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Abstract. Based on Ricatti equation XA−1X = B for two (positive invertible) operators
A and B which has the geometric mean A]B as its solution, we consider a cubic equation

X(A]B)−1X(A]B)−1X = C

for A, B and C. The solution X = (A]B)] 1
3
C is a candidate of the geometric mean of

the three operators. However, this solution is not invariant under permutation unlike the

geometric mean of two operators. To supply the lack of the property, we adopt a limiting

process due to Ando-Li-Mathias. We define reasonable geometric means of k operators for

all integers k ≥ 2 by induction. For three positive operators, in particular, we define the

weighted geometric mean as an extension of that of two operators.

1. Introduction

The quadratic equation
XA−1X = B

for (positive invertible) operator A and B on a Hilbert space H is said the Ricatti
equation [17], which has a unique solution

A]B = A
1
2 (A−

1
2BA−

1
2 )

1
2A

1
2

and this operator is defined as the geometric mean of A and B [2]. As its extension,
the weighted geometric (or α-power) mean A]αB for 0 ≤ α ≤ 1 is defined [15] by

(1.1) A]αB = A
1
2 (A−

1
2BA−

1
2 )αA

1
2 .

The geometric means for more than two operators have been already defined by
many authors [1], [3], [8], [14], etc. We here want to introduce a new geometric
mean, extending the notion of the Ricatti equation. Consider the equation

X(A]B)−1X(A]B)−1X = C
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for operator A, B and C. Then we easily have a unique solution which is given by

(1.2) X = (A]B)] 1
3
C.

If A,B,C commute with each other, then the above operator X is reduced to
(ABC)1/3, so that it seems a candidate of the geometric mean. But the operator
lacks the property P3 below, i.e., permutation invariance for k = 3 to be a reasonable
geometric mean. The following properties were postulated for a geomtric mean
G(A1, A2, · · · , Ak) = Gk(A1, A2, · · · , Ak) of k operators in [3]:

P1 Consistency with scalars. If A1, A2, · · · , Ak commute then

G(A1, A2, · · · , Ak) = (A1A2 · · ·Ak)
1
k .

P1′ This implies G(

k︷ ︸︸ ︷
A, · · · , A) = A.

P2 Joint homogeneity.
G(a1A1, a2A2, · · · , akAk) = (a1a2 · · · ak)

1
kG(A1, A2, · · · , Ak) for ai ≥ 0 with

i = 1, · · · , k.

P2′ This implies G(aA1, aA2, · · · , aAk) = aG(A1, A2, · · · , Ak) (a ≥ 0).

P3 Permutation invariance. For any permutation π(A1, A2, · · · , Ak) of
(A1, A2, · · · , Ak), G(A1, A2, · · · , Ak) = G(π(A1, A2, · · · , Ak)).

P4 Monotonicity. The map (A1, A2, · · · , An) 7→ G(A1, A2, · · · , An) is monotone,
i.e., if Ai ≥ Bi for i = 1, · · · , k, then G(A1, A2, · · · , Ak) ≥ G(B1, B2, · · · , Bk).

P5 Continuity from above. If {A(n)
1 }, {A

(n)
2 }, · · · , {A

(n)
k } are monotonic

decreasing sequences converging to A1, A2, · · · , Ak, respectively, then
{G(A(n)

1 , A
(n)
2 , · · · , A(n)

k )} converges to G(A1, A2, · · · , Ak).

P6 Congruence invariance. For any invertible S,

G(S∗A1S, S
∗A2S, · · · , S∗AkS) = S∗G(A1, A2, · · · , Ak)S.

P7 Joint concavity. The map (A1, A2, · · · , Ak) 7→ G(A1, A2, · · · , Ak) is jointly
concave:

G(λA1 + (1− λ)A′1, λA2 + (1− λ)A′2, · · · , λAk + (1− λ)A′k)

≥ λG(A1, A2, · · · , Ak) + (1− λ)G(A′1, A
′
2, · · · , A′k) (0 < λ < 1).
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P8 Self-duality. G(A1, A2, · · · , Ak)∗ = G(A1, A2, · · · , Ak). The dual
G(A1, A2, · · · , Ak)∗ is defined by

G(A1, A2, · · · , Ak)∗ = G(A−1
1 , A−1

2 , · · · , A−1
k )−1.

