) = 0 for each i and so N(x) = 0. Thus N ∈ F . i. e. F is a closed subset of
P(R). If 0 < α < 1, then for any P,Q ∈ F , [αP+(1−α)Q](x) = 0. Thus F is convex.
Suppose that for some α, 0 < α < 1 and for some P,Q ∈ P(R), αP + (1 − α)Q =
N ∈ F . For all x ∈ X, we have P (x) ≤ α−1([αP + (1− α)Q](x)) = α−1N(x) = 0.
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Thus P (x) = 0, i. e. P ∈ F . Similarly Q ∈ F . Therefore, F is a face of P(R). �

A *-ring R with unity is called factorial if 0 and 1 are the only central projections
in R, see; Berberian [2], p.36.

Lemma 13. Let R be a Rickart *-ring. Let f ∈ P(R) be such that ker(f) = {0}.
If f is an extreme point of P(R) then R is factorial.

Proof. Let z ∈ R be a nonzero central projection in R and z 6= 1. Then 1 − z is
also a central projection. We have f(z) > 0, f(1 − z) > 0 and f(z) + f(1 − z) =
1. By Lemma 4(b) there exist pseudo-rank functions g1 and g2 on R such that
g1(z) = 1, g2(1− z) = 1 and f(y) = f(z)g1(y) + f(1− z)g2(y) for all y ∈ R. Since
g1(z) = 1 implies g1(1− z) = 0 we get g1 6= g2. Thus f is a convex combination of
distinct pseudo-rank functions in P(R). This contradicts the assumption that f is
an extreme point. �

A *-ring is said to satisfy the general comparability, (GC), if for any pair of
projections e, f ∈ R there exists a central projection h such that he - hf and
h(1− f) - h(1− e), see; Berberian [2], p.77.

Lemma 14. Let R be a Rickart *-ring with the generalized comparability and
f ∈ P(R). If f is an extreme point of P(R) then R/ker(f) is factorial.

Proof. Let K = ker(f) and φ : R → R/K be the natural homomorphism. By
Lemma 9 there exists a rank function g on R/K such that g ◦φ = f . Suppose there
exists a nontrivial central projection e ∈ R/K. We have g(e) > 0, g(1 − e) > 0
and g(e) + g(1 − e) = 1. By Lemma 4(b) there exist pseudo-rank functions g1
and g2 on R/K such that g1(e) = 1, g2(1 − e) = 1 and g = g(u)g1 + g(1 − u)g2.
Since g1(e) = 1 implies g1(1 − e) = 0, we get g1 6= g2. By Proposition 5, p.141
from Berberian [2] there exists a central projection h ∈ R such that h = e. Then
g1 ◦ φ(h) = g1(e) = 1 and g2 ◦ φ(h) = g2(e) = 0 show that g1 ◦ φ 6= g2 ◦ φ. Thus
f = g(u)[g1 ◦ φ] + g(1 − u)[g2 ◦ φ] is a convex combination of distinct pseudo-rank
functions in P(R). This contradicts the assumption that f is an extreme point. �

Theorem 4. Let R be a Rickart *-ring with the generalized comparability. Let
P ∈ P(R). Consider the following statements.

(1) P is an extreme point of P(R).

(2) B(R)∩ker(P ) is a maximal ideal of B(R) where B(R) is the Boolean algebra
of all central projections in R.

(3) ker(P ) is a prime strict ideal of R.

(4) The set of strict ideals of the Rickart *-ring R/ker(P ) is linearly ordered.

Then (1)⇒ (2)⇔ (3)⇔ (4).

Proof. (1) ⇒ (2) Let ker(P ) = K. Since K is a proper strict ideal, B(R) ∩ K is
a proper ideal of B(R). If B(R) ∩ K is not maximal, then there exists an ideal
J of B(R) such that B(R) ∩ K ⊆ J . Let e ∈ J but e /∈ B(R) ∩ K. Clearly,
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1−e /∈ B(R)∩K. Then e is a nontrivial central projection in R/K. This contradicts
Lemma 14.
(2) ⇔ (3) and (3) ⇔ (4) follow from Proposition 1.2 of Thakare and Nimbhorkar
[13]. �
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