
KYUNGPOOK Math. J. 49(2009), 133-141

On Semiparallel and Weyl-semiparallel Hypersurfaces of Kaehler
Manifolds

Cihan ÖZGÜR∗
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Abstract. We study on semiparallel and Weyl semiparallel Sasakian hypersurfaces of

Kaehler manifolds. We prove that a (2n + 1)-dimensional Sasakian hypersurface M of a

(2n+2)-dimensional Kaehler manifold M̃2n+2 is semiparallel if and only if it is totally um-

bilical with unit mean curvature, if dimM = 3 and M̃4 is a Calabi-Yau manifold, then M̃

is flat at each point of M . We also prove that such a hypersurface M is Weyl-semiparallel

if and only if it is either an η-Einstein manifold or semiparallel. We also investigate the

extended classes of semiparallel and Weyl semiparallel Sasakian hypersurfaces of Kaehler

manifolds.

1. Introduction

Given an isometric immersion f : M −→ M̃ , let h be the second fundamental
form and ∇ the van der Waerden-Bortolotti connection of M . J. Deprez defined
the immersion to be semiparallel if

(1) R(X,Y ) · h = (∇X∇Y −∇Y∇X −∇[X,Y ])h = 0

holds for all vector fields X,Y tangent to M , where ∇ denotes van der Waerden-
Bortolotti connection of M and R the curvature tensor of ∇. In [5] and [6], J.
Deprez studied semiparallel immersions in real space forms. In [10], Ü. Lumiste
showed that a semiparallel submanifold is the second order envelope of the family
of parallel submanifolds. In [9], in the case of hypersurfaces in the sphere and the
hyperbolic space, F. Dillen showed that semiparallel hypersurfaces are flat surfaces,
hypersurfaces with parallel Weingarten endomorphism or rotation hypersurfaces of
certain helices. In [8], R. Deszcz, L. Verstraelen and Ş. Yaprak obtained some
results on hypersurfaces in 4-dimensional space form N4(c) satisfying the curvature
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condition

(2) R · h = LhQ(g, h),

where Lh is some function on the hypersurface. A. C. Asperti, G. A. Lobos and
F. Mercuri defined these type submanifolds as pseudoparallel (see [1] and [2]). In
[2], it was shown that a pseudoparallel hypersurface of a space form is either quasi-
umbilical or a cyclic of Dupin. In [11], the first author studied normally flat
submanifolds satisfying the condition

(3) C · h = 0,

where C denotes the Weyl conformal curvature tensor. This kind of submanifolds
are called Weyl-semiparallel. As a generalization of Weyl semiparallelity condition,
in [11], it was also considered the condition

(4) C · h = LhQ(g, h),

where Lh is some function on the submanifold.
In this paper, we study semiparallel, pseudoparallel and Weyl semiparallel

Sasakian hypersurfaces of Kaehler manifolds. We also consider Sasakian hyper-
surfaces satisfying the condition (4).

The paper is organized as follows: In section 2, we give a brief account of
Sasakian manifolds. In section 3, Sasakian hypersurfaces of Kaehler manifolds are
presented. In section 4, we classify semiparallel, pseudoparallel and Weyl semipar-
allel Sasakian hypersurfaces of Kaehler manifolds as main results. We also study
Sasakian hypersurfaces of Kaehler manifolds satisfying the condition (4).

2. Sasakian manifolds

An (2n + 1)-dimensional differentiable manifold M is called an almost contact
manifold if there is an almost contact structure (ϕ, ξ, η) consisting of a tensor field
ϕ of type (1,1), a vector field ξ, and a 1-form η satisfying

(5) ϕ2 = −I + η ⊗ ξ, and (one of) η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0.

