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Abstract. In this paper, we investigate uniqueness problems of meromorphic functions

that share a small function with one of their derivatives, and give some results to improve

some previous results.

1. Introduction and results

In this paper, a meromorphic function will mean meromorphic in the whole
complex plane. We shall use the standard notations in Nevanlinna value distribution
theory of meromorphic functions such as T (r, f), N(r, f), m(r, f) (see e.g., [5], [8]).
For any nonconstant meromorphic function f , we denote by S(r, f) any quantity
satisfying

lim
r→∞

S(r, f)
T (r, f)

= 0,

possibly outside of a set of finite linear measure in R+. A meromorphic function
a(z) is said to be a small function of f, provided T (r, a) = S(r, f).

We say that two meromorphic functions f and g share a small function a IM
(ignoring multiplicities) when f − a and g − a have the same zeros. If f − a and
g − a have the same zeros with the same multiplicities, then we say that f and g
share a CM (counting multiplicities).

The uniqueness theory of entire and meromorphic functions has grown up to
an extensive subfield of the value distribution theory, see e.g. the monograph [8]
by Yang and Yi. A widely studied subtopic of the uniqueness theory has been to
considering shared value problems relative to a meromorphic function f and its
derivative f (k). Some of the basic papers in this direction are due to Rubel and
Yang [7], Gundersen [3], Mues and Steinmetz [6] and Yang [9].
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Recently, L. Z. Yang and the present author [10] considered value sharing rel-
ative to a power of a meromorphic function F = fn and its derivative F ′, proving
the following 2 theorems.

Theorem A. Let f be a nonconstant entire function, n ≥ 7 be an integer. Denote
F = fn. If F and F ′ share 1 CM, then F = F ′, and f assumes the form

f(z) = ce
1
n z,

where c is a nonzero constant.

Theorem B. Let f be a nonconstant meromorphic function and n ≥ 12 be an
integer. Denote F = fn. If F and F ′ share 1 CM, then F = F ′, and f assumes
the form

f(z) = ce
1
n z,

where c is a nonzero constant.

In this paper, we improve Theorem A and B by obtaining the following results.

Theorem 1.1. Let f be a nonconstant entire function, n, k be positive integers
and a(z) be a small meromorphic function of f such that a(z) 6≡ 0,∞. If fn − a
and (fn)(k) − a share the value 0 CM and n > k + 4, then fn = (fn)(k), and f
assumes the form

f(z) = ce
λ
n z,

where c is a nonzero constant and λk = 1.

Theorem 1.2. Let f be a nonconstant meromorphic function, k, n(≥ k) be positive
integers and a(z) be a small meromorphic function of f such that a(z) 6≡ 0,∞. If
fn − a and (fn)(k) − a share the value 0 CM and

(1.1) (n− k − 1)(n− k − 4) > 3k + 6,

then fn = (fn)(k), and f assumes the form

f(z) = ce
λ
n z,

where c is a nonzero constant and λk = 1.

Corollary 1.3. Let f be a nonconstant entire function and n ≥ 6 be an integer.
Denote F = fn. If F and F ′ share 1 CM, then F = F ′, and f assumes the form

f(z) = ce
1
n z,

where c is a nonzero constant.

Corollary 1.4. Let f be a nonconstant meromorphic function and n ≥ 7 be an
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integer. Denote F = fn. If F and F ′ share 1 CM, then F = F ′, and f assumes
the form

f(z) = ce
1
n z,

where c is a nonzero constant.

Remark. Obviously, Corollary 1.3 and Corollary 1.4 improve Theorem A and
Theorem B respectively.

For any a ∈ C
⋃
{∞}, we denote by El)(a, f) the set of a-points of f with the

multiplicity m ≤ l, counting multiplicities.
Obviously, if El)(a, f) = El)(a, g) and l = ∞, then f and g share a CM. It

is natural to ask what happens if F − a and F ′ − a share 0 CM is replaced by
El)(0, F −a) = El)(0, F ′−a) in Theorem A and B? Corresponding to this question,
we obtain the following results.

Theorem 1.5. Let f be a nonconstant entire function, n, k be positive integers and
a(z) be a small meromorphic function of f such that a(z) 6≡ 0,∞. If E3)(0, fn−a) =
E3)(0, (fn)(k) − a) and n > k + 4, then fn = (fn)(k), and f assumes the form

f(z) = ce
λ
n z,

where c is a nonzero constant and λk = 1.