P9 (In case A1, A2, · · · , Ak are matrices.) Determinant identity.

detG(A1, A2, · · · , Ak) = (detA1 · detA2 · · · · · detAk)
1
k .

P10 The arithmetic-geometric-harmonic mean inequaility.

A1 +A2 + · · ·+Ak
k

≥ G(A1, A2, · · · , Ak) ≥
(A−1

1 +A−1
2 + · · ·+A−1

k

k

)−1

.

Mentioned as before, we can show that the operator defined by (1.2) does not
satisfy the basic property P3. Supplying this fact, we employ the iteration technique
due to Ando-Li-Mathias [3]: We define the three sequences {An}, {Bn} and {Cn},
for example, by A1 = A, B1 = B, C1 = C,

An+1 = (Bn]Cn)] 1
3
An = An] 2

3
(Bn]Cn) (see WG3),

Bn+1 = Bn] 2
3
(Cn]An) and

Cn+1 = Cn] 2
3
(An]Bn) for n ≥ 1.

Then we see that {An}, {Bn} and {Cn} converge and have a common limit. Now
we may define the limit as the desired geometric mean of the operators A,B and
C, which posseses all properties P1-P10. In this paper we define a geometric mean,
somewhat different from that presented in [3] of k (≥ 3) operators which satisfies
the above properties P1-P10. For three operators we define a weighted geometric
mean of operators, which really extends that of two operators.

All operators are assumed positive invertible if stated otherwise.

2. Definition of geometric mean of more than two operators

Before we define a geometric mean of k operators, we want to state some useful
facts for our discussion. First we introduce the metric d(A,B), called Thompson
metric on the positive cone Ω of all (positive invertible) operators defined ([18], [4],
[5], [7]) by

d(A,B) = max{logM(A/B), logM(B/A)} for A,B ∈ Ω,

where
M(A/B) = inf{λ > 0 : A ≤ λB} =‖ B−1/2AB−1/2 ‖ .

We remark that Ω is complete with respect to the corresponding metric topology
[7]. As a basic inequality between weighted geometric means of two operators, the
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following holds [4]:
WG0 d(A1]αA2, B1]αB2) ≤ (1− α)d(A1, B1) + αd(A2, B2)
for A1, A2, B1, B2 ∈ Ω and α ∈ (0, 1). Next for convenience sake, we, parallel to
P1-P10, state basic properties of the weighted geometric mean A]αB defined by
(1.1) [2], [11]:

WG1 A]αA = A.

WG2 (aA)]α(bB) = a1−αbαA]αB.

WG3 A]αB = B]1−αA.

WG4 A]αB is monotone, i.e., if A ≥ C and B ≥ D, then A]αB ≥ C]αD.

WG5 The map (A,B) 7→ A]αB is continuous from above.

WG6 A]αB is invariant with respect to congruence, i.e.,
S∗(A]αB)S = S∗AS]αS

∗BS for any invertible operator S.

WG7 The map (A,B) 7→ A]αB is jointly concave.

WG8 A]αB is self-dual, i.e., A]αB = (A−1]αB
−1)−1.

WG9 (In case A and B are matrices,) det(A]αB) = (detA)1−α(detB)α.

WG10 The weighted arithmetic-geometric-harmonic mean inequality holds:

(1− α)A+ αB ≥ A]αB ≥ ((1− α)A−1 + αB−1)−1.

The following fact [12, (11)] is also useful, so we add it to the above properties:

WG11 A]α(A]βB) = A]αβB.

Now we want to define our geometric means for all integers k ≥ 2.

Definition 2.1. (1) First for k = 2, define G(A1, A2) = A1]A2 (the usual geometric
mean) for two operators A1 and A2. Then G(A1, A2) satisfies all properties P1-P10,
and moreover, from WG0, between two geometric means G(A1, A2) and G(B1, B2)
the following inequality holds:

(2.1) d(G(A1, A2), G(B1, B2)) ≤ 1
2

(d(A1, B1) + d(A2, B2)).

To define geometric means for k ≥ 3 by induction, we assume that for k operators
A1, · · · , Ak we have obtained a geometric mean G(A1, · · · , Ak) such that the mean
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satisfies all properties P1-P10, and the following inequality, for another k-tuple of
operators B1, · · · , Bk, holds:

(2.2) d(G(A1, · · · , Ak), G(B1, · · · , Bk)) ≤ 1
k

k∑
i=1

d(Ai, Bi).