If the induced almost complex structure J on the product manifold M2n+1 × R
defined by

J

(
X, f

d

dt

)
=
(
ϕX − fξ, η(X)

d

dt

)
is integrable then the structure (ϕ, ξ, η) is said to be normal, where X is tangent to
M , t is the coordinate of R and f is a smooth function on M2n+1×R. M becomes an
almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g),
if

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y )
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or equivalently

g(X,ϕY ) = −g(ϕX, Y ) and g (X, ξ) = η(X)

for all X,Y ∈ TM , where g is a Riemannian metric tensor of M .
An almost contact metric structure is called a contact metric structure if

g(X,ϕY ) = dη(X,Y ),

holds on M for X,Y ∈ TM. A normal contact metric manifold is a Sasakian man-
ifold. However an almost contact metric manifold is Sasakian if and only if

∇Xϕ = η(Y )X − η(X)Y, X ∈ TM,

where ∇ is Levi-Civita connection. Also a contact metric manifold M is Sasakian
if and only if the curvature tensor R satisfies

(6) R(X,Y )ξ = η(Y )X − η(X)Y,

(see [3]). From (6), by a contraction one can get easily

(7) Sξ = 2nξ

and

(8) S(X, ξ) = 2nη(X),

where S and S denotes the Ricci tensor and Ricci operator of M , respectively. The
Ricci operator S is defined by

S(X,Y ) = g(SX,Y ).

3. Kaehlerian submanifolds

Let M̃ denote a (2n + 2)-dimensional Kaehler manifold, i.e., a smooth mani-
fold with a (1, 1)-tensor field J and a Riemannian metric g such that J2 = −I,
g(JX, JY ) = g(X,Y ), ∇J = 0 for arbitrary vector fields X,Y on M̃ , where I is
identity tensor field and ∇ the Riemannian connection of g. Let M be an (2n+ 1)-
dimensional orientable hypersurface isometrically embedded into a Kaehler mani-
fold M̃ . The metrics for both M and M̃ will be denoted by g. The Gauss and
Weingarten formulas are given by

∇̃XY = ∇XY + h(X,Y )

and
∇̃XN = −ANX +DXξ,
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respectively, where N is a normal vector field and X,Y are tangent vector fields on
M . h is called the second fundamental form of M . If h = 0 then M is said to be
totally geodesic. The mean curvature vector α of M is defined to be

α =
1

2n+ 1
tr(h).

A submanifold M is said to be minimal if α = 0 identically [4]. Complex manifolds
with a Ricci-flat Kaehler metric are called Calabi-Yau manifolds.

From now on we will assume that M is a hypersurface of a Kaehler manifold
M̃ . Let N be the unit normal vector field to M , then JN is tangent to M . We set

(9) JN = ξ,

(10) JX = ϕX − η(X)N,

where ϕ and η denote a (1,1)-tensor field and a 1-form respectively, and X an
arbitrary tangential vector field on M . Since M is a hypersurface of a Kaehler
manifold M̃ , the Gauss and Weingarten formulas can be written as

(11) ∇̃XY = ∇XY +H(X,Y )N,

(12) ∇̃XN = −AX,

where H denotes the second fundamental tensor and A is the shape operator. H
and A are related by

H(X,Y ) = g(AX,Y ),

(see [4]). Differentiating (9) along M , using (11) and (12) we get

(13) ∇Xξ = −ϕAX.

From (9) and (10), (η, ξ, ϕ, g) defines an almost contact metric structure on M .
Differentiating (10) along M , using (11) and (12), and comparing tangential parts
we get

(14) (∇Xϕ)Y = H(X,Y )ξ − η(Y )AX,

(see [12]).
We suppose that the almost contact metric structure induced on M is a contact

metric structure. In this study, we consider this contact metric structure as a
Sasakian structure. Then by Lemma 6.2 in [3], we have

(15) ∇Xξ = −ϕX.

So comparing (15) with (13) we have

(16) AX = X + η(AX −X)ξ.
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From (16), by a contraction, we have tr(A)− 2n = η(Aξ). Substituting ξ for X
in (16) we get

(17) Aξ = (tr(A)− 2n)ξ.

From (16) and (17) we obtain

(18) AX = X + (tr(A)− 2n− 1)η(X)ξ,

for the general case see [12].

4. Main results

Let M be a (2n+1)-dimensional orientable hypersurface isometrically embedded
into a Kaehler manifold M̃ . It is easy to see that for a hypersurface, the conditions
R · h = 0, R · h = LhQ(g, h), C · h = 0 and C · h = LhQ(g, h) can be replaced by
R ·H = 0, R ·H = LHQ(g,H), C ·H = 0 and C ·H = LHQ(g,H), respectively.

