Pseudo-Rank Functions on Rickart *-rings

Dedicated to Dr. K. Anjaneyulu on the occasion of his 75th birthday.
Shriram Khanderao Nimbhorkar
Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
e-mail: nimbhorkar@yahoo.com
Abstract. Pseudo-rank functions on Rickart *-rings are introduced and their properties are studied.

1. Introduction

A real valued function D on a lattice L is called a dimension function if the range of D has either an upper bound or a lower bound and for all $a, b \in L$, $D(a \vee b)+D(a \wedge b)=D(a)+D(b)$, see; von Neumann [12] p.58. The theory of dimension functions is studied in various structures. von Neumann [12] introduced dimensionality in continuous geometries by using perspectivity, whereas Iwamura [6] used the concept of a relation called the p-relation .
Kaplansky [8], Murray and von Neumann [11] and others have introduced dimensionality in rings of operators by using equivalence of projections. Maeda [10] generalized the work of von Neumann [12] and Kaplansky [8] for a certain class of lattices. At the same time Loomis [9] gave an abstract setting to the Murray, von Neumann dimension theory by using complete orthocomplemented lattices. Berberian [2] has developed theory of dimension functions on the lattice of projections of a finite Baer *-ring. Goodearl [4] developed the dimension theory for a certain class of modules. von Neumann [12], p. 231 has introduced the concept of a rank-function on a regular ring which generalizes the dimension function. Goodearl [3], [5] has introduced and developed the study of pseudo-rank functions on regular rings, which is a generalization of rank functions.
In this paper we introduce and study the concept of a pseudo-rank function on a Rickart *-ring R. We obtain some basic properties of pseudo-rank functions and the set of all pseudo-rank functions on R, on the lines of Goodearl [5] for Rickart *-rings. The undefined terms are from Berberian [2] and Birkhoff [1].

Received 28 January 2008; accepted 9 June 2008.
2000 Mathematics Subject Classification: 16W10, 16B99, 06A99.
Key words and phrases: pseudo-rank function, Rickart *-ring, strict ideal.

2. Preliminaries

A *-ring is a ring R with an involution "*"(i.e. an antiautomorphism of period two) such that $x^{* *}=x,(x+y)^{*}=x^{*}+y^{*},(x y)^{*}=y^{*} x^{*}$. Throughout we denote by R, a *-ring. An element $e \in R$ is called a projection if it is self-adjoint (i.e. $e=e^{*}$) and idempotent (i.e. $e=e^{2}$). The set of projections in R can be partially ordered by $e \leq f$ if and only if $e=e f$, see; Berberian [2]. If for two projections $e, f \in R, e f=f e$, then $\inf \{e, f\}=e \wedge f=e f$ and $\sup \{e, f\}=e \vee f=e+f-e f$. Two projections $e, f \in R$ are called equivalent, in notation $e \sim f$, if there exists some $w \in R$ such that $w^{*} w=e$ and $w w^{*}=f$. Then w is a partial isometry, (i.e. $w w^{*} w=w$) and $w e=w=f w$. For projections $e, f \in R$, we say that f dominates e, in notation $e \precsim f$, if $e \sim g \leq f$ for some projection $g \in R$. Two elements $x, y \in R$ are said to be orthogonal, in notation $x \perp y$, if $x^{*} y=x y^{*}=0$, see; Loomis [9] p.26. A *-ring A is called a Rickart ${ }^{*}$-ring if for each $x \in A$, the right annihilator of $x, R(\{x\})=\{y \in A: x y=0\}$, is a right ideal generated by a projection. i. e. $R(\{x\})=g A$ for some projection $g \in A$. A *-ring A is called a Baer ${ }^{*}$-ring if the right annihilator of any nonempty subset S of A is the right ideal generated by a projection $e \in A$ i. e. $R(S)=e A$. In this case, the projection $1-e$ is called the right projection of S. Similarly the left projection of S is defined. The right projection (respectively, left projection) of an element x in a Rickart *-ring is denoted by $R P(x)$ (respectively, by $L P(x))$ and it is the smallest projection e such that $x e=x(e x=x)$ and $x y=0$ is equivalent to $R P(x) y=0(y L P(x)=0)$. It is known that a *-ring with proper involution (i.e. $x^{*} x=0$ implies $x=0$)is a poset under the partial order (called the ${ }^{*}$-order) $x \leq y$ iff $x^{*} x=x^{*} y$ and $x x^{*}=x y^{*}$, see; Janowitz [7]. This partial order generalizes the partial order defined on the set of projections. A Rickart *-ring has proper involution.

3. Pseudo-rank function

A pseudo-rank function f on a ${ }^{*}$-ring R is a mapping $f: R \rightarrow[0,1]$ such that
(1) $f(1)=1$,
(2) $f(x y) \leq f(x), f(y)$ for all $x, y \in R$,
(3) $f(x+y)=f(x)+f(y)$ for all orthogonal $x, y \in R$,
(4) $f(x)=f\left(x^{*}\right)=f(R P(x))=f(L P(x))$ provided $R P(x), L P(x)$ exist in R.

It is clear that $f(0)=0$. A pseudo-rank function f with the property $f(x)>0$, for $x \neq 0$ is called a rank function on R.