From Theorem 1.5, we can easily get Theorem 1.1.

Theorem 1.6. Let f be a nonconstant meromorphic function, n, k be positive
integers and a(z) be a small meromorphic function of f such that a(z) 6≡ 0,∞. If
E3)(0, fn − a) = E3)(0, (fn)(k) − a) and

(1.2) n ≥


8 if k = 1,
10 if k = 2,[

3k
2

]
+ 8 if k ≥ 3,

then fn = (fn)(k), and f assumes the form

f(z) = ce
λ
n z,

where c is a nonzero constant and λk = 1.

2. Some lemmas

Let F and G be two non-constant meromorphic functions. We denote by
N

1)
E (r, 1

F−1 ) the counting function of common simple 1-points of F and G.

Lemma 2.1([11], Lemma 3). Let

(2.1) H =
(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
,
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where F and G are two nonconstant meromorphic functions. If H 6= 0, then

(2.2) N
1)
E

(
r,

1
F − 1

)
≤ N(r,H) + S(r, F ) + S(r,G).

Let p be a positive integer and a ∈ C
⋃
{∞}. We denote by Np)

(
r, 1

f−a

)
the

counting function of the zeros of f − a with the multiplicities less than or equal to
p, and by N(p+1

(
r, 1

f−a

)
the counting function of the zeros of f − a with the mul-

tiplicities larger than p. And we use Np)

(
r, 1

f−a

)
and N (p+1

(
r, 1

f−a

)
to denote

the corresponding reduced counting functions (ignoring multiplicities). However,
Np

(
r, 1

f−a

)
denotes the counting function of the zeros of f − a where m-fold zeros

are counted m times if m ≤ p and p times if m > p.

Lemma 2.2([12], Lemma 3). Suppose that f is a nonconstant meromorphic func-
tion and k, p are positive integers. Then

Np

(
r, 1/f (k)

)
≤ T (r, f (k))− T (r, f) +Np+k (r, 1/f) + S(r, f),(2.3)

Np

(
r, 1/f (k)

)
≤ kN(r, f) +Np+k (r, 1/f) + S(r, f).(2.4)

Lemma 2.3. Suppose that f is a nonconstant meromorphic function and a is a
small meromorphic function of f such that a(z) 6≡ 0,∞. Let

(2.5) V =
(

F ′

F − 1
− F ′

F

)
−
(

G′

G− 1
− G′

G

)
,

where F =
fn

a
, G =

(fn)(k)

a
and n, k are positive integers. If V = 0 and n ≥ 2,

then F = G.

Proof. From V = 0, we get

(2.6) 1− 1
F

= B − B

G
,

where B is a non-zero constant. We discuss the following two cases.
Case 1. Suppose that the counting function of poles of f is not S(r, f). Then there

exists a z0 which is not a zero or pole of a such that
1

f(z0)
= 0, thus

1
F (z0)

=

1
G(z0)

= 0. We get B = 1 from (2.6).

Case 2. Suppose that the counting function of poles of f is S(r, f). If B 6= 1, then
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N
(
r, 1

F− 1
1−B

)
= S(r, f). From the second fundamental theorem, we have

T (r, F ) ≤ N(r, F ) +N

(
r,

1
F

)
+N

(
r,

1
F − 1

1−B

)
+ S(r, F )

≤ N

(
r,

1
f

)
+ S(r, f),

which is a contradiction since n ≥ 2. Therefore B = 1. Thus F = G, completing
the proof of Lemma 2.3. �

Lemma 2.4. Let V be given by (2.5) and suppose that V 6= 0. Then the poles of f
are the zeros of V , and

(n− 1)N(r, f) ≤ N(r, V ) + S(r, f).

Proof. We get from (2.5) that

V =
F ′

F (F − 1)
− G′

G(G− 1)
.

Suppose that z0 is a pole of f with the multiplicity p such that a(z0) 6= 0 and

a(z0) 6=∞. Then z0 is a zero of
F ′

F (F − 1)
with the multiplicity np−1 and a zero of

G′

G(G− 1)
with the multiplicity np+ k− 1. So z0 is zero of V with the multiplicity

at least n− 1. Noting that m(r, V ) = S(r, f), we have

(n− 1)N(r, f) ≤ N
(
r,

1
V

)
+ S(r, f) ≤ T (r, V ) + S(r, f) ≤ N(r, V ) + S(r, f).