(2) Then we shall define a geometric mean G(A1, · · · , Ak+1) of (k + 1) operators
A1, · · · , Ak+1 as the common limit of the sequences {A(r)

i }∞r=1 (i = 1, · · · , k + 1)
defined by

(2.3) A
(1)
i = Ai and A

(r+1)
i = A

(r)
i ] k−1

k
G((A(r)

j )j 6=i) for r ≥ 1.

Here

G((A(r)
j )j 6=i) = G(A(r)

1 , · · · , A(r)
i−1, A

(r)
i+1, · · · , A

(r)
k+1).

Now we have to show:

Theorem 2.2. For a fixed k ≥ 2, assume G(A1, · · · , Ak) is defined and satisfies
P1-P10 and (2.2). Then the (k+1) sequences {A(r)

i }∞r=1 (i = 1, · · · , k+1) defined by
(2.3) are convergent in the Thompson metric and have a common limit. The limit
defined as the geometric mean G(A1, · · · , Ak+1) satisfies all properties P1-P10 and
the inequality (2.2) for (k + 1) operators A1, · · · , Ak+1.

Proof. First for d(A(r+1)
i , A

(r)
i ) (i = 1, · · · , k + 1), we have

(2.4) d(A(r+1)
i , A

(r)
i ) ≤ 1

k + 1

k+1∑
j=1,j 6=i

d(A(r)
i , A

(r)
j ).

In fact, from P1’, P3 and (2.2)

d(A(r+1)
i , A

(r)
i ) = d(A(r)

i ] k
k+1

G((A(r)
j )j 6=i), A

(r)
i )

= d(A(r)
i ] k

k+1
G(A(r)

1 , · · · , A(r)
i−1, A

(r)
i+1, · · · , A

(r)
k+1), A(r)

i ] k
k+1

G(A(r)
i , · · · , A(r)

i ))

≤ 1
k + 1

d(A(r)
i , A

(r)
i ) +

k

k + 1
· 1
k

(
d(A(r)

1 , A
(r)
i ) + d(A(r)

2 , A
(r)
i )

+ · · ·+ d(A(r)
i−1, A

(r)
i ) + d(A(r)

i+1, A
(r)
i ) + · · ·+ d(A(r)

k+1, A
(r)
i )
)

=
1

k + 1

k+1∑
j=1,j 6=i

d(A(r)
j , A

(r)
i ) =

1
k + 1

k+1∑
j=1,j 6=i

d(A(r)
i , A

(r)
j ).
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For d(A(r+1)
i , A

(r+1)
j ) (i 6= j), say, for i < j, we have

d(A(r+1)
i , A

(r+1)
j ) = d(A(r)

i ] k
k+1

G((A(r)
l )l 6=i), A

(r)
j ] k

k+1
G((A(r)

l )l 6=j))

= d(A(r)
i ] k

k+1
G(A(r)

j , A
(r)
1 , · · · , A(r)

i−1, A
(r)
i+1, · · · , A

(r)
j−1, A

(r)
j+1, · · · , A

(r)
k+1),

A
(r)
j ] k

k+1
G(A(r)

i , A
(r)
1 , · · · , A(r)

i−1, A
(r)
i+1, · · · , A

(r)
j−1, A

(r)
j+1, · · · , A

(r)
k+1))

≤ 1
k + 1

d(A(r)
i , A

(r)
j ) +

k

k + 1
· 1
k
d(A(r)

j , A
(r)
i ) =

2
k + 1

d(A(r)
i , A

(r)
j ).

Hence we have

d(A(r+1)
i , A

(r+1)
j ) ≤ 2

k + 1
d(A(r)

i , A
(r)
j )

≤
(

2
k + 1

)2

d(A(r−1)
i , A

(r−1)
j ) ≤ · · · ≤

(
2

k + 1

)r
d(Ai, Aj).