The Weyl conformal curvature tensor [13] of a (2n+1)-dimensional Riemannian
manifold is defined by

C(X,Y )Z = R(X,Y )Z − 1
2n− 1

{S(Y, Z)X

−S(X,Z)Y + g(Y,Z)SX − g(X,Z)SY }(19)

+
r

2n(2n− 1)
[g(Y, Z)X − g(X,Z)Y ] .

The tensors R ·H, C ·H and Q(g,H) are defined by

(20) (R(X,Y ) ·H)(U, V ) = −H(R(X,Y )U, V )−H(U,R(X,Y )V ),

(21) (C(X,Y ) ·H)(U, V ) = −H(C(X,Y )U, V )−H(U,C(X,Y )V )

and

(22) Q(g,H)(U, V ;X,Y ) = −H ((X ∧ Y )U, V )−H (U, (X ∧ Y )V ) ,

respectively, for vector fields X,Y, U, V tangent to M , where X ∧ Y is an endomor-
phisms defined by

(23) (X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y

and Z is a vector field tangent to M (see [7]).
Firstly, we have the following Theorem:

Theorem 4.1. Let M be a Sasakian hypersurface of a Kaehler manifold M̃2n+2.
Then M is semiparallel if and only if it is totally umbilical with unit mean curvature.
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Moreover, if dimM = 3 and M̃4 is a Calabi-Yau manifold, then M̃ is flat at each
point of M .

Proof. By the use of (20), we can write

(R(X,Y ) ·H)(U, V ) = −g(R(X,Y )U,AV )− g(AU,R(X,Y )V ).

So in view of (18) we get

(R(X,Y ) ·H)(U, V ) = −λ[η(V )g(R(X,Y )U, ξ) + η(U)g(R(X,Y )V, ξ)],

where λ = tr(A) − 2n − 1. Now suppose that M is semiparallel. Then R ·H = 0
and this implies

(24) λ[η(V )g(R(X,Y )U, ξ) + η(U)g(R(X,Y )V, ξ)] = 0.

Taking V = ξ in (24) we have

(25) λg(R(X,Y )U, ξ) = 0.

Contracting (25) with respect to X and U we get

(26) λS(Y, ξ) = 0.

Taking Y = ξ in (26) and using (7) we find

2nλ = 0,

which implies λ = 0. Then from (18) we obtain A = I and so M is totally umbilical
with unit mean curvature. Assume that dimM = 3 and M̃4 is a Calabi-Yau mani-
fold. So by the proof of Theorem 2 in [12], we obtain M is of constant curvature 1
and M̃ has the curvature tensor R̃ = 0 at each point of M . The converse statement
is trivial. Hence we get the result as required. �

So we give an extension of this theorem as follows:

Theorem 4.2. Let M be a Sasakian hypersurface of a Kaehler manifold M̃2n+2.
Then M is pseudoparallel such that LH 6= 1 if and only if it is totally umbilical with
unit mean curvature. Moreover, if dimM = 3 and M̃4 is a Calabi-Yau manifold,
then M̃ is flat at each point of M .

Proof. From (22) and (23) we have

Q(g,H)(U, V ;X,Y ) = −g(Y, U)H(X,V ) + g(X,U)H(Y, V )
−g(Y, V )H(X,U) + g(X,V )H(U, Y ).

So in view of (18) we get

(27)
Q(g,H)(U, V ;X,Y ) = λ[−g(Y, U)η(X)η(V ) + g(X,U)η(Y )η(V )

−g(Y, V )η(X)η(U) + g(X,V )η(Y )η(U)].
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Since the condition R ·H = LHQ(g,H) holds on M , from (24) and (27) we have

(28)
λ[η(V )g(R(X,Y )U, ξ) + η(U)g(R(X,Y )V, ξ)] = λLH [−g(Y,U)η(X)η(V )

+g(X,U)η(Y )η(V )− g(Y, V )η(X)η(U) + g(X,V )η(Y )η(U)].

So taking V = ξ in (28) and using (6) we obtain

λ[LH − 1][−g(Y,U)η(X) + g(X,U)η(Y )] = 0.