�

Lemma 2.5. Let H be given by (2.1), where F and G are given by Lemma 2.3. If
H = 0 and n > k + 2, then F = G, and f assumes the form

f(z) = ce
λ
n z,

where c is a nonzero constant and λk = 1.

Proof. By integration, we get from (2.1) that

(2.7)
1

F − 1
=

A

G− 1
+B,

where A( 6= 0) and B are constants. From (2.7) we have

(2.8) N(r, F ) = N(r,G) = N(r, f) = S(r, f),
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and

(2.9) F =
(B + 1)G+ (A−B − 1)

BG+ (A−B)
, G =

(B −A)F + (A−B − 1)
BF − (B + 1)

.

We discuss the following three cases.
Case 1. Suppose that B 6= 0,−1. From (2.9) we have N

(
r, 1/

(
F − B+1

B

))
=

N(r,G). From (2.8) and the second fundamental theorem, we have

nT (r, f) ≤ T (r, F ) + S(r, f)

≤ N(r, F ) +N(r, 1/F ) +N

(
r,

1
F − B+1

B

)
+ S(r, f)

≤ N(r, 1/f) +N(r, F ) +N(r,G) + S(r, f)
≤ T (r, f) + S(r, f),

which contradicts the assumption n ≥ 2.
Case 2. Suppose that B = 0. From (2.9) we have

(2.10) F =
G+ (A− 1)

A
, G = AF − (A− 1).

If A 6= 1, from (2.10) we obtain N
(
r, 1/

(
F − A−1

A

))
= N(r, 1/G). By (2.4), (2.8)

and the second fundamental theorem, we have

nT (r, f) ≤ T (r, F ) + S(r, f)

≤ N(r, F ) +N(r, 1/F ) +N

(
r,

1
F − A−1

A

)
+ S(r, f)

≤ N(r, 1/f) +N(r, F ) +N (r, 1/G) + S(r, f)
≤ N(r, 1/f) +N1 (r, 1/G) + S(r, f)
≤ (k + 2)N(r, 1/f) + S(r, f)
≤ (k + 2)T (r, f) + S(r, f),

which contradicts the assumption n > k + 2. Thus A = 1. From (2.10) we have
F = G, then

(2.11) fn = (fn)(k).

We claim that 0 is a Picard exceptional value of f . In fact, if z0 is a zero of f with
the multiplicity p, then z0 is a zero of fn with the multiplicity np and a zero of
(fn)(k) with the multiplicity np − k, which is impossible from (2.11). Then from
(2.11), we have

f(z) = ce
λ
n z,
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where c is a nonzero constant and λk = 1.
Case 3. Suppose that B = −1. From (2.9) we have

(2.12) F =
A

−G+ (A+ 1)
, G =

(A+ 1)F −A
F

.

If A 6= −1, we obtain from (2.12) that N
(
r, 1/

(
F − A

A+1

))
= N(r, 1/G). By the

same reasoning discussed in Case 2, we obtain a contradiction. Hence A = −1.
From (2.12), we get F ·G = 1, that is

fn · (fn)(k) = a2.

From above equation, we have

N

(
r,

1
f

)
+N(r, f) = S(r, f),

and so T (r, f(k)

f ) = S(r, f). From above two equations, we obtain

2T
(
r,
fn

a

)
= T

(
r,
f2n

a2

)
= T

(
r,
a2

f2n

)
+O(1) = T

(
r,

(fn)(k)

fn

)
+O(1) = S(r, f).

So T (r, f) = S(r, f), which is impossible. This completes the proof of Lemma 2.5.
�

3. Proofs of results

Proof of Theorem 1.6. Let

(3.1) F =
fn

a
, G =

(fn)(k)

a
.

From the conditions of Theorem 1.6, we know that E3)(1, F ) = E3)(1, G) possibly
except at the zeros and poles of a(z). From (3.1), we have

(3.2) T (r, F ) = n
(
T (r, f)

)
+ S(r, f),

(3.3) N(r, F ) = N(r,G) + S(r, f) = N(r, f) + S(r, f).