Proposition 1. Let R be a^{*}-ring and f be a pseudo-rank function on R.
(1) If $x_{1}, \cdots, x_{n} \in R$ are mutually orthogonal then $f\left(x_{1}+\cdots+x_{n}\right)=\sum_{i=1}^{n} f\left(x_{i}\right)$.
(2) If the involution in R is proper and $x \leq y$ then $f(x) \leq f(y)$.
(3) If the involution in R is proper and x_{1}, \cdots, x_{n} and y_{1}, \cdots, y_{k} are sets of orthogonal elements in R such that $x_{1}+\cdots+x_{n} \leq y_{1}+\cdots+y_{k}$, then $\sum_{i=1}^{n} f\left(x_{i}\right) \leq \sum_{i=1}^{k} f\left(y_{i}\right)$.
(4) If e, g are projections in R, such that $e \sim g$ then $f(e)=f(g)$.
(5) If e_{1}, \cdots, e_{n} and g_{1}, \cdots, g_{k} are sets of orthogonal projections in R such that $e_{1}+\cdots+e_{n} \precsim g_{1}+\cdots+g_{k}$, then $\sum_{i=1}^{n} f\left(e_{i}\right) \leq \sum_{i=1}^{k} f\left(g_{i}\right)$.
Proof. (1) Follows from the definition of a pseudo-rank function.
(2) $x \leq y$ iff $x^{*} x=x^{*} y$ and $x x^{*}=x y^{*}$. By the definition of a pseudo-rank function $f(x)=f\left(x^{*} x\right)=f\left(x^{*} y\right) \leq f(y)$.
(3) Using (2) and the definition of a pseudo-rank function we have $\sum_{i=1}^{n} f\left(x_{i}\right)=$ $f\left(x_{1}+\cdots+x_{n}\right) \leq f\left(y_{1}+\cdots+y_{k}\right)=\sum_{i=1}^{k} f\left(y_{i}\right)$.
(4) $e \sim g$ implies $e=w^{*} w, g=w w^{*}$ for some partial isometry $w \in R$. Then $w=w w^{*} w=g w=w e$ and so $f(e)=f\left(w^{*} w\right) \leq f(w)=f(g w) \leq f(g)$. Similarly $f(g) \leq f(e)$.
(5) Follows from (4)and (3).

It is known that for a projection e in a Rickart ${ }^{*}$-ring $R, e R e$ is a Rickart *-ring, see; Berberian [2] p. 15 .

Lemma 1. Let f be a pseudo-rank function on a Rickart ${ }^{*}$-ring R. Let $e \in R$ be a nonzero projection such that $f(e) \neq 0$.
(1) The function $Q(x)=f(x) / f(e)$ defines a pseudo-rank function on the Rickart *-ring eRe.
(2) If e is a central projection in R then the function $Q(x)=f(e x) / f(e)$ defines a pseudo-rank function on R.
(3) If e is a central projection such that $f(e)=1$ then $f(e x)=f(x)$ for all $x \in R$.

Proof. (1) $x \in e R e$ implies $x=e x=x e$. Hence $f(x)=f(e x) \leq f(e)$ shows that $Q(x) \leq 1$. Thus Q maps $e R e$ into [0,1]. By Corollary p. 15 from Berberian [2], for $x \in e R e, R P(x), L P(x)$ are same whether calculated in R or in $e R e$. Hence the remaining properties for Q to be a pseudo-rank function can be easily verified.
(2) Since $f(e x) \leq f(e)$ for all $x \in R, Q$ maps R into [0,1$]$.
(i). Clearly $Q(1)=1$.
(ii). For $x, y \in R, f(e x y) \leq f(e x), f(e y)$ and so $Q(x y) \leq Q(x), Q(y)$.
(iii). Suppose $x \perp y$ in R. Since, e is a central projection it follows that $e x \perp e y$. Hence $Q(x+y)=f(e x+e y) / f(e)=Q(x)+Q(y)$.
(iv). Since $(e x)^{*}=e x^{*}$, we get $Q(x)=Q\left(x^{*}\right)$.

To show that $Q(x)=Q(R P(x))$, we first show that $e R P(x)=R P(e x)$. From $x=x R P(x)$ we get $e x=\operatorname{exRP}(x)$. Hence $e x[1-e R P(x)]=0$ and so $R P(e x)[1-$ $e R P(x)]=0$. Thus $R P(e x)=R P(e x) e R P(x)$.

On the other hand, ex $=\operatorname{exRP}(e x)$ implies $x[e R P(e x)-e]=0$ and so $R P(x)[e R P(e x)-e]=0$ i.e. $R P(x) e R P(e x)=e R P(x)$. Since e is a central projection it follows from the Lemma p. 137 from Berberian [2] that $R P(e x) \leq R P(x)$. Thus $R P(x)$ and $R P(e x)$ commute with each other. This shows that $R P(e x)=$ $e R P(x)$.
Thus $Q(x)=f(e x) / f(e)=f(R P(e x)) / f(e)=f(e R P(x)) / f(e)=Q(R P(x))$. Similarly we get $Q(x)=Q(L P(x))$.
(3) We have $f(x)=f(x e+x(1-e))=f(x e)+f(x(1-e))$. Also, $1=f(1)=$ $f(e+(1-e))=f(e)+f(1-e)$ implies $f(1-e)=0$. Now $f(x(1-e)) \leq f(1-e)=0$ leads to $f(x)=f(x e)$.