(2.5)

From (2.4) and the above inequality, we then have

d(A(r+1)
i , A

(r)
i ) ≤ 1

k + 1

k+1∑
j=1,j 6=i

(
2

k + 1

)r−1

d(Ai, Aj) =
(

2
k + 1

)r−1

Ki,

where Ki =
1

k + 1

k+1∑
j=1,j 6=i

d(Ai, Aj). Hence for any r, s such that r ≥ s

d(A(r+1)
i , A

(s)
i ) ≤

r∑
l=s

d(A(l+1)
i , A

(l)
i )

≤
r∑
l=s

(
2

k + 1

)l−1

Ki ≤
(k + 1)Ki

k − 1

(
2

k + 1

)s−1

→ 0 (as s→∞).

This implies that {A(r)
i } (for all i = 1, . . . , k + 1) are convergent, and then from

(2.5) their limits are identical. For the properties P1-P10 of G(A1, · · · , Ak+1), it is
not difficult to show them. For example, to see P3, let

(B1, · · · , Bk+1) = π(A1, · · · , Ak+1) (= (Aπ(1), · · · , Aπ(k+1)))

be a permutation of (A1, · · · , Ak+1). Put for all i = 1, · · · , k + 1

B
(1)
i = Bi = Aπ(i) and B

(r+1)
i = B

(r)
i ] k

k+1
G((B(r)

j )j 6=i) for r ≥ 1.

Then we can see that

B
(r)
i = A

(r)
π(i) for r ≥ 1, (A(r)

π(i) is defined before by (2.3)),
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so that (B(r)
1 , · · · , B(r)

k+1) is a rearrangement of (A1, · · · , Ak+1). Hence all sequences

{B(r)
i }∞r=1 are convergent and have the common limit G(A1, · · · , Ak+1). This implies

the desired G(π(A1, · · · , Ak+1)) = G(A1, · · · , Ak+1).
For the inequality (2.2) for two tuples (A1, · · · , Ak+1) and (B1, · · · , Bk+1) of

operators, let {A(r)
i } (i = 1, · · · , k + 1) be the sequences defined by (2.3) and

{B(r)
i } (i = 1, · · · , k + 1) be those defined by B(1)

i = B1 and

B
(r+1)
i = B

(r)
i ] k

k+1
G((B(r)

j )j 6=i) for r ≥ 1.

Then by the assumption (2.2), we have, for all i = 1, · · · , k + 1

d(A(r+1)
i , B

(r+1)
i ) = d(A(r)

i ] k
k+1

G((A(r)
j )j 6=i), B

(r)
i ] k

k+1
G((B(r)

j )j 6=i))

≤ 1
k + 1

d(A(r)
i , B

(r)
i ) +

1
k + 1

k+1∑
j=1,j 6=i

d(A(r)
j , B

(r)
j ) =

1
k + 1

k+1∑
j=1

d(A(r)
j , B

(r)
j ).

Thus we have

k+1∑
i=1

d(A(r+1)
i , B

(r+1)
i ) ≤

k+1∑
i=1

d(A(r)
i , B

(r)
i ) ≤ · · · ≤

k+1∑
i=1

d(Ai, Bi).

Taking the limit as r →∞, we obtain

(k + 1)d(G(A1, · · · , Ak+1), G(B1, · · · , Bk+1)) ≤
k+1∑
i=1

d(Ai, Bi),

which is the desired. �

Other definitions of geometric means

1. Ando-Li-Mathias [3] defined a geometric mean GA = GA(A1, · · · , Ak) having
all properties P1-P10 as follows: For k = 2, put GA = A1]A2. Assuming GA for
k(≥ 2) operators, by induction, define GA(A1, · · · , Ak+1) as the common limit of
the (k + 1) sequences {A(r)

i }∞r=1 (i = 1, · · · , k + 1) such that A(1)
i = Ai and

A
(r+1)
i = GA((A(r)

j )j 6=i) for r ≥ 1.

2. Kosaki [14] defined a geometric mean GK = GK(A1, · · · , Ak) as follows:
First define

GK
+ = G+

K(A1, · · · , Ak) :

=
1

(Γ(1/k))k

∫
Λk


k∑
j=1

λjA
−1
j


−1

k∑
j=1

λj




k∏
j=1

λ
1/k−1
j

 dλ1 · · · dλk,

(2.6)
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where Λk =
{

(λ1, · · · , λk);λj ≥ 0 (j = 1, · · · , k),
∑k
j=1 λj ≤ 1

}
. Then define

G−K = (G+
K)∗, the dual of G+

K (see P8) and GK = G+
K]G

−
K . The function G+

K does
not have the property P8-self-duality (nor P9), but GK has P8 by the modification
[3].