Let H be defined by (2.1). Suppose that H 6= 0. By Lemma 2.1 we know that (2.2)
holds. From (2.1) and (3.3), we have

N(r,H) ≤ N (2

(
r,

1
F

)
+N (2

(
r,

1
G

)
+N(r,G)

+ N (4

(
r,

1
F − 1

)
+N (4

(
r,

1
G− 1

)
+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)
,(3.4)
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where N0(r, 1
F ′ ) denotes the counting function corresponding to the zeros of F ′

which are not the zeros of F and F − 1, and correspondingly for G′. From the
second fundamental theorem, we have

T (r, F ) + T (r,G) ≤ N

(
r,

1
F

)
+N(r, F ) +N

(
r,

1
F − 1

)
+N

(
r,

1
G

)
+N(r,G)

+ N

(
r,

1
G− 1

)
−N0

(
r,

1
F ′

)
−N0

(
r,

1
G′

)
+ S(r, f).(3.5)

Noting that E3)(1, F ) = E3)(1, G), we have

N

(
r,

1
F − 1

)
+ N

(
r,

1
G− 1

)
= 2N1)

E

(
r,

1
F − 1

)
+N (2

(
r,

1
F − 1

)
+N (2

(
r,

1
G− 1

)
.

Combining with (2.2) and (3.4), we obtain

N

(
r,

1
F − 1

)
+ N

(
r,

1
G− 1

)
≤ N (2

(
r,

1
F

)
+N (2

(
r,

1
G

)
+N(r,G) +N (4

(
r,

1
F − 1

)
+ N (4

(
r,

1
G− 1

)
+N

1)
E

(
r,

1
F − 1

)
+N (2

(
r,

1
F − 1

)
+ N (2

(
r,

1
G− 1

)
+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)
+ S(r, f).(3.6)

It is easy to see that

1
2
N

1)
E

(
r,

1
F − 1

)
+ N (2

(
r,

1
F − 1

)
+N (4

(
r,

1
F − 1

)
≤ 1

2
N

(
r,

1
F − 1

)
≤ 1

2
T (r, F ) +O(1),(3.7)

1
2
N

1)
E

(
r,

1
G− 1

)
+ N (2

(
r,

1
G− 1

)
+N (4

(
r,

1
G− 1

)
≤ 1

2
N

(
r,

1
G− 1

)
≤ 1

2
T (r,G) +O(1).(3.8)

From (3.5) to (3.8) and (3.3), we have

1
2
T (r, F ) +

1
2
T (r,G) ≤ N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+ 3N(r, f) + S(r, f).
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Then

(3.9) T (r, F ) + T (r,G) ≤ 2N2

(
r,

1
F

)
+ 2N2

(
r,

1
G

)
+ 6N(r, f) + S(r, f).

From (3.1), (3.9) and by using Lemma 2.2, we have

2T (r, F ) ≤ 2N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N2+k

(
r,

1
fn

)
+ 6N(r, f) + S(r, f)

≤ 2N2

(
r,

1
F

)
+ 2N2+k

(
r,

1
fn

)
+ (6 + k)N(r, f) + S(r, f).

Then

T (r, F ) ≤ N2

(
r,

1
F

)
+N2+k

(
r,

1
fn

)
+ (3 +

k

2
)N(r, f) + S(r, f)

≤ (k + 4)N
(
r,

1
f

)
+ (3 +

k

2
)N(r, f) + S(r, f).

From (3.2) and above inequality, we get

(3.10) nT (r, f) ≤ (k + 4)N
(
r,

1
f

)
+ (3 +

k

2
)N(r, f) + S(r, f).

We now divide the discussion in two cases:
Case 1. Suppose first that k ≥ 3. We can get a contradiction from (1.2) and (3.10).
Case 2. Suppose next that k ≤ 2. Let V be given by (2.5). If V = 0, we get
F = G from Lemma 2.3. From the proof of Lemma 2.5, we obtain the conclusions
of Theorem 1.6. Next, we suppose that V 6= 0. Since E3)(1, F ) = E3)(1, G), by
Lemma 2.4 and (2.5), we obtain

(n− 1)N(r, f) ≤ N(r, V ) + S(r, f)

≤ N

(
r,

1
F

)
+N

(
r,

1
G

)
+N (4

(
r,

1
F − 1

)
+N (4

(
r,

1
G− 1

)
+ S(r, f).(3.11)

Observe that

N (4

(
r,

1
F − 1

)
≤ 1

3
N

(
r,
F

F ′

)
≤ 1

3
N

(
r,
F ′

F

)
+ S(r, f)

≤ 1
3
N(r, 1/F ) +

1
3
N(r, F ) + S(r, f),

N (4

(
r,

1
G− 1

)
≤ 1

3
N

(
r,
G

G′

)
≤ 1

3
N

(
r,
G′

G

)
+ S(r, f)