Lemma 2. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a set of orthogonal projections in a Rickart ${ }^{*}$-ring R. Suppose I, J are nonempty subsets of $\{1, \cdots, n\}$. Let α_{i} and β_{j} be nonzero real numbers. For each $i \in I$ and $j \in J$, let P_{i} and Q_{j} be pseudo-rank functions on $e_{i} R e_{i}$ and $e_{j} R e_{j}$ respectively. If $\sum_{i \in I} \alpha_{i} P_{i}\left(e_{i} x e_{i}\right)=\sum_{j \in J} \beta_{j} Q_{j}\left(e_{j} x e_{j}\right)$ for every $x \in R$, then $I=J, \alpha_{i}=\beta_{i}$ and $P_{i}=Q_{i}$ for each i.
Proof. Let $t \in J$. Then using $e_{j} e_{t}=0$ for $j \neq t, Q_{j}(0)=0$ and $Q_{j}\left(e_{j}\right)=1$ we get $\sum_{i \in I} \alpha_{i} P_{i}\left(e_{i} x e_{t}\right)=\sum_{j \in J} \beta_{j} Q_{j}\left(e_{j} x e_{t}\right)=\beta_{t} \neq 0$. Hence $P_{s}\left(e_{s} e_{t}\right) \neq 0$ for some $s \in I$. This implies $e_{s} e_{t} \neq 0$ and so $s=t$, i.e. $t \in I$. Thus $J \subseteq I$. Similarly we get $I \subseteq J$. Given $s \in I, y \in e_{s} R e_{s}$ then using $e_{i} e_{s}=0$ for $i \neq s$ we get, $\alpha_{s} P_{s}(x)=\sum_{i \in I} \alpha_{i} P_{i}\left(e_{i} x e_{i}\right)=\sum_{j \in J} \beta_{j} Q_{j}\left(e_{j} x e_{j}\right)=\beta_{s} Q_{s}(x)$. In particular $\alpha_{s}=\alpha_{s} P_{s}\left(e_{s}\right)=\beta_{s} Q_{s}\left(e_{s}\right)=\beta_{s}$. Consequently $P_{s}(x)=Q_{s}(x)$ for every $x \in e_{s} R e_{s}$. Thus $P_{s}=Q_{s}$.

Lemma 3. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a set of orthogonal central projections in a Rickart ${ }^{*}$-ring R. Suppose I, J are nonempty subsets of $\{1, \cdots, n\}$. Let α_{i} and β_{j} be nonzero real numbers. For each $i \in I$ and $j \in J$, let P_{i} and Q_{j} be pseudo-rank functions on R such that $P_{i}\left(e_{i}\right)=1$ and $Q_{j}\left(e_{j}\right)=1$. If $\sum_{i \in I} \alpha_{i} P_{i}\left(e_{i} x e_{i}\right)=$ $\sum_{j \in J} \beta_{j} Q_{j}\left(e_{j} x e_{j}\right)$ for every $x \in R$, then $I=J, \alpha_{i}=\beta_{i}$ and $P_{i}=Q_{i}$ for each $i \in I$.
Proof. Let $t \in J$. Then using Lemma 1(3) we get $Q_{j}\left(e_{t}\right)=Q_{j}\left(e_{j} e_{t}\right)=0$. Hence $\sum_{i \in I} \alpha_{i} P_{i}\left(e_{t}\right)=\sum_{j \in J} \beta_{j} Q_{j}\left(e_{t}\right)=\beta_{t} Q_{t}\left(e_{t}\right)=\beta_{t} \neq 0$. Therefore $P_{s}\left(e_{t}\right) \neq 0$ for some $s \in I$. This implies $e_{s} e_{t} \neq 0$ and so $s=t$, i.e. $t \in I$. Thus $J \subseteq I$. Similarly we get $I \subseteq J$.
Given $s \in I, x \in R$ we have by using Lemma 1(3), $\alpha_{s} P_{s}(x)=\alpha_{s} P_{s}\left(e_{s} x\right)=$ $\sum_{i \in I} \alpha_{i} P_{i}\left(e_{i} e_{s} x\right)=\sum_{j \in J} \beta_{j} Q_{j}\left(e_{j} e_{s} x\right)=\beta_{s} Q_{s}\left(e_{s} x\right)=\beta_{s} Q_{s}(x)$. In particular $\alpha_{s}=\alpha_{s} P_{s}\left(e_{s}\right)=\beta_{s} Q_{s}\left(e_{s}\right)=\beta_{s}$. Consequently $P_{s}(x)=Q_{s}(x)$ for every $x \in R$. Thus $P_{s}=Q_{s}$.

Lemma 4. Let e_{1}, \cdots, e_{n} be orthogonal central projections in a Rickart *-ring R. Let f be a pseudo-rank function on R such that $\sum_{i=1}^{n} f\left(e_{i}\right)=1$ and $f\left(e_{i}\right) \neq 0$ for all i.
(a) There exist unique pseudo-rank functions $P_{i}, 1 \leq i \leq n$, on $e_{i} R$ such that
$f(x)=\sum_{i=1}^{n} f\left(e_{i}\right) P_{i}\left(e_{i} x\right)$ for all $x \in R$.
(b) There exist unique pseudo-rank functions $Q_{i}, 1 \leq i \leq n$, on R such that $Q_{i}\left(e_{i}\right)=1$ and $f(x)=\sum_{i=1}^{n} f\left(e_{i}\right) Q_{i}(x)$ for all $x \in R$.