3. Anderson-Morley-Trapp [1] defined a geometric mean Gamt of k(≥ 2) oper-
ators based on symmetric functions. For example, for three operators A,B and C,

define A(1)
1 = A,A

(1)
2 = B,A

(1)
3 = C, and for r ≥ 1

A
(r+1)
1 = (A(r)

1 +A
(r)
2 +A

(r)
3 )/3,

A
(r+1)
2 = {A(r)

1 : (A(r)
2 +A

(r)
3 ) +A

(r)
2 : (A(r)

3 +A
(r)
1 ) +A

(r)
3 : (A(r)

1 +A
(r)
2 )}/2,

A
(r+1)
3 = 3((A(r)

1 : A(r)
2 ) : A(r)

3 ) = 3(A(r)
1 : A(r)

2 : A(r)
3 ).

Here X : Y = (X−1 + Y −1)−1 is the parallel sum of operators X and Y. Then
the sequences {A(r+1)

1 }, {A(r+1)
2 }, {A(r+1)

3 } converge to a common limit, which is
denoted byG+

amt = G+
amt(A,B,C). The meanGamt is defined byGamt = G+

amt]G
−
amt,

where G−amt = (G+
amt)∗, the dual of G+

amt. None of Gamt, G
+
amt, G

−
amt satisfiy P2-joint

homogeneity [3].

Denote by G the geometric mean of our definition in Theorem 2.2. Then we
compare GA, GK , Gamt and G by the following three 2× 2 matrices: Let

A =
[

2 1
1 1

]
, B =

[
1 2
2 5

]
and C =

[
1 0
0 1

]
.

Then by numerical computation cited from [3] (less than 10−4 discarded),

GA =
[

0.9319 0.6636
0.6636 1.5456

]
, GK =

[
0.9320 0.6628
0.6628 1.5444

]
,

Gamt =
[

0.9317 0.6608
0.6608 1.5419

]
.

For our geometric mean G (by (2.3))

G =
[

0.9319 0.6618
0.6618 1.5431

]
(= A

(r)
1 = A

(r)
2 = A

(r)
3 for r ≥ 3).

3. Weighted geometric means

We show two facts with respect to weighted geometric means. First we give

Proposition 3.1. For any operators A,B and for any positive integers `,m ≥ 1

(3.1) G`+m = G`+m(

`︷ ︸︸ ︷
A, · · · , A,

m︷ ︸︸ ︷
B, · · · , B) = A] m

`+m
B.
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Proof. First for m = 1, we obtain, by induction with respect to `,

(3.2) G`+1(

`︷ ︸︸ ︷
A, · · · , A,B) = A] 1

`+1
B.

In fact, for ` = 1, (3.2) is obvious. Assuming (3.2) (for `), we want to prove

G`+2(

`+1︷ ︸︸ ︷
A, · · · , A,B) = A] 1

`+2
B.

Put A(1)
i = A for i = 1, · · · , `+ 1 and A

(1)
`+2 = B, then

A
(2)
1 = A] `+1

`+2
G`+1(A(1)

2 , · · · , A(1)
`+1, A

(1)
`+2)

= A] `+1
`+2

G`+1(

`︷ ︸︸ ︷
A, · · · , A,B) = A] `+1

`+2
(A] 1

`+1
B) = A] 1

`+2
B.

Similarly, we have A(2)
2 = · · · = A

(2)
`+1 = A] 1

`+2
B. For A(2)

`+2, we have

A
(2)
`+2 = A

(1)
`+2] `+1

`+2
G`+1(A(1)

2 , · · · , A(1)
`+1) = B] `+1

`+2
G(A, · · · , A) = B] `+1

`+2
A = A] 1

`+2
B.

Hence for r ≥ 3, we have A(r)
i = A] 1

`+2
B for i = 1, · · · , `+2, so that G`+2 = A] 1

`+2
B

as the limit of A(r)
i (r →∞), which is desired.