Since LH 6= 1 we find λ = 0. In this case by the proof of Theorem 4.1 we know that
M is semiparallel. So the proof follows from the proof of Theorem 4.1.
Conversely, a semiparallel hypersurface is trivially pseudoparallel. This completes
the proof of the theorem. �

Theorem 4.3. Let M be a Sasakian hypersurface of a Kaehler manifold M̃2n+2,
n > 1. Then M is Weyl semiparallel if and only if M is an η-Einstein manifold or
it is totally umbilical with unit mean curvature. Moreover, if dimM = 3 and M̃4 is
a Calabi-Yau manifold, then M̃ is flat at each point of M .

Proof. By the use of (21) we can write

(C(X,Y ) ·H)(U, V ) = −g(C(X,Y )U,AV )− g(AU,C(X,Y )V ).

So in view of (18) we get

(29) (C(X,Y ) ·H)(U, V ) = −λ[η(V )g(C(X,Y )U, ξ) + η(U)g(C(X,Y )V, ξ)],

where λ = tr(A)− 2n− 1. Since M is semiparallel C ·H = 0, which implies

(30) λ[η(V )g(C(X,Y )U, ξ) + η(U)g(C(X,Y )V, ξ)] = 0.

Taking V = ξ in (30) we have

λg(C(X,Y )U, ξ) = 0,

which gives us either λ = 0 or g(C(X,Y )U, ξ). Assume that λ = 0. So by the
proof of previous theorem, we obtain A = I and then M is totally umbilical with
unit mean curvature, if dimM = 3 and M̃4 is a Calabi-Yau manifold, then M̃ is
flat at each point of M . Now assume that g(C(X,Y )U, ξ) = 0. Then by the use of
(19) and (6) we have

0 =
(

1 +
r

2n(2n− 1)

)
(g(Y, U)η(X)− g(X,U)η(Y ))(31)

− 1
2n− 1

[S(Y,U)η(X)− S(X,U)η(Y )

+2ng(Y, U)η(X)− 2ng(X,U)η(Y )].
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Taking X = ξ in (31) and using (7) we obtain

(32) S(Y,U) =
( r

2n
− 1
)
g(Y,U) +

(
2n+ 1− r

2n

)
η(Y )η(U),

which gives us M is an η-Einstein manifold.
Conversely, if M is totally umbilical with unit mean curvature then it can be easily
seen that it is Weyl-semiparallel. Now assume that M is an η-Einstein manifold.
Then from (32) and (19) we have

(33) g(C(X,Y )U, ξ) = 0.

So putting (33) into (29) we get (C(X,Y ) ·H)(U, V ) = 0. This completes the proof
of the theorem. �

Theorem 4.4. There is no Sasakian hypersurface M of a Kaehler manifold M̃2n+2,
n > 1, satisfying the condition C ·H = LHQ(g,H) unless LH = 0.

Proof. Since the condition C ·H = LHQ(g,H) holds on M from (27) and (29) we
have

−λ[η(V )g(C(X,Y )U, ξ) + η(U)g(C(X,Y )V, ξ)] = LHλ[−g(Y, U)η(X)η(V )
+g(X,U)η(Y )η(V )− g(Y, V )η(X)η(U) + g(X,V )η(Y )η(U)].

Then either λ = 0, in which case by the proof of the previous theorem it is easy to
see that C ·H = 0, or

(34)
−[η(V )g(C(X,Y )U, ξ) + η(U)g(C(X,Y )V, ξ)] = LH [−g(Y, U)η(X)η(V )

+g(X,U)η(Y )η(V )− g(Y, V )η(X)η(U) + g(X,V )η(Y )η(U)].

Now taking X = V = ξ in (34) we have

S(Y,U) =
( r

2n
− 1− LH(2n− 1)

)
g(Y,U)(35)

+
(

2n+ 1− r

2n
+ LH(2n− 1)

)
η(Y )η(U).

Hence M is an η-Einstein manifold. From (35), by a contraction, we find

LH(2n)(2n− 1) = 0,

which gives us LH = 0. This proves the theorem. �
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