Proof. Since e_{1}, \cdots, e_{n} are orthogonal central projections in $R, f\left(e_{1}+\cdots+e_{n}\right)=$ $\sum_{i=1}^{n} f\left(e_{i}\right)=1$. Hence by Lemma $1(3), f(x)=f\left(e_{1} x+\cdots+e_{n} x\right)=\sum_{i=1}^{n} f\left(e_{i} x\right)$.
(a) For each $i, 1 \leq i \leq n$ by Lemma $1(1), P_{i}(x)=f(x) / f\left(e_{i}\right)$ defines a pseudo-rank function P_{i} on $e_{i} R$. Given any $x \in R$, we then have $f\left(e_{i} x\right)=f\left(e_{i}\right) P_{i}\left(e_{i} x\right)$ for each i. Hence $f(x)=\sum_{i=1}^{n} f\left(e_{i}\right) P\left(e_{i} x\right)$. Uniqueness follows from Lemma 2.
(b) For each i, by Lemma $1(2), Q_{i}(x)=f\left(e_{i} x\right) / f\left(e_{i}\right)$ defines a pseudo-rank function Q_{i} on R. We note that $Q_{i}\left(e_{i}\right)=1$. Given any $x \in R$, we then have $f\left(e_{i} x\right)=f\left(e_{i}\right) Q_{i}(x)$ for all i. Hence $f(x)=\sum_{i=1}^{n} f\left(e_{i}\right) Q_{i}(x)$. Uniqueness follows from Lemma 3.

Theorem 1. Let R be a Rickart ${ }^{*}$-ring and e_{1}, \cdots, e_{n} be orthogonal central projections in R such that $e_{1}+\cdots+e_{n}=1$.
(a) Suppose I is a nonempty subset of $\{1, \cdots, n\}$. Let α_{i} be positive real numbers such that $\sum_{i \in I} \alpha_{i}=1$. For each $i \in I$, let P_{i} be a pseudo-rank function on $e_{i} R$. Then $f(x)=\sum_{i \in I} \alpha_{i} P_{i}\left(e_{i} x\right)$ is a pseudo-rank function on R.
(b) Let $\alpha_{i}, 1 \leq i \leq n$ be nonnegative real numbers such that $\sum_{i \in I} \alpha_{i}=1$. For each $i \in I$, let P_{i} be a pseudo-rank function on $e_{i} R$. Then $f(x)=$ $\sum_{i=1}^{n} \alpha_{i} P_{i}\left(e_{i} x\right)$ is a pseudo-rank function on R.
(c) Every pseudo-rank function on R may be uniquely obtained as in (a). Moreover, if there exists at least one pseudo-rank function on each $e_{i} R$, then every pseudo-rank function on R may be obtained as in (b).

Proof. (a) and (b) follow from the definition of a pseudo-rank function.
(c) Let f be a pseudo-rank function on R. Let I be the set of those $i \in\{1, \cdots, n\}$ for which $f\left(e_{i}\right) \neq 0$. Put $\alpha_{i}=f\left(e_{i}\right)$ for all $i \in I$. Then $\sum_{i \in I} \alpha_{i}=\sum_{i \in I} f\left(e_{i}\right)=$ $f\left(e_{1}+\cdots+e_{n}\right)=f(1)=1$. By Lemma 4(a) there exist pseudo-rank functions P_{i} on $e_{i} R$ for each $i \in I$ such that $f(x)=\sum_{i \in I} \alpha_{i} P_{i}\left(e_{i} x\right)$ for all $x \in R$. Thus f has a representation as in (a).
Suppose that there exists at least one pseudo-rank function on each $e_{i} R$. Put $\alpha_{i}=f\left(e_{i}\right)$ for all $i=1, \cdots, n$. For $i \in\{1, \cdots, n\}-I$, let P_{i} be any pseudo-rank function on $e_{i} R$. Then $f(x)=\sum_{i \in I} \alpha_{i} P_{i}\left(e_{i} x\right)=\sum_{i=1}^{n} \alpha_{i} P_{i}\left(e_{i} x\right)$ for all $x \in R$, which represents f as in (b).

The proof of the following lemma follows from the definition of a pseudo-rank function.

Lemma 5. Let R_{1}, R_{2} be two Rickart ${ }^{*}$-rings, $f: R_{1} \rightarrow R_{2}$ be a *-homomorphism satisfying the condition $f(R P(x))=R P(f(x))$. If g is a pseudo-rank function on R_{2}, then $g \circ f$ is a pseudo-rank function on R_{1}.

An ideal I of a Rickart *-ring is called a strict ideal, if $x \in I$ implies $R P(x) \in I$, see; Berberian [2] p. 141.
Lemma 6. Let f be a pseudo-rank function on a Rickart *-ring R. The set $A=\{x \in R: f(x)=0\}$ is a proper strict ideal of R.
Proof. Since $f(0)=0, A$ is nonempty. Also, $f(x)=f\left(x^{*}\right)=f(R P(x))$ shows that if $x \in A$, then $x^{*}, R P(x) \in A$. Clearly, for $x \in A$ and $y \in R ; f(x y) \leq f(x)$ implies $x y \in A$. Similarly $y x \in A$. Let $x, y \in A$. Then $f(x+y)=f(R P(x+y))$. By Lemma on p. 137 from Berberian [2], $R P(x+y) \leq R P(x) \vee R P(y)$. For convenience write $R P(x)=e$ and $R P(y)=g$. Then $e \vee g=g+R P[e(1-g)]$ with $g \perp R P[e(1-g)]$. We have $f[g+R P(e(1-g))]=f(g)+f[R P(e(1-g))]=f(R P(y))+f[e(1-g)]$. We have $f(g)=f(R P(y))=f(y)=0$ and $f[e(1-g)] \leq f(e)=f(R P(x))=f(x)=0$. Hence $f(x+y)=f(R P(x+y)) \leq f(e \vee g)=0$. Thus $x+y \in A$ and so A is a strict ideal of R. Since $f(1)=1, A$ is a proper strict ideal.