Now we have obtained (3.1) for m = 1 and all ` ≥ 1. Assuming (3.1) for a fixed
m ≥ 1 and all ` ≥ 1, we then have to show, for all ` ≥ 1,

(3.3) G`+m+1(

`︷ ︸︸ ︷
A, · · · , A,

m+1︷ ︸︸ ︷
B, · · · , B) = A] m+1

`+m+1
B.

For ` = 1, we obtain

Gm+2(A,

m+1︷ ︸︸ ︷
B, · · · , B) = Gm+2(

m+1︷ ︸︸ ︷
B, · · · , B,A) = B] 1

m+2
A = A]m+1

m+2
B.

Now assuming (3.3) (for `), we want to prove

G`+m+2(

`+1︷ ︸︸ ︷
A, · · · , A,

m+1︷ ︸︸ ︷
B, · · · , B) = A] m+1

`+m+2
B.

Put A(1)
i = A for i = 1, · · · , `+ 1 and A

(1)
i = B for i = `+ 2, · · · , `+m+ 2. Then

for i = 1, · · · , `+ 1

A
(2)
i = A] `+m+1

`+m+2
G`+m+1(

`︷ ︸︸ ︷
A, · · · , A,

m+1︷ ︸︸ ︷
B, · · · , B) = A] `+m+1

`+m+2
(A] m+1

`+m+1
B) = A] m+1

`+m+2
B.
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For i = `+ 2, · · · , `+m+ 2

A
(2)
i = B] `+m+1

`+m+2
G`+m+1(

`+1︷ ︸︸ ︷
A, · · · , A,

m︷ ︸︸ ︷
B, · · · , B)

= B] `+m+1
`+m+2

(A] m
`+m+1

B) = B] `+m+1
`+m+2

(B] `+1
`+m+1

A) = B] `+1
`+m+2

A = A] m+1
`+m+2

B.

Hence for r ≥ 2 we have A(r)
i = A] m+1

`+m+2
B for all i = 1, · · · , ` + m + 2, which is

desired. �

Next we define a weighted geometric mean of three positive operators. Let
α, β, γ be real numbers such that

(3.4) α, β, γ ≥ 0 and α+ β + γ = 1.

Then for operators A,B,C and real numbers α, β, γ satisfying (3.4), we define the
sequences {An}, {Bn} and {Cn} as follows:

A1 = A, B1 = B, C1 = C and for n ≥ 1

(3.5)


An+1 = An]α1(Bn]α2Cn),
Bn+1 = Bn]β1(Cn]β2An),
Cn+1 = Cn]γ1(An]γ2Bn).

Here the above constants are:

α1 = 1− α, α2 = 1− β

α1
, β1 = 1− β, β2 = 1− γ

β1
, γ1 = 1− γ, γ2 = 1− α

γ1

with a convention y
1−x = 0 for x = 1. These are the solutions for the equations

(3.6)


α = 1− α1 = β1β2 = γ1(1− γ2),
β = α1(1− α2) = 1− β1 = γ1γ2,

γ = α1α2 = β1(1− β2) = 1− γ1.

which are obtained by observing the exponents for commuting operators:

An+1 = A1−α1
n Bα1(1−α2)

n Cα1α2
n ,

Bn+1 = B1−β1
n Cβ1(1−β2)

n Aβ1β2
n ,

Cn+1 = C1−γ1
n Aγ1(1−γ2)

n Bγ1γ2n .

Now we obtain a weighted geometric mean as the common limit of {An}, {Bn} and
{Cn} :
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Theorem 3.2. Let {An}, {Bn} and {Cn} be the sequences given by (3.5) for oper-
ators A,B,C and real numbers αi, βi, γi, α, β, γ satisfying (3.6). Then the se-
quences converge and have a common limit, which we denote by G(A,B,C;α, β, γ).
Moreover, the limit is permutation invariant, that is,

G(A,B,C;α, β, γ) = G(π(A,B,C);π(α, β, γ))

for any permutations π(A,B,C), π(α, β, γ) of (A,B,C), (α, β, γ), respectively.

Lemma 3.3. Let {An}, {Bn} and {Cn} be the sequences given by (3.5) and α, β, γ,
αi, βi, γi (i = 1, 2) be real numbers satisfying (3.6). Then

(3.7)


d(An+1, Bn+1) ≤ 2 min{α, β}d(An, Bn) ≤ (2M)nd(A,B),
d(Bn+1, Cn+1) ≤ 2 min{β, γ}d(Bn, Cn) ≤ (2M)nd(B,C),
d(Cn+1, An+1) ≤ 2 min{γ, α}d(Cn, An) ≤ (2M)nd(C,A),

where

(3.8) M = max{min{α, β},min{β, γ},min{γ, α}},

or, is the second number of α, β, γ in size.