≤ 1
3
N(r, 1/G) +

1
3
N(r,G) + S(r, f).
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From (3.11) and (2.4), we have

(n− 1)N(r, f) ≤ 4
3
N(r, 1/F ) +

4
3
N(r, 1/G) +

2
3
N(r, F ) + S(r, f)

≤ 4
3
N(r, 1/f) +

4
3
N1(r, 1/G) +

2
3
N(r, f) + S(r, f)

≤ 4
3
N (r, 1/f) +

4
3
(
(k + 1)N (r, 1/f) + kN(r, f)

)
+

2
3
N(r, f) + S(r, f)

=
4(k + 2)

3
N(r, 1/f) +

2(2k + 1)
3

N(r, f) + S(r, f),

and so (
n− 1− 2(2k + 1)

3

)
N(r, f) ≤ 4(k + 2)

3
N(r, 1/f) + S(r, f).

From (1.2), we can easily get n−1− 2(2k+1)
3 > 0. From (3.10) and above inequality,

we have

nT (r, f) ≤
(
k + 4 +

(2k + 12)(k + 2)
3n− 4k − 5

)
N(r, 1/f) + S(r, f)

≤
(
k + 4 +

(2k + 12)(k + 2)
3n− 4k − 5

)
T (r, f) + S(r, f),

which contradicts the assumption (1.2) of Theorem 1.6. Thus, H = 0. From (1.2),
we have n > k + 2. By Lemma 2.5, we get the conclusions of Theorem 1.6. This
completes the proof of Theorem 1.6. �

Proof of Theorem 1.5. The proof of Theorem 1.6 applies, since f is an entire
function, we get from (3.10)

nT (r, f) ≤ (k + 4)N (r, 1/f) + S(r, f),

which contradicts the assumption n > k+ 4. Hence H = 0. By the same reasoning
as in the proof of Theorem 1.6, we obtain the results of Theorem 1.5, and we
complete the proof of Theorem 1.5. �

Proof of Theorem 1.2. The proof of Theorem 1.6 applies. Since fn−a and (fn)(k)−a
share the value 0 CM, then F and G share 1 CM except possibly at the zeros and
poles of a(z). We obtain

N

(
r,

1
F − 1

)
= N

(
r,

1
G− 1

)
+ S(r, f),

and
(3.12)

N(r,H) ≤ N (2

(
r,

1
F

)
+N (2

(
r,

1
G

)
+N(r, F )+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)
+S(r, f).
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So

N

(
r,

1
F − 1

)
+N

(
r,

1
G− 1

)
≤ N

1)
E

(
r,

1
F − 1

)
+N

(
r,

1
F − 1

)
≤ N

1)
E

(
r,

1
F − 1

)
+ T (r, F ) +O(1).(3.13)

From (2.2), (3.5), (3.12) and (3.13), we have

(3.14) T (r,G) ≤ N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+ 3N(r, f) + S(r, f).

By Lemma 2.2 and (3.14), we get

(3.15) T (r, F ) ≤ N2

(
r,

1
F

)
+N2+k

(
r,

1
fn

)
+ 3N(r, f) + S(r, f).

Let V be given by (2.5). If V = 0, we get F = G by Lemma 2.3. From Case 2 in the
proof of Lemma 2.5, we obtain the conclusions of Theorem 1.2. Next, we suppose
that V 6= 0. Since F and G share 1 CM except at the zeros and poles of a(z), by
Lemma 2.4 and Lemma 2.2, we obtain

(n− 1)N(r, f) ≤ N(r, V ) + S(r, f)
≤ N (r, 1/F ) +N (r, 1/G) + S(r, f)
≤ N (r, 1/f) + (k + 1)N (r, 1/f) + kN(r, f) + S(r, f),

that is

(3.16) (n− k − 1)N(r, f) ≤ (k + 2)N (r, 1/f) + S(r, f).

Since n ≥ k, we get from (1.1)

(3.17) n >
2k + 5 +

√
12k + 33

2
> k + 4.

Combining with (3.15) and (3.16), we obtain

nT (r, f) ≤
(
k + 4 +

3k + 6
n− k − 1

)
N (r, 1/f) + S(r, f),

which contradicts the assumption (1.1) of Theorem 1.2. Thus, H = 0. By Lemma
2.5 and (3.17), we obtain the conclusions of Theorem 1.2. �
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