The following result is from Berberian [2] (Exercise 1, p. 144).
Lemma 7. Let I be a strict ideal of a Rickart ${ }^{*}$-ring R. Equip R / I with the natural *-ring structure and write $x \rightarrow \bar{x}$ for the canonical mapping $R \rightarrow R / I$.
(1) R / I is a Rickart *-ring.
(2) $R P(\bar{x})=\overline{(R P(x))}, L P(\bar{x})=\overline{(L P(x))}$, for all $x \in R$; in particular, every projection in R / I has the form \bar{e} with e a projection in R.
(3) For all projections e, $f \in R, \overline{e \vee f}=\bar{e} \vee \bar{f}$ and $\overline{e \wedge f}=\bar{e} \wedge \bar{f}$.
(4) If u, v are orthogonal projections in R / I and if $v=\bar{f}, f$ a projection in R, then there exists a projection $e \in R$ such that $u=\bar{e}$ and e is orthogonal to f.
Lemma 8. Let R be a Rickart *-ring in which every projection is central. Let I be a strict ideal of R. Let $u, v \in R / I$ and $v=\bar{b}$ for some $b \in R$.
(1) If $u \leq v$, then there exists $a \in R$ such that $u=\bar{a}$ and $a \leq b$.
(2) If $u \perp v$, then there exists $a \in R$ such that $u=\bar{a}$ and $a \perp b$.

Proof. Let $u=\bar{x}$ for some $x \in R$.
(1) We note that $u \leq v$ implies $u^{*} u=u^{*} v=v^{*} u$ and $u u^{*}=u v^{*}=v u^{*}$ in R / I. Then in R / I
(a)

$$
\overline{x^{*} x}=\overline{x^{*} b}=\overline{b^{*} x} \text { and } \overline{x x^{*}}=\overline{x b^{*}}=\overline{b x^{*}}
$$

Put $a=b R P(x)$. Since all projections are central, $R P(x)=R P\left(x^{*}\right)$. We have $a^{*} a=a^{*} b=b^{*} a$ and $a a^{*}=b a^{*}=a b^{*}$. Thus $a \leq b$ in R. Moreover, $x^{*} a=x^{*} b$ and $a x^{*}=b x^{*}$. Hence in R / I,

$$
\begin{equation*}
\overline{x^{*} x}=\overline{x^{*} b}=\overline{x^{*} a} \text { and } \overline{x x^{*}}=\overline{b x^{*}}=\overline{a x^{*}} . \tag{b}
\end{equation*}
$$

Thus, in $R / I, \bar{x} \leq \bar{a}$. Further we have, $\overline{x x^{*}}=\overline{a x^{*}}=\overline{x a^{*}}$. Hence $\bar{x}\left[\overline{x^{*}}-\overline{a^{*}}\right] \bar{a}=\overline{0}$. This implies $R P(\bar{x})\left[\overline{x^{*}}-\overline{a^{*}}\right] \bar{a}=\overline{0}$. Thus $\overline{R P(x)} \overline{x^{*}} \bar{a}=$ $\overline{R P(x) a^{*} a}$. Using $R P(x) x^{*}=x^{*}$ and $R P(x) a^{*}=a^{*}$, we get $\overline{x^{*} a}=\overline{a^{*} a}$. Therefore, $(\bar{a}-\bar{x})^{*}(\bar{a}-\bar{x})=\overline{0}$. Since R / I is a Rickart *-ring, its involution is proper and so we get $\bar{a}-\bar{x}=\overline{0}$. Thus $\bar{a}=\bar{x}$.
 consequently, $\overline{x R P(b)}=\overline{0}, \bar{x}=\overline{x[1-R P(b)]}$. Put $a=x[1-R P(b)]$. As all projections are central, we get $a^{*} b=a b^{*}=0$. Hence $a \perp b$ in R. Also we have $\bar{a}=\bar{x}$.

Lemma 9. Let f be a pseudo rank function on a Rickart ${ }^{*}$-ring R, in which all projections are central. Let I be a strict ideal of R, such that $I \subseteq \operatorname{ker}(f)$. Then there exists a pseudo rank function g on R / I such that $g \circ \phi=f$. Further g is a rank function iff $I=\operatorname{ker}(f)$.
Proof. Let ϕ be the canonical *-homomorphism from R to R / I. Suppose $x, y \in R$ and $\phi(x)=\phi(y)$. Then $\phi(x-y)=0$ and so $x-y \in I \subseteq k e r(f)$ implies $f(x-y)=0$. We have $x=(x-y)+y$. By the Lemma on p. 137 from Berberian [2] $R P(x) \leq R P(x-y) \vee R P(y)$. Put $R P(x-y)=e$ and $R P(y)=g$. We have $e \vee g=e+R P[g(1-e)]$ with $e \perp R P[g(1-e)]$. Hence
$f(x)=f(R P(x)) \leq f(e)+f[R P(g(1-e))]=f(x-y)+f[g(1-e)] \leq f(g)=f(y)$.
Similarly, we get $f(y) \leq f(x)$. Thus $f(x)=f(y)$. Define a map $g: R / I \rightarrow[0,1]$, by $g(\bar{x})=f(x)$. In view of the above para g is well defined. We have $g(\overline{1})=1, g(\overline{x y}) \leq$ $g(\bar{x}), g(\bar{y})$. Let $\bar{x}, \bar{y} \in R / I$ and $\bar{x} \perp \bar{y}$. Then by Lemma 8 there exist $a, b \in R$ such that $a \perp b, \bar{a}=\bar{x}$ and $\bar{b}=\bar{y}$. We have

$$
g[\bar{x}+\bar{y}]=g[\overline{a+b}]=f[a+b]=f(a)+f(b)=g(\bar{x})+g(\bar{y}) .
$$