Proof. By the definition (3.5), we have

d(An+1, Bn+1) = d(An]α1(Bn]α2Cn), Bn]β1(Cn]β2An))
≤ d(An]α1(Bn]α2Cn), An]β1(Cn]β2An)) + d(An]β1(Cn]β2An), Bn]β1(Cn]β2An))

(:= I + II).

Note that from WG3 and WG11,

An]β1(Cn]β2An) = An]β1(An]1−β2Cn) = An]β1(1−β2)Cn = An]α1(An]α2Cn).

Hence we have

I := d(An]α1(Bn]α2Cn), An]β1(Cn]β2An)) = d(An]α1(Bn]α2Cn), An]α1(An]α2Cn))
≤ (1− α1)d(An, An) + α1d(Bn]α2Cn, An]α2Cn) ≤ α1(1− α2)d(Bn, An) = βd(An, Bn).
II := d(An]β1(Cn]β2An), Bn]β1(Cn]β2An))
≤ (1− β1)d(An, Bn) + β1d(Cn]β2An, Cn]β2An) = βd(An, Bn).

Hence

(3.9) d(An+1, Bn+1) ≤ I + II ≤ 2βd(An, Bn).

Again

d(An+1, Bn+1) = d(An]α1(Bn]α2Cn), Bn]β1(Cn]β2An))
≤ d(An]α1(Bn]α2Cn), Bn]α1(Bn]α2Cn)) + d(Bn]α1(Bn]α2Cn), Bn]β1(Cn]β2An))

(:= III + IV ).
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Note that
Bn]α1(Bn]α2Cn) = Bn]α1α2Cn = Bn]β1(Cn]β2Bn).

So that

III := d(An]α1(Bn]α2Cn), Bn]α1(Bn]α2Cn))
≤ (1− α1)d(An, Bn) + α1d(Bn]α2Cn, Bn]α2Cn) = αd(An, Bn).
IV := d(Bn]α1(Bn]α2Cn), Bn]β1(Cn]β2An))
= d(Bn]β1(Cn]β2Bn), Bn]β1(Cn]β2An))
≤ (1− β1)d(Bn, Bn) + β1((1− β2)d(Cn, Cn) + β2d(Bn, An)) = αd(An, Bn).

From the above inequalities we have

(3.10) d(An+1, Bn+1) ≤ III + IV ≤ 2αd(An, Bn).

Now from (3.9) and (3.10), we have d(An+1, Bn+1) ≤ 2 min{α, β}d(An, Bn), which
implies the first inequalities of (3.7).

Similarly we can show the second and the third inequalities. �

Lemma 3.4. Let {An}, {Bn} and {Cn} be sequences given by (3.5) and let α, β, γ,
αi, βi, γi (i = 1, 2) be real numbers satisfying (3.6). Then
(3.11)

d(An+1, An) ≤ βd(An, Bn) + γd(Cn, An) ≤ (2M)n−1{βd(A,B) + γd(C,A)},
d(Bn+1, Bn) ≤ γd(Bn, Cn) + αd(An, Bn) ≤ (2M)n−1{γd(B,C) + αd(A,B)},
d(Cn+1, Cn) ≤ αd(Cn, An) + βd(Bn, Cn) ≤ (2M)n−1{αd(C,A) + βd(B,C)},

where M is defined in (3.8).

Proof. Using WG0, we have

d(An+1, An) = d(An]α1(Bn]α2Cn), An]α1(An]α2An))
≤ (1− α1)d(An, An) + α1d(Bn]α2Cn, An]α2An)
≤ α1(1− α2)d(An, Bn) + α1α2d(Cn, An)

= βd(An, Bn) + γd(Cn, An) ≤ (2M)n−1{βd(A,B) + γd(C,A)}.