Thus g is a pseudo rank function. We have for $x \in R, g \circ \phi(x)=g(0)=f(0)=0=$ $f(x)$ if $x \in I$. If $x \notin I$, then $g \circ \phi(x)=g(x)=f(x)$. Thus $g \circ \phi=f$.
Clearly, g is unique.
We note that if $x \neq 0$ in R / I then $g(x)>0$ iff $x \notin I$ iff $x \notin \operatorname{ker}(f)$. Thus $I=\operatorname{ker}(f)$. Conversely, if $I=\operatorname{ker}(f)$, then $g(x)>0$ for $x \neq 0$. Thus g is a rank function iff $I=k e r(f)$.
Lemma 10. If f, g are pseudo-rank functions on a Rickart ${ }^{*}$-ring R such that $f(e) \leq g(e)$ for all projections $e \in R$, then $f=g$.
Proof. If $f \neq g$, then $f(x)<g(x)$ for some $x \in R$. This implies $f(R P(x))<$ $g(R P(x))$. Put $e=R P(x)$. Using $f(1-e) \leq g(1-e)$ we get

$$
1=f(1)=f(e+(1-e))=f(e)+f(1-e)<g(e)+g(1-e)=g(1)=1
$$

a contradiction.
We recall some terms from Birkhoff [1], p. 5. The length of a poset P is defined as the least upper bound of the lengths of the chains in P and it is denoted by
$l(P)$. If $l(P)$ is finite then P is said to be of finite length. Let P be a poset of finite length and with 0 and $a \in P$. The height of a, denoted by $h(a)$, is defined as the least upper bound of all chains in $[0, a]$. It is known that in a modular lattice $h(a \vee b)+h(a \wedge b)=h(a)+h(b)$. The following two results are from Janowitz [7].
Theorem 2. Every interval $[0, x]$ of a Rickart ${ }^{*}$-ring is an orthomodular lattice.
Lemma 11. Let R be a Rickart ${ }^{*}$-ring, $x \in R$. The interval $[0, x]$ is orthoisomorphic to $\left\{e \in C\left(x^{*} x\right) \mid e \leq x^{\prime \prime}\right\}$, where $C\left(x^{*} x\right)$ dentes the set of all projections $f \in R$ which commute with $x^{*} x$. Moreover, $[0, x]$ is orthoisomorphic to $\left[0, x^{*}\right]$.
In the notations of Berberian [2], we have $x^{\prime \prime}=R P(x)$.
Theorem 3. Let R be a Rickart *-ring, considered as a poset, of finite length and in which each projection is central. Then the function N on R defined by $N(x)=\inf \{m / n: m, n \in \mathbb{Z}, m>0, n>0$ and $n h(x) \leq m h(1)\}$ is a pseudo-rank function on R.
Proof. For all $x \in R$, put $N(x)=\inf \{m / n: m, n \in \mathbb{Z}>0$ and $n h(x) \leq m h(1)\}$. From Lemma 11, we get $h(x)=h\left(x^{*}\right)=h(R P(x))$. Clearly, $h(R P(x)) \leq h(1)$ and so $h(x) \leq h(1)$. Hence $0 \leq N(x) \leq 1$. Suppose, $N(1)<1$. Then there exist positive integers $m, n, m<n$ such that $n h(1) \leq m h(1)$ but this is not possible as $h(1)$ is a positive integer. Thus $N(1)=1$. Let $x, y \in R$. Then $h(x y)=$ $h(R P(x y))$. By Lemma on p. 137, from Berberian [2], $R P(x y) \leq R P(y)$. Hence $h(R P(x y)) \leq h(R P(y))$. Also we get $L P(x y) \leq L P(x)$. Since all projections are central, $L P(a)=R P(a)$ for all $a \in R$. Thus $R P(x y) \leq R P(x)$. Let m, n be any positive integers such that $n h(x) \leq m h(1)$.Then $n h(x y) \leq m h(1)$ and so $N(x y) \leq m / n$. Thus $N(x y) \leq N(x)$. Similarly, $N(x y) \leq N(y)$. Let $x, y \in R$ be such that $x \perp y$. This implies $R P(x) \perp R P(y)$ and so $R P(x) \vee R P(y)=R P(x)+R P(y)$. We have $h(x+y)=h(R P(x+y))$. By Lemma on p. 137 from Berberian, [2],

$$
R P(x+y) \leq R P(x) \vee R P(y)=R P(x)+R P(y)
$$

As all projections are central, the lattice of projections in R is distributive. Hence $h(R P(x) \vee R P(y))=h(R P(x))+h(R P(y))$. Thus $h(x+y) \leq h(R P(x))+$ $h(R P(y))=h(x)+h(y)$. Let $\epsilon>0$ be given. Then there exist positive integers m, n, s, t such that $n h(x) \leq m h(1)$ and $t h(y) \leq s h(1)$ and $m / n<N(x)+\epsilon / 2$ and $s / t<N(y)+\epsilon / 2$. Then $n t h(x+y)=n t h(x)+n t h(y) \leq m t h(1)+n \operatorname{sh}(1)=$ $(m t+n s) h(1)$. Hence

$$
N(x+y) \leq(m / n)+(s / t)<N(x)+N(y)+\epsilon
$$

Thus $N(x+y) \leq N(x)+N(y)$. If $N(x+y)<N(x)+N(y)$, then there exist positive integers m, n, s, t such that $N(x)>m / n$ and $N(y)>s / t$, while $N(x+y)<$ $(m / n)+(s / t)$. Consequently, there exist positive integers a, b such that $b h(x+y) \leq$ $a h(1)$ and $a / b<(m / n)+(s / t)$. Then ant $<(m t+n s) b$, hence $\operatorname{anth}(x+y) \leq$ $(m t+n s) b h(x+y) \leq a(m t+n s) h(1)$. Since $N(x)>m / n$, we have $n h(x) \not \leq m h(1)$. Hence $m h(1) \leq n h(x)$. Now $\operatorname{anth}(x)+\operatorname{anth}(y)=\operatorname{anth}(x+y) \leq a(m t+n s) h(1) \leq$
$\operatorname{anth}(x)+\operatorname{ansh}(y)$. Hence $\operatorname{anth}(y) \leq \operatorname{ansh}(1)$. But then $N(y) \leq a n s / a n t=s / t$, which is false. Thus $N(x+y)=N(x)+N(y)$.
Therefore N is a pseudo-rank function on R.

4. Properties of the set of pseudo-rank functions

For a Rickart *-ring R, we denote the set of all pseudo-rank functions on R by $\mathbb{P}(R)$ (this set might be empty). We consider it as a subset of the real vector space $\mathbb{R}^{R}=\{f \mid f: R \rightarrow \mathbb{R}\}$ equipped with the product topology.
We note that \mathbb{R}^{R} is a Housdorff topological vector space. The topology on \mathbb{R}^{R} can be described in terms of convergence of nets. Given a net $\left\{f_{i}\right\}$ in \mathbb{R}^{R} and some $f \in \mathbb{R}^{R}$, we have $f_{i} \rightarrow f$ if and only if $f_{i}(x) \rightarrow f(x)$ for all $x \in R$. A partial order can be defined on \mathbb{R}^{R} by $f \leq g$ iff for each $x \in R, f(x) \leq g(x)$.
We recall some terms. Let E be a real vector space. A convex combination of points $x_{1}, \cdots, x_{n} \in E$ is any linear combination of the form $\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}$ where $\alpha_{i} \in \mathbb{R}$ and $\alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i}=1$. A convex subset of E is any subset $K \subseteq E$ such that for $0 \leq \alpha \leq 1$ and any $x, y \in K, \alpha x+(1-\alpha) y \in K$. A convex cone in E is a subset $C \subseteq E$ such that $0 \in C$ and $\alpha x+\beta y \in C$ for all $x, y \in C$ and nonnegative real numbers α and β. A convex cone C is called strict if $C \cap(-C)=0$. A subset A of E is called an affine subspace if it is closed under linear combinations of the form $\sum_{i=1}^{n} \alpha_{i} x_{i}$ where $x_{i} \in A$ and $\sum \alpha_{i}=1$. A hyperplane in E is an affine subspace of the form $V+x$ such that V is a linear subspace of E of codimension 1. A base for a strict cone in C is a convex $K \subseteq E$ such that K is contained in a hyperplane not containing the origin and $C=\{\alpha x: x \in K$ and $\alpha \geq 0\}$.
Proposition 2. For a Rickart ${ }^{*}$-ring $R, \mathbb{P}(R)$ is a compact convex subset of \mathbb{R}^{R}.
Proof. Clearly $\mathbb{P}(R)$ is a convex set.
We note that $\mathbb{P}(R)$ is contained in $W=[0,1]^{R}$ which is compact by Tichonoff's theorem. Thus it is sufficient to show that $\mathbb{P}(R)$ is closed in W. Let N_{i} be a net in $\mathbb{P}(R)$ which converges to some $N \in W$. Since $N_{i}(1) \rightarrow N(1)$ we have $N(1)=1$. For $x \in R$ we have $N_{i}(x) \rightarrow N(x)$ and $N_{i}\left(x^{*}\right) \rightarrow N\left(x^{*}\right), N_{i}(x)=N_{i}\left(x^{*}\right)$ imply $N(x)=N\left(x^{*}\right)$. Also $N_{i}(x y) \leq N_{i}(x)$ for all i implies $N(x y) \leq N(x)$. Similarly $N(x y) \leq N(y)$ and if $x \perp y$ then $N(x+y)=N(x)+N(y)$ and $N(x)=N(R P(x))=$ $N(L P(x))$. Thus $N \in \mathbb{P}(R)$ so $\mathbb{P}(R)$ is closed in W.

A convex subset F of a convex set K is called a face of K if for $x, y \in K$ and $0<\alpha<1, \alpha x+(1-\alpha) y \in F$ implies $x, y \in F$.

Lemma 12. Let R be a Rickart ${ }^{*}$-ring and $X \subseteq R$. Then the set $F=\{N \in$ $\mathbb{P}(R) \mid N(x)=0$ for all $x \in X\}$ is a closed face of $\mathbb{P}(R)$.
Proof. Let N_{i} be a net in F converging to some $N \in \mathbb{P}(R)$. Clearly for all $x \in R$, $N_{i}(x)=0$ for each i and so $N(x)=0$. Thus $N \in F$. i. e. F is a closed subset of $\mathbb{P}(R)$. If $0<\alpha<1$, then for any $P, Q \in F,[\alpha P+(1-\alpha) Q](x)=0$. Thus F is convex. Suppose that for some $\alpha, 0<\alpha<1$ and for some $P, Q \in \mathbb{P}(R), \alpha P+(1-\alpha) Q=$ $N \in F$. For all $x \in X$, we have $P(x) \leq \alpha^{-1}([\alpha P+(1-\alpha) Q](x))=\alpha^{-1} N(x)=0$.