In the same manner, we can obtain other inequalities in (3.11). �

Proof of Theorem 3.2. We may only consider the case that all of α, β and γ are
nonzero or smaller than 1, so that we can assume M < 1/2. Then from Lemmas 3.3
and 3.4 we can show that the sequences {An}, {Bn} and {Cn} converge and have
a common limit by using the similar argument as in the proof of Theorem 2.2. For
the property of permutation invariance of the limit G(A,B,C;α, β, γ), we can also
show the fact almost similarly as in the proof of Theorem 2.2. �

The following result implies that G(A,B,C;α, β, γ) is really an extension of the
weighted mean of two operators:
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Proposition 3.5. Let A and B be positive operators, and let α, β, γ be real
numbers satisfying (3.4). Then

(3.12) G(A,A,B;α, β, γ) = A]γB.

Proof. In (3.5), replace A1 = B1 = A and C1 = B, then

A2 = A]α1(A]α2B) = A]α1α2B = A]γB.

Similarly, we can obtain B2 = C2 = A]γB, so that

An = Bn = Cn = A]γB for n ≥ 2.

This implies the desired identity (3.12).

Kosaki [14] presented the following definition of a weighted geometric mean
G̃K = G̃+

K]G̃
−
K . Here G̃+

K = G̃+
K(A1, · · · , Ak;α1, · · · , αk) is defined as the extended

form of (2.6):

G̃+
K =

1
Πk
j=1Γ(αj)

∫
Λk


k∑
j=1

λjA
−1
j


−1

k∑
j=1

λj




k∏
j=1

λ
1/αj−1
j

 dλ1 · · · dλk,

and G̃−K = (G̃+
K)∗, the dual of G̃+

K .

For numerical computation of G̃K and G̃, the weighted geometric mean by our
definition, take three matrices

A =
[

2 1
1 1

]
, B =

[
1 1
1 2

]
and C =

[
3
√

2√
2 1

]
.

Then for α = 1/2, β = 1/3, γ = 1/6 we have, by the Simpson’s formula for the
integral on the interval [0, 1] divided into 2× 104 segments,

G̃K =
[

1.6119 0.9374
0.9374 1.1655

]
(= G̃K,1).

From another computation by using Gauss-Legendre quadrature with 150 nodes,
we have

G̃K =
[

1.6118 0.9375
0.9375 1.1648

]
(= G̃K,2).

Hence it seems that the true G̃k is a matrix with an error at most 10−3 for each
component of G̃k,1 or G̃k,2. For G̃ by our definition we have

G̃ =
[

1.6185 0.9375
0.9375 1.1608

]
(= A

(r)
1 = A

(r)
2 = A

(r)
3 for r ≥ 3).
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4. Reverse inequality

Recently Kantorovich type reverse inequalities of the arithmetic-geometric, the
arithmetic-harmonic, or the arithmetic-geometric-harmonic ones for two or more
than two operators were presented in [7], [9], [19]. The following fact was shown in
[9]:

Lemma 4.1 ([9, Theorem 9]). Let A1, A2, · · · , An be operators such that 0 < mI ≤
Ai ≤ MI for i = 1, 2, · · · , n for some scalars m and M with 0 < m < M . (The
letter I stands the identity operator.) Then

A1 + · · ·+An
n

≤ (M +m)2

4Mm

(
A−1

1 + · · ·+A−1
n

n

)−1

.

From the above lemma and the property P10 of our geometric mean, we imme-
diately obtain the following result:

Proposition 4.2. Let A1, A2, · · · , An be operators such that 0 < mI ≤ Ai ≤ MI
for i = 1, 2, · · · , n for some scalars m and M with 0 < m < M . Then

A1 +A2 + · · ·+An
n

≤ (M +m)2

4Mm
G(A1, A2, · · · , An).

For the weighted version of the arithmetic-geometric-harmonic mean inequality
we can show for operators A,B,C and real numbers α, β, γ with the assumption
(3.4),

αA+ βB + γC ≥ G(A,B,C;α, β, γ) ≥ (αA−1 + βB−1 + γC−1)−1.

As a reverse version of the arithmetic-geometric mean inequality, we can obtain

Proposition 4.3. Let mI ≤ A, B, C ≤ MI for some scalars m and M with
0 < m < M. Then with the assumption (3.4) for real numbers α, β, γ,

αA+ βB + γC ≤ (M +m)2

4Mm
G(A,B,C;α, β, γ).
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