Thus $P(x)=0$, i. e. $P \in F$. Similarly $Q \in F$. Therefore, F is a face of $\mathbb{P}(R)$.
A *-ring R with unity is called factorial if 0 and 1 are the only central projections in R, see; Berberian [2], p.36.
Lemma 13. Let R be a Rickart ${ }^{*}$-ring. Let $f \in \mathbb{P}(R)$ be such that $\operatorname{ker}(f)=\{0\}$. If f is an extreme point of $\mathbb{P}(R)$ then R is factorial.
Proof. Let $z \in R$ be a nonzero central projection in R and $z \neq 1$. Then $1-z$ is also a central projection. We have $f(z)>0, f(1-z)>0$ and $f(z)+f(1-z)=$ 1. By Lemma $4(\mathrm{~b})$ there exist pseudo-rank functions g_{1} and g_{2} on R such that $g_{1}(z)=1, g_{2}(1-z)=1$ and $f(y)=f(z) g_{1}(y)+f(1-z) g_{2}(y)$ for all $y \in R$. Since $g_{1}(z)=1$ implies $g_{1}(1-z)=0$ we get $g_{1} \neq g_{2}$. Thus f is a convex combination of distinct pseudo-rank functions in $\mathbb{P}(R)$. This contradicts the assumption that f is an extreme point.

A *-ring is said to satisfy the general comparability, (GC), if for any pair of projections $e, f \in R$ there exists a central projection h such that he $\precsim h f$ and $h(1-f) \precsim h(1-e)$, see; Berberian [2], p.77.

Lemma 14. Let R be a Rickart *-ring with the generalized comparability and $f \in \mathbb{P}(R)$. If f is an extreme point of $\mathbb{P}(R)$ then $R / \operatorname{ker}(f)$ is factorial.
Proof. Let $K=\operatorname{ker}(f)$ and $\phi: R \rightarrow R / K$ be the natural homomorphism. By Lemma 9 there exists a rank function g on R / K such that $g \circ \phi=f$. Suppose there exists a nontrivial central projection $e \in R / K$. We have $g(e)>0, g(1-e)>0$ and $g(e)+g(1-e)=1$. By Lemma $4(\mathrm{~b})$ there exist pseudo-rank functions g_{1} and g_{2} on R / K such that $g_{1}(e)=1, g_{2}(1-e)=1$ and $g=g(u) g_{1}+g(1-u) g_{2}$. Since $g_{1}(e)=1$ implies $g_{1}(1-e)=0$, we get $g_{1} \neq g_{2}$. By Proposition 5, p. 141 from Berberian [2] there exists a central projection $h \in R$ such that $\bar{h}=e$. Then $g_{1} \circ \phi(h)=g_{1}(e)=1$ and $g_{2} \circ \phi(h)=g_{2}(e)=0$ show that $g_{1} \circ \phi \neq g_{2} \circ \phi$. Thus $f=g(u)\left[g_{1} \circ \phi\right]+g(1-u)\left[g_{2} \circ \phi\right]$ is a convex combination of distinct pseudo-rank functions in $\mathbb{P}(R)$. This contradicts the assumption that f is an extreme point.

Theorem 4. Let R be a Rickart ${ }^{*}$-ring with the generalized comparability. Let $P \in \mathbb{P}(R)$. Consider the following statements.
(1) P is an extreme point of $\mathbb{P}(R)$.
(2) $B(R) \cap \operatorname{ker}(P)$ is a maximal ideal of $B(R)$ where $B(R)$ is the Boolean algebra of all central projections in R.
(3) $\operatorname{ker}(P)$ is a prime strict ideal of R.
(4) The set of strict ideals of the Rickart *-ring $R / \operatorname{ker}(P)$ is linearly ordered.

Then $(1) \Rightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4)$.
Proof. (1) $\Rightarrow(2)$ Let $\operatorname{ker}(P)=K$. Since K is a proper strict ideal, $B(R) \cap K$ is a proper ideal of $B(R)$. If $B(R) \cap K$ is not maximal, then there exists an ideal J of $B(R)$ such that $B(R) \cap K \subseteq J$. Let $e \in J$ but $e \notin B(R) \cap K$. Clearly,
$1-e \notin B(R) \cap K$. Then \bar{e} is a nontrivial central projection in R / K. This contradicts Lemma 14 .
$(2) \Leftrightarrow(3)$ and $(3) \Leftrightarrow(4)$ follow from Proposition 1.2 of Thakare and Nimbhorkar [13].

References

[1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., 25(1979).
[2] S. K. Berberian, Baer *-rings, Springer Verlag, Berlin, 1972.
[3] K. R. Goodearl, Simple regular rings and rank functions, Math. Annalen, 214(1975), 267-287.
[4] K. R. Goodearl, Dimension theory for nonsingular injective modules, Memoirs Amer. Math. Soc., 177(1976).
[5] K. R. Goodearl, von Neumann regular rings, Pitman, London, 1979.
[6] T. Iwamura, On continuous geometries II, Jour. Math. Soc. Japan, 2(1950), 148-164.
[7] M. F. Janowitz, On the *-order for Rickart *-rings, Algebra Universalis, 16(1983), 360-369.
[8] I. Kaplansky, Projections in Banach algebras, Ann. of Math., 53(1951), 235249.
[9] L. H. Loomis, The lattice theoretic background of operator algebras, Memoirs Amer. Math. Soc., 18(1955).
[10] S. Maeda, Dimension functions on certain general lattices, J. Sc. Hiroshima University, 19(1955), 211-237.
[11] F. J. Murray and J. von Neumann, On rings of operators, Ann. of Math., 37(1936), 116-229.
[12] J. von Neumann, Continuous geometry, Princeton University Press, Princeton, 1960.
[13] N. K. Thakare and S. K. Nimbhorkar, Prime strict ideals in Rickart *-rings, Indian J. Pure Appl. Math., 22(1991), 63-